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Chronic inflammation is widely observed in aging, but it is unclear whether

extracellular vesicles (EVs) play a role in chronic disease-associated

senescence. In our study, LC/MS profiling revealed that senescent cell

derived EVs (SEN EVs) activate the immune response pathways of

macrophages. Significantly more EVs were found in the supernatant of SEN

than of control (CON) cell cultures, and SEN EVs were enriched in miR-30b-5p,

which directly target sirtuin1 (SIRT1). In vitro, we found that SEN EV treatment

resulted in increased cellular levels of interleukin-1b (IL-1b) and IL-6 and

decreased levels of SIRT1. Increased cytokine levels could be reversed by

SIRT1 activation and miR-30b-5p inhibition. Furthermore, miR-30b-5p

significantly increased with age in both mouse liver tissue and EVs harvested

from the tissue, with differences in EVs observed both earlier and in the later

magnitude of aging. Western blot and qPCR proved that miR-30b-5p

downregulated the level of SIRT1 in mouse macrophages. Collectively, we

propose that EVs carrying miR-30b-5p from SEN cells can induce chronic

inflammation through macrophage activation. This occurs through the

downregulation of SIRT1 and the corresponding activation of NF-kB
pathways that enhance pro-inflammatory cytokine production. Collectively,

these results demonstrate that EVs carrying pro-inflammatory signals are

released by SEN cells and then activate immune cells in the SEN

microenvironment, changing the inflammatory balance. Our results also

explain why inflammation increases with age even though SEN cells can be

immediately eliminated under rigorous immune surveillance.

KEYWORDS

extracellular vesicles, miRNA, SIRT1, cell senescence, NF-kB
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.955175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.955175/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.955175&domain=pdf&date_stamp=2022-08-31
mailto:yin_hang@tsinghua.edu.cn
mailto:wangqian@smu.edu.cn
https://doi.org/10.3389/fimmu.2022.955175
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.955175
https://www.frontiersin.org/journals/immunology


Xiao et al. 10.3389/fimmu.2022.955175
Introduction

The control and balance of cell senescence can regulate the

occurrence and development of chronic diseases (1). During the

process of aging, cells at different stages of cellular senescence (2)

accumulate in tissues and secrete a large number of biologically

active molecules, particularly pro-inflammatory cytokines,

chemokines, and matrix remodeling enzymes that collectively

contribute to the senescence-associated secretory phenotype

(SASP) (3). Factors involved in SASP drive the systemic, low-

grade, chronic inflammation that accompanies human aging (4).

Short-term exposure to SASP stimulates the recruitment of

immune cells to eliminate precancerous and senescent (SEN)

cells, thereby preventing tumorigenesis; however, long-term

exposure to SASP produces chronic inflammation and

promotes tumorigenesis (5). In aging microenvironment, with

the increasing investigation of the significant role of

Extracellular vesicles (EVs), aging-associated EVs are now

believed to play multiple complex roles in disease progression.

EVs can be released by a variety of cells and are believed to

play a pivotal role in cell-cell communication both locally and

remotely (6–13). These particles are thought to be effective

circulating factors that regulate immune responses including

inflammatory responses (14–16). Due to their lipid bilayers, EVs

are readily phagocytosed by many different cell types (17, 18),

especially immune cells, which makes it particularly important

to study the influence of EVs and their contents on recipient

cells. Recent studies have also revealed the functions of SEN cell-

derived EVs (SEN EVs) (19). Specifically, EVs are widely

reported in the aging, extracellular microenvironment and

may transmit senescence signals in autocrine, paracrine, and

endocrine ways like SASP (20).

Y RNA and tRNA fragments from EVs can trigger immune

responses (16), and EVs microRNAs (miRNAs) have several

reported roles in immune regulation. EV-miR-155 enhances the

expression of pro-inflammatory cytokines, while EV-miR-146a

attenuates inflammatory responses via dendritic cells, and

macrophages uptake circulating EVs (17). Also, EV-miR-192,

an immunomodulatory aging-associated microRNA, attenuated

the hyperinflammatory state and improved vaccine efficacy in

geriatric mice (21). Although major contributions to organismal

aging have been demonstrated for EVs and their miRNA cargo,

there is limited knowledge of the effect of cellular senescence on

EVs contents and, in turn, on how EV-shuttled miRNAs might

influence immune cel ls . However , c irculat ing EVs

concentrations seem to decline with age, possibly as a

consequence of increased internalization by immune cells (22).

