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Comprehensive analysis of m6A/
m5C/m1A-related gene
expression, immune infiltration,
and sensitivity of antineoplastic
drugs in glioma

Kai Zhao1†, Wenhu Li1†, Yongtao Yang2, Xinyue Hu3, Ying Dai1,
Minhao Huang1, Ji Luo1, Kui Zhang1 and Ninghui Zhao1*

1Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University,
Kunming, China, 2Cerebrovascular Disease Department, the Second Affiliated Hospital of Kunming
Medical University, Kunming, China, 3Department of Clinical Laboratory, Kunming First People’s
Hospital, Kunming Medical University, Kunming, China
This research aims to develop a prognostic glioma marker based on m6A/m5C/

m1A genes and investigate the potential role in the tumor immune

microenvironment. Data for patients with glioma were downloaded from The

Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). The

expression of genes related to m6A/m5C/m1A was compared for normal and

glioma groups. Gene Ontology and Kyoto Encyclopedia of Genes and Gene

enrichment analysis of differentially expressed genes were conducted.

Consistent clustering analysis was performed to obtain glioma subtypes and

complete the survival analysis and immune analysis. Based on TCGA, Lasso

regression analysis was used to obtain a prognostic model, and the CGGA

database was used to validate the model. The model-based risk scores and the

hub genes with the immune microenvironment, clinical features, and antitumor

drug susceptibility were investigated. The clinical glioma tissues were collected to

verify the expression of hub genes via immunohistochemistry. Twenty genes were

differentially expressed, Consensus cluster analysis identified two molecular

clusters. Overall survival was significantly higher in cluster 2 than in cluster 1.

Immunological analysis revealed statistically significant differences in 26 immune

cells and 17 immune functions between the two clusters. Enrichment analysis

detected multiple meaningful pathways. We constructed a prognostic model that

consists of WTAP, TRMT6, DNMT1, and DNMT3B. The high-risk and low-risk

groups affected the survival prognosis and immune infiltration, which were related

to grade, gender, age, and survival status. The prognostic value of the model was

validated using another independent cohort CGGA. Clinical correlation and

immune analysis revealed that four hub genes were associated with tumor

grade, immune cells, and antitumor drug sensitivity, and WTAP was significantly

associated with microsatellite instability(MSI). Immunohistochemistry confirmed

the high expression of WTAP, DNMT1, and DNMT3B in tumor tissue, but the low

expression of TRMT6. This study established a strong prognostic marker based on

m6A/m5C/m1Amethylation regulators, which can accurately predict the prognosis
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of patients with gliomas. m6A/m5C/m1A modification mode plays an important

role in the tumor microenvironment, can provide valuable information for anti-

tumor immunotherapy, and have a profound impact on the clinical characteristics.
KEYWORDS

glioma, RNA methylation modification, N6-adenylate methylation (m6A), N1-adenylate
methylation (m1A), cytosine hydroxylation (m5C), tumor immune microenvironment
1 Introduction

Glioma is the most common primary malignant tumor of

the central nervous system (CNS) and originates from

astrocytes, oligodendrocytes, and ependymal glial cells. The

annual incidence rate of glioma is approximately 6/100,000,

and the prevalence rate in males is 1.6 times higher than that in

females (1). Because Roman numerals II and III are easily

confused, cIMPACT-NOW now recommends using Arabic

numerals to grade gliomas, in which low-grade gliomas (LGG)

include CNS WHO grades 1–2, while high-grade gliomas

(HGG) contain CNS WHO grades 3–4 (2). The median

overall survival time of LGG and HGG is 78.1 and 14.4

months, respectively (3). Glioblastoma (GBM) is the most

common type of glioma, accounting for 57% of all gliomas

and 48% of all primary malignant tumors of the CNS. It is one of

the deadliest and most common malignant solid tumors. The

therapeutic effect of total surgical resection combined with

postoperative concurrent chemoradiotherapy on GBM is still

insufficient. Malignant glioma has a five-year survival rate of

only 4–29%, the survival time is approximately one year, and

there is no cure (4). Exploration of effective biological targets,

understanding the complex pathogenesis and molecular

mechanism of glioma, and developing effective treatment

strategies are urgently needed.

RNA modification is a critical step in epigenetics for

regulating post-transcriptional gene expression, and it has

emerged as the most important post-transcriptional regulator of

gene expression programs, with RNA base methylation

modification being the most common. The most prevalent types

of RNA modification are N6-adenylate methylation (m6A), N1-

adenylate methylation (m1A), and cytosine hydroxylation (m5C)

(5). m6A, commonly known as N6- methyladenosine, is the

methylated sixth nitrogen atom of adenine. In RNA transcripts,

m6A is the most common chemical alteration. Several m6A

components (writers, readers, and erasers) have been linked to

cancer and proposed as prospective therapeutic targets (6, 7). m1A
02
is another key methyltransferase-catalyzed post-transcriptional

RNA modification. Unlike m6A, adenylate transformed by m1A

is methylated at the N1 location. In multiple cancer cell lines, the

m1A regulator demethylated tRNAs and created short RNAs

derived from tRNAs to enhance cancer cell growth (8). The

methylation of the fifth C atom of RNA cytosine is known as

m5C. m5C regulates the stability, expression, and translation of

mRNA, which is critical for cancer cell proliferation and

metastasis as well as tumor stem cell development (9–11). Lin

et al. (12) explored the differentially expressed m6A regulatory

genes in gliomas through the Cancer Genome Atlas (TCGA) and

found that PDPN and TIMP1 may be potential biomarkers of

glioma prognosis. Li (13) showed that m5C-related genes could

predict the survival rate and prognosis of low-grade gliomas, in

which the expression of NSUN3, TET2, TRDMT1, ALYREF,

DNMT3B, DNMT1, NOP2, NSUN2 were upregulated, and

DNMT3A mutation was the most