Downregulated, inhibited, or defective activity of SIRT1 has

been investigated in various cardiovascular (23, 24), renal (25),

and aging-associated diseases (26, 27). SIRT1, as a type III

histone/protein deacetylase, has many non-histone targets,

such as p53 (28), FOXO (29), PGC1-a (30), NF-kB (31),
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which are involved in inflammation, cellular senescence,

oxidative stress, energy metabolism, and DNA damage

response (32). Among downstream targets of SIRT1, NF-kB is

thought to be a major regulator of inflammation because it

regulates the transcription of genes involved in establishing

immune and inflammatory responses (24, 33, 34). Recent

studies show that SIRT1 could be a regulatory element in the

immune system, whose altered functions influence immune

disorder disease development (35). Also, in a mouse lupus

model, a SIRT1 activator effectively protected against disease

progression (36). In the clinic, SIRT1 is well known to have anti-

inflammatory properties (37–39).

In this study, we report that SEN EVs can induce

transcription of pro-inflammatory cytokine genes in

macrophages via downregulating SIRT1. We then evaluate

several miRNAs that target the mRNA of SIRT1. Our results

suggest that EV-associated miR-30b-5p reduces the levels of

SIRT1 in recipient cells. In mouse aging and cell senescence

processes, miR-30b-5p in EVs increases in a senescence degree-

dependent fashion. Taken together, our study demonstrates that

EV-carried miR-30b-5p regulates inflammatory responses of

macrophages by downregulating SIRT1. A key challenge is to

understand more precisely how EVs function in truly

physiological settings. Our findings have revealed an EV-

mediated delivery mechanism for miR-30b-5p, which reduces

SIRT1 levels and counteracts NF-kB signaling, suggesting a

potential avenue for anti-inflammatory intervention in humans.

Materials and methods

Cell lines and cell culture

An in vitro SEN EV functional assay was established using

L929 cell lines that were cultured for 45 to 50 generations, and

hyper SEN (h-SEN) cell lines were used etoposide-induced SEN

cells. Non-senescent (control, CON) cells were used for

comparison representing young cells. Raw 264.7 cells were

used as the macrophage model. All cells were purchased from

ATCC and cultured in Dulbecco’s Modified Eagle’s Medium

(Gibco™, USA) supplemented with 10% (V/V) fetal bovine

serum (FBS) (10099-141, Gibco™, USA) or EV-free FBS, 2 mM

L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin

(G ib co™ , USA) . EV- f r e e FBS wa s p r epa r ed by

ultracentrifugation (Beckman Coulter, Optima XPN-100) at

120,000 × g for 12 h at 4 °C and filtration of the FBS

supernatant with a 0.22 mm PVDF filter (Merck Millipore ltd).

Cells were cultured at 37°C in a humidified incubator containing

5% CO2 and tested negative for mycoplasma infection

every week.

Senescence was confirmed in the SEN and h-SEN models

using the ratio of phospho-H2A.X to b-Actin, a DNA damage

marker, (40, 41) and SASP levels.
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Peripheral blood mononuclear cell (PBMC) were isolated

from murine whole blood with Ficoll reagent following the

previously established protocols (42).

Cell transfection was performed with Lipofectamine™ 3000

Transfection Reagent (L3000150, Invitrogen™, USA) according

to the manufacturer’s protocols.
Drug administration

The stock solution of SRT1720 (Sigma-Aldrich, St. Louis,

MO, USA), a previously reported selective SIRT1 agonist (43),

was prepared in dimethyl sulfoxide (DMSO) (D2438, Sigma-

Aldrich) at storage concentration. The stock solutions were

diluted by cell culture medium to the indicated concentrations

prior to cell treatment.
EVs isolation and characterization

The supernatant was collected from different groups of cells

after 24-48 h culture and stored at 4 °C before EVs isolation

within 72 h of harvest by differential ultracentrifugation (14, 44).

Briefly, cell supernatants were firstly centrifuged at 2,000 × g for

15 min at 4 °C to remove floating dead cells and cell debris.

Supernatants were gently transferred to a new tube and

centrifuged at 12,000 × g for 45 min at 4 °C to pellet larger

microvesicles and subcellular organelles. The medium was

filtered through a 0.22 mm PVDF filter (Merck Millipore ltd)

(44) before ultracentrifugation at 120,000 × g for 1 h. Then, the

supernatant was discarded, followed by a washing step in PBS.

Finally, the EVs were resuspended in 100 mL PBS or ddH2O.

To further characterize EVs, we used transmission electron

microscopy (TEM), nanoparticle tracking analysis (NTA), and

Western blots (WB) as recommended by the Minimal

Information For Studies of Extracellular Vesicles (MISEV)

guidelines developed by the International Society for

Extracellular Vesicles in 2018 (45).

EVs (20 mL, ~107 particles) suspended in ddH2O were

loaded onto a copper grid and negatively stained with uranyl

acetate solution for 30 seconds. The grid was then examined with

an H7650B transmission electron microscope.

The particle size distribution and concentration of EVs

samples were measured by a light-scattering-based NTA

device (Malvern Instruments, United Kingdom) (46). To

maximize the reliability of quantifications and size-distribution

results, we diluted each EVs samples into the proper

concentration range before measurement (47) and tracked the

Brownian motion of laser-illuminated individual particles using

cameral level 16 and detection threshold 7. Each sample was

measured using three 60 s videos and analyzed by NanoSight

NTA 3.1 software, which calculates particle diameter using the

Stokes-Einstein equation and also analyzes concentration.
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Immunoblot analysis

For whole-cell and EVs proteins extraction, cells and EVs were

firstly washed three times in ice-cold pH=7.4 PBS (10010094,

Gibco™, USA) and solubilized in RIPA lysis buffer (P0013B,

Beyotime, China) supplemented with protease inhibitor cocktails

(78434, Thermo Scientific™, USA) on ice for 10min. Samples were

centrifuged at 12,000 × g at 4°C to remove cell debris. Sample lysates

were quantified by Pierce BCA protein assay according to the

manufacturer’s protocols (23235, Thermo Scientific™, USA).

Protein samples were added with a proper volume of 6X protein

loading buffer (DL101-02, TransGen Biotech, China) before protein

denaturing. Proteins were separated by 8%-12% SDS–PAGE,

electrotransferred to 0.45um PVDF membranes (Millipore, MA,

USA) by SDS-PAGE gel transfer system (Bio-Rad, USA), and

blocked with TBST containing 5% (w/v) skimmed milk powder

(D8340, Solarbio, China) before incubationwith primary antibodies

at room temperature (RT) for 2 h or 4°C overnight and with 1:5000

diluted secondary antibodies for 1 h at RT. Protein immunoblots

were detected by horseradish peroxidase-based ECL agent (34580,

Thermo Scientific™, USA) for 5 min, and images were acquired

with an iBright™ 1500 imaging system. Target protein levels were

normalized by b-Actin level of the same samples.

Primary antibodies used in this study are listed below:

CD63 (1:1000) (rabbit monoclonal, ab59479, Abcam,

Cambridge, UK), Alix (1:1000) (Proteintech, 12422-1-AP,

USA), Calnexin (1:1000) (rabbit monoclonal, ab133615,

Abcam, Cambridge, UK), SIRT1 (D1D7) (1:1000) (Rabbit

mAb #9475, Cell Signaling Technology, Danvers, MA),

Phospho-Histone H2A.X (Ser139) (20E3) (1:1000) (Rabbit

mAb #9718, Cell Signaling Technology, Danvers, MA), b-
Actin (13E5) (1:1000) (Rabbit mAb #4970, Cell Signaling

Technology, Danvers, MA)
Immunofluorescence staining

Cells were seeded on coverslips in 12-well plates and treated

as indicated. After the supernatants were removed, the cells were

washed with PBS for three times, then fixed with 4%

paraformaldehyde (P1110, Solarbio, China) for 10 min, and

permeabilized with 0.2% (v/v) Triton X-100 (T8200, Solarbio,

China) after three times of washing, and blocked with 3% (w/v)

BSA for 1 h. Then, the cells were incubated with 3% [w/v] BSA

diluted anti-NF-kB p65 antibody (1:200) (recombinant

antibody, 80979-1-RR, proteintech, USA) overnight at 4°C and

incubated with 3% [w/v] BSA diluted Alexa Fluor 488-labeled

goat anti-rabbit IgG (H+L) (1:2000) (A11034, Invitrogen™,

USA) and DAPI for 1 h at RT after three washes. Finally, the

coverslips were fixed on slides using a fluorescent mounting

medium (HC08, Sigma-Aldrich, USA), and images were

acquired with a Nikon A1RMP confocal microscope.
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Proteomics

Protein samples were separated by SDS-PAGE. In-gel

digestion was carried out with sequencing-grade modified

trypsin in 50 mM ammonium bicarbonate at 37°C overnight.

The peptides were extracted twice with 0.1% trifluoroacetic acid

in a 50% acetonitrile aqueous solution. Extracts were centrifuged

in a speedvac to reduce the volume. Tryptic peptides were

dissolved in 20 ml 0.1% TFA.

For LC-MS/MS analysis, the peptides were separated by

Thermo-Dionex Ultimate 3000 HPLC system, which was

directly interfaced with a Thermo Scientific Q Exactive mass

spectrometer. The Q Exactive mass spectrometer was operated

in the data-dependent acquisition mode using Xcalibur 2.1.2

software, and there was a single full-scan mass spectrum in the

orbitrap (300-1800 m/z, 70,000 resolution) followed by 20 data-

dependent MS/MS scans at 27% normalized collision

energy (HCD).

Perseus software was used to analyze the data (48).
Quantitative reverse-transcription PCR of
mRNA and miRNAs

For qRT-PCR of mRNA, cells were seeded in 6-well plates

and treated as indicated. Total RNA was collected with TRIzol

reagent (15596018, Invitrogen ™, USA). The DEPC H2O

diluted RNA was reverse transcribed using an iScript cDNA

synthesis kit and analyzed by qPCR using iTaq Universal SYBR

Green Supermix (in a Bio-Rad T100 thermal cycler). All

reagents were used according to the manufacturer ’s

instructions. b-Actin was used as the internal control of

mRNA and U6 was used as an internal normalization control

of miRNAs.

The primers are listed below:

Mouse-Il-1b-F: GCAACTGTTCCTGAACTCAACT
Mouse-Il-1b-R: ATCTTTTGGGGTCCGTCAACT
Mouse-Il-6-F: TAGTCCTTCCTACCCCAATTTCC

Mouse-Il-6-R: TTGGTCCTTAGCCACTCCTTC

Mouse-Sirt1-F: ATGACGCTGTGGCAGATTGTT

Mouse-Sirt1-R: CCGCAAGGCGAGCATAGAT

Mouse-b-Actin-F: TGACGTTGACATCCGTAAAGACC
Mouse-b-Actin-R: AAGGGTGTAAAACGCAGCTCA
Mouse- Il-8-F: CAAGGCTGGTCCATGCTCC

Mouse- Il-8-R: TGCTATCACTTCCTTTCTGTTGC

Mouse-p16-F: CGCAGGTTCTTGGTCACTGT

Mouse-p16-R: TGTTCACGAAAGCCAGAGCG

Mouse-p21-F: CCTGGTGATGTCCGACCTG

Mouse-p21-R: CCATGAGCGCATCGCAATC

Mouse-TP53-F: CCATGAGCGCATCGCAATC

Mouse-TP53-R: CGGAACATCTCGAAGCGTTTA
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For qRT-PCR of miRNA, total RNA of cells or EVs was

extracted with TRIzol reagent (15596018, Invitrogen ™, USA).

The DEPC H2O diluted RNA was reverse transcribed using an

iScript cDNA synthesis kit supplemented with stem-loop RT

primers. qPCR analysis was conducted using iTaq Universal

SYBR Green Supermix in a Bio-Rad T100 thermal cycler. ADD

normalization strategy.

The primers are listed below:

mmu-miR-30b-5p-RT(stem): GTCGTATCCAGTGCAGG

GTCCGAGGTATTCGCACTGGATACGACAGCTGA

mmu-miR-30b-5p-F(stem): GCGCTGTAAACATCCTACAC

U6-F: CTCGCTTCGGCAGCACA

U6-R: AACGCTTCACGAATTTGCGT

Universal-R: GCGATCACATTGCCAGGG

The sequences used for miRNA mimics and antagonists are

listed below:

mmu-miR-30b-5p mimics:

sense: 5’-UGUAAACAUCCUACACUCAGCU-3’

anti-sense 5’-CUGAGUGUAGGAUGUUUACAUU-3’

mmu-miR-30b-5p antagonist: 5’-AGCUGAGUGUAGG

AUGUUUACA-3’
Dual-luciferase reporter assay

pGLO vector-SIRT1-wild type and pGLO-SIRT1-mutant

reporter plasmid vectors were constructed by integrating target

fragments of miR-30b-5p. SIRT1-WT or SIRT1-MUT was co-

transfected with miR-30b-5p mimics for 48 h. And then

measured the luciferase activity with the Dual-Lumi™

Luciferase Reporter Assay Kit (RG088S, Beyotime, China).
Statistical analyses

The data are presented as groupmean ± SD. Unpaired Student’s

t-tests were used to analyze two-group comparisons, and one-way

ANOVA for more than two groups, followed by Bonferroni’s post-

hoc test, usingGraphPadPrism6.0.Groupdifferences at the level ofp

<0.05were considered tobe statistically significant. “*” representsp<

0.05; “**” represents p < 0.01, and “***” represents p < 0.001. "ns"

denotes not significant versus control.
Results

SEN EVs induce macrophage immune
responses

Since EVs mediate crucial cell-cell communication (49, 50),

we aimed to assess the function of EVs at an early stage of
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senescence. Raw 264.7 cells were co-cultured for 24 h with EVs

from SEN and CON cells (Figure 1A). Cellular protein content

extracted from co-cultured cells was then assessed with liquid

chromatography-tandem mass spectrometry (LC-MS/MS). In

total, 2939 unique proteins were identified (Figure S1C). These

are shown by hierarchical clustering (Figure S1A). In addition, a

volcano plot was prepared to visualize differentially expressed
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proteins (Figure 1B). Based on false discovery rate cutoffs of 0.025,

157 protein were identified as differentially expressed between

Raw 264.7 cells treated with CON EVs and SEN EVs, including 48

up-regulated proteins (see heatmap, Figure S1D). We were

interested to observe that SIRT1 decreased in SEN EV-treated

cells (Figure S1D). By protein categorization by Metascape (51),

we first identified all statistically enriched terms, including Gene
A B

D

E

C

FIGURE 1

Proteomics study of Raw 264.7 cells treated with CON and SEN EVs. (A) Workflow used for proteomic analysis. (B) Volcano plot of differentially
expressed proteins; dots above the black curves represent proteins with differences with False Discovery Rate (FDR) < 0.025. Bar graphs of
enriched terms (C) across input gene lists; (D) with GO terms only; and (E) by TRRUST. Data were from four independent repeats.
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Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), canonical pathways, and hallmark gene sets.

Accumulative hypergeometric p-values and enrichment factors

were calculated and used for filtering (Figure 1C). Next, we did

GO analysis for the biological process subclass and found enriched

proteins related to the immune system (Figure 1D). Finally,

Transcriptional Regulatory Relationships Unraveled by

Sentence-based Text mining (TRRUST) (Figure 1E) revealed

that, among others, inflammation-related proteins and the NF-

kB signaling pathway were enriched in the cellular proteome after

SEN EVs treatment. The network of these enriched proteins is

shown in Figures S1A, B. Taken together, our proteomics results

and knowledge of pathways involved in senescence prompted us

to further investigate the possible role of SEN EVs in influencing

the NF-kB mediated inflammation pathway.
SEN EVs regulate SIRT1 and induce
canonical NF-kB activation

SIRT1 is a histone and non-histone deacetylase that is widely

present in the nucleus and cytoplasm and can regulate the NF-kB
signaling pathway (31). To test the hypothesis that SEN EVs may

regulate SIRT1/NF-kB signaling, we constructed an EV co-culture

system(Figure2A).Having identified theNF-kBsignalingpathway
in our proteomics study, we found that the level of SIRT1decreased

after being co-cultured with SENEVs in a time-dependentmanner

(Figure 2B).Wehypothesized that itmight be the upstreamprotein

SIRT1,which candeacetylateNF-kB and thus inhibits activation of
the NF-kB signaling pathway (52) and related inflammation. We

further hypothesized that the decrease in SIRT1 is due to EV-

associated miRNAs that target SIRT1 in Raw 264.7 macrophage

cells allowing NF-kB-related inflammatory responses to tip the

balance between pro-inflammatory and anti-inflammatory

cytokines. We attempted to test ourthe hypotheses in the cell

system shown in Figure 2A. Through fluorescence microscopy,

the RelA/p65 subunit of NF-kB which is involved in canonical

signaling was found to enter the nucleus of cells exposed to SEN

EVs. In contrast, treating cells with a SIRT1 agonist decreased the

amount of p65 nuclear entry (Figures 2C, D). We also tested the

pro-inflammatory functions of SEN EVs by measuring cytokines.

mRNA levels of pro-inflammatory cytokines IL-1b and IL-6 were

increased by the addition of SEN EVs, but this increase was

abrogated by treatment with a miRNA antagonist of miR-30b-5p

and a SIRT1 agonist (Figures 2E, F).
miR-30b-5p can target SIRT1 in cells

To investigate EV cargo that might regulate the activation

of macrophages, we utilized the TargetScan and ENCORI
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prediction tools to identify possible miRNA regulators of

Sirt1 mRNA. Among the candidate miRNAs, miR-30b-5p

target the 3’UTR region of the Sirt1 mRNA in both humans

and mice (Figure 3A) and have relatively high prediction scores

(Figure S2A). Also, miR-30 (53, 54) have been widely reported

to be detected in EVs and are closely related to the progression

of diverse diseases (54–56). To further investigate the role of

miR-30b-5p in NF-kB mediated inflammation, we sought to

verify Sirt1 as a predicted target mRNA of this miRNA.

Therefore, we set out to verify this target in vitro. We

transfected Raw 264.7 cells with the miR-30b-5p anti-sense

antagonist and found a significant upregulation of the mRNA

level of Sirt1 in cells (Figure 3C). Meanwhile, transfecting Raw

264.7 cells with miR-30b-5p mimics downregulated the mRNA

level of Sirt1 in cells (Figure 3D). These effects were also dose-

dependent. In addition, the immunoblot assay showed that

transfection of the antagonist and mimics of miR-30b-5p

regulated the protein level of SIRT1 in Raw 264.7 cells

(Figure 3E). In conclusion, the mRNA of Sirt1 may be an

important target of miR-30b-5p in cells. Co-culturing

macrophages with the antisense sequence of miR-30b-5p as

the antagonist (Figures 2C-F) can reverse the pro-

inflammatory function of SEN EVs, and the transfection of

10 nM miR-30b-5p caused a remarkable inhibition of cell

inflammatory compared with that of the control group

(Figures 2E, F). Together, these results indicate that the

functions of SEN EVs may include SIRT1-downregulating

effects of EV miR-30b-5p.
miR-30b-5p level in cells and EVs are
correlated with aging

Hypothesizing that these miRNAs play a role in SEN EV-

induced inflammation, we accordingly measured miRNA levels

in cells and their EVs at several stages of senescence. Cell

senescence was quantitated in CON, SEN, and h-SEN cells

using the phospho-HA.X/b-Actin ratio (40, 41) (Figure 4A).

The morphology and SASP level of CON, SEN, and h-SEN cells

is shown in Figures S3A-B. NTA and TEM results for EVs

secreted from CON, SEN, and h-SEN cells indicated that particle

count in EVs preparations was positively correlated with

senescence degree (Figures 4B, C). Also, h-SEN EVs have

more EVs in a small, 60-nm subcluster, which might be more

easily internalized by cells. Although EVs are rich in miRNAs

and RNA binding proteins such as hnRNPA2B1 have been

reported to sort miRNAs into EVs (57, 58), it is as yet unclear

if or howmiR-30b-5p is sorted. However, RT-qPCR of miR-30b-

5p shows increased levels in cells and EVs, and that miRNA

levels are positively correlated with senescence degree

(Figures 4E, F).
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Morphology of adult and aging mouse
liver EVs

Livers were harvested from mice of different ages and used to

prepare tissue and isolate tissue EVs. The latter were characterized

by following established guidelines (45) (Figure 5). We used

electron microscopy to reveal the morphology of isolated EVs,

specifically definition by a lipid bilayer and a size of 30–150 nm
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(Figure 5A). Size-based EVs subclusters were measured and

displayed (Figures 5B-D), and size profiles and concentrations of

EVs from the liver weremeasured byNTA. ByNTA, particlemode

diameters ranged mostly from 120-160 nm, both in adult and

different aging liver EVs samples (Figure 5E). It has been reported

that SEN cells generally secrete more EVs than CON cells (59).

Interestingly, we observed that particle counts in the liver tissue did

not increase. By contrast, the EV levels decreased while the mice
A B

D

E F

C

FIGURE 2

SIRT1 regulates NF-kB activation induced by SEN EVs. (A) Workflow of the experimental design. Cells were treated with PBS (Control, ctrl), CON,
or SEN EVs after being pretreated with PBS, miR-30b-5p antagonist, or SRT1720. (B) Immunoblot analysis of SIRT1 protein level of cells treated
with CON or SEN EVs for a time course. (C) Immunofluorescence analysis of DAPI (blue) and p65 (green) in Raw 264.7 cells. Scale bars: 5 mm.
(D) Quantification of immunofluorescence ratio of p65 (Nucleus/cytoplasm). RT-qPCR analysis of (E) Il-1b and (F) Il-6 mRNA levels of Raw 264.7
cells treated with PBS, CON, or SEN EVs and the indicated inhibitors. Data are from at least three independent experiments and are presented as
the mean ± SD. **p<0.01; and ***p<0.001.
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aged (Figure 5F), which contradicted with the previous reports,

opening upnew possibilities for the study of tissue-derived EVs. As

reported, EVs of different sizes have different architectural features

and uptake rates, and EVs of small sizes aremore easily taken up by

target cells (60). A larger subcluster of 60-nm EVs was observed in

the 18-week (18W) group, while almost no 60-nm EVs were

observed in the 6-week (6W) group. There is a speculation that

these smaller EVs (60nm) produced during aging might contain

more pro-inflammatory miRNAs, but this hypothesis cannot be

confirmed at present due to technical limitations. Finally, several

EVs marker proteins (CD63 and Alix) were detected from isolated

EVs from different groups of mouse livers (Figure 5G) by

immunoblotting, while calnexin, a cellular marker, was

undetected or greatly depleted in EVs preparations.
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Levels of EV miR-30b-5p increased
significantly with age in mice

To find the source tissues of elevated miR-30b-5p,

we measured heart, lung, spleen, along with liver tissue-

derived EVs. We found that this miRNA increased with age

in the liver. Next, we turned to the RNA extracted from

different groups of mouse liver EVs and liver tissue and

investigated the relationship between senescence and levels of

EVs miRNA in the mouse model. The level of miR-30b-5p in

mouse liver and liver tissue-derived EVs were measured

(Figures 6A-C). The results showed that EV-derived miR-

30b-5p increased with aging (Figure 6A). EV-associated

miRNAs were increased already at 3 months, while in liver
A B

D

E

C

FIGURE 3

miR-30b-5p directly targets SIRT1 in macrophages. (A) miR-30b-5p target sequence in the 3’UTR of Sirt1. (B) Relative activity of firefly luciferase
and Renilla luciferase after co-transfection with mimics and plasmids expressing wild-type or mutated target sites. (C) RT-qPCR analysis of Sirt1
mRNA level of cells treated with the miR-30b-5p antagonist. (D) RT-qPCR analysis of Sirt1 mRNA level of cells treated with miR-30b-5p mimics.
(E) Immunoblot analysis of SIRT1 protein level of cells treated with miR-30b-5p mimics and antagonists. #1:mimics control group; #2: miR-
30b-5p mimics group; #3: antagonists control group; #4: miR-30b-5p antagonists group. The data represent at least three independent
experiments and are presented as mean ± SD. *p<0.05; and ***p<0.001.
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tissue, increases in miR-30b-5p were not discernible until 16

months, respectively (Figure 6B). We directly compared the

miRNA levels between indicated EVs and cells, and the

magnitude of the difference was also greater in EV

preparations than in liver tissue (Figure 6C). To better

observe the relationship between miR-30b-5p and SIRT1 in

mouse liver, we assessed SIRT1 levels of liver tissues and PBMC

in young and aging mouse populations (Figures 6D, E).
Discussion

In natural senescence, previously reported evidence supports

a major contribution of secreted EVs to the effects of SEN cells

on their micro-environment (20, 61). In our study, we confirmed

and extended these findings, showing that SEN EVs transport

pro-inflammatory signals, but not pro-senescence signals

directly, to recipient macrophages. A model of the mechanism

is shown in Figure 7. SEN cells indeed released a significantly

higher level of small (60-nm) EVs compared with normal cells.

Importantly, these EVs were released relatively early in the
Frontiers in Immunology 09
process. Our data agree with the results of previous studies,

including a mouse model of oncogene-induced senescence and

human lung fibrotic lesions enriched in SEN cells (50) and bone

marrow stromal cells (62).

Our findings support the hypothesis that SEN EVs are

enriched in a group of “pre-aging” microRNAs that are

transferred to recipient macrophages and influence important

biological pathways. , although it remains to be shown what level

of transported miRNA is necessary to induce changes in

recipient cells. Analyzing the candidate miRNAs of EVs that

could be involved in these effects, we found that miR-30b-5p

directly targets the mRNA of Sirt1 and is more abundant in SEN

EVs in vivoand invitro. ThismiRNA is closely related to tumorand

inflammation.Our results reveal that the early functionof SENEVs

is mainly pro-inflammatory via the SIRT1/NF-kB signaling

pathway, different from other reports that emphasize the pro-

senescence function of SEN EVs. Indeed, also supporting a role for

EV miRNAs, SEN EVs are reportedly enriched in miR-21-5p and

miR-217, whichwere over-expressed in SENcells andwere capable

of targeting not just SIRT1, but also DNMT1, another key enzyme

in methylation pattern maintenance (63, 64).
A B

D E F

C

FIGURE 4

Characterization of CON and SEN cells and derived EVs. (A) Immunoblot of p-H2A.X/b-actin of CON, SEN, and h-SEN cell models. 10 mg
proteins were loaded in each gel lane. (B) Particle concentrations and (C) particle size distributions of EVs preparations were determined by
nanoparticle tracking analysis (NTA). (D) Transmission electron microscopy (TEM) micrograph of representative isolated SEN EVs. RT-qPCR result
of miR-30b-5p levels of CON, SEN, and h-SEN cells (E) and EVs (F). The data are from at least three independent experiments and are
presented as mean ± SD. *p<0.05; **p<0.01; and ***p<0.001; ns denotes not significant versus control..
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To further elucidate the function of SEN EVs and

understand if we could potentially manipulate them to change

biological processes, we employed multiple regulators to treat

recipient cells. Both SIRT1 agonist and miR-30b-5p anti-sense

antagonist ameliorated processes associated with the pro-

inflammatory function of SEN EVs. Encouragingly, these

findings suggest that interventions against miRNAs in SEN

cells and/or SEN EVs may be feasible.

In aged humans, levels of extracellular miR-30b-5p have

been reported to be related with aging processes, albeit with
Frontiers in Immunology 10
apparently opposite results in different studies (41–43). In our

study, we first addressed the EVs miR-30b-5p level and raise

several questions that may be addressed in future studies. For

example, we observed differences in the size distribution of EVs

released from SEN cells, but whether miR-30b-5p are enriched

in specific size classes of EVs is still unknown. It would also be

interesting to investigate whether different size classes of EVs are

different not just in content, but also in cell uptake or fusion

abilities in this model, much as previously reported elsewhere

(50). The topology of miRNAs, in or on EVs, might also be
A B

D

E F G

C

FIGURE 5

Characterization of young (6-week old) and aged (16-month old) mice liver EVs. (A) TEM analysis of EV clusters; scale bars: 200 nm. (B) TEM
analysis of small EVs (60 nm). scale bars: 60 nm. (C) TEM analysis of EVs with diameter of ~80-90 nm; scale bars: 90 nm. (D) TEM analysis of
EVs at a diameter of ~120 nm. scale bars; 120 nm. NTA size distributions (E) and particle concentrations (F) of liver EV preparations from mice at
six ages as indicated. (G) Western blot of Alix, CD63, and Calnexin from liver EVs and liver tissues. The data represent at least three independent
experiments and are presented as mean ± SD. **p<0.01; and ***p<0.001; ns denotes not significant versus control..
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analyzed. Finally, we cannot fully rule out additional

contributions of non-EV or non-miRNA effectors to the

transferred senescence phenomenon.

Altogether, we provide evidence that during progression

from a pre-senescence to a hyper-senescence stage, SEN cells

can spread their miRNA signature, thus contributing to the
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development of a pro-inflammatory environment for immune

cells. These microRNAs can be selectively sorted into and

delivered through EVs. Also, our results indicate that EV-miR-

30b-5p might be used as a pre-aging or early aging biomarkers to

track aging trajectories. In conclusion, our finding may lay the

foundation for further research, in particular to understanding
A B

D E

C

FIGURE 6

miR-30b-5p increase with aging in liver tissue and liver tissue EVs. (A) RT-qPCR of miR-30b-5p levels of mouse liver EVs. (B) RT-qPCR of miR-
30b-5p levels from mouse liver tissue. (C) Comparison of miR-30b-5p levels from liver EVs and tissue. (D) Immunoblotting analysis of SIRT1
protein level of young (6-week old) and aged (16-month old) group ouse liver. 6 mice were randomly selected from each group. (E)
Immunoblot analysis of SIRT1 protein level of young (6-week old) and aged (16-month old) group mouse PBMCs. 6 mice were randomly
selected from each group. The data represent at least three independent experiments and are presented as mean ± SD. **p<0.01; and
***p<0.001, ns denotes not significant versus control. 6W: 6-week-old mice, 3M, 5M, 12M, and 16M: 3, 5, 12, and 16-month-old mice.
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how pro-inflammatory and pro-senescence signals carried by

EVs can become druggable targets that can help modulate the

immune-regulating and aging process and delay aging-

associated disease development.

In conclusion, cellular senescence is a state of permanent

cell-cycle arrest, the causes of which are incompletely

understood. Learning more about the cellular and molecular

contributors to senescence will facilitate new approaches to

treating senescence-related phenomena and diseases. Our work

here reveals an unappreciated relationship between innate

immune responses and senescence, establishing a link between

cells and different cell types that involves cellular EVs transfer of

miRNAs. These results give new insights into the inflammatory

process in SASP and therefore heighten our understanding of the

accurate regulation of senescence. SEN EV-induced

inflammatory responses of macrophages may also be

persistent: the macrophages will not be cleared by immune

cells, since these SEN cells, possibly influenced chronically by

released SEN EVs, are in a state of immune escape. The

sustained action of SEN EVs may thus assist in transforming

the macrophage into a promoter of aging and disease.
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FIGURE 7

A brief model describing a theoretical mechanism whereby SEN cell-derived EVs transport pro-inflammatory signals to macrophages. SEN cells
release more EVs that contain miR-30b-5p. With the uptake of SEN EVs by macrophages, miR-30b-5p is released from EVs and reduces the
level of SIRT1, thereby mediating the increase of p65 entry into the nucleus, and then increasing the synthesis of cytokines IL-6 and IL-1b.
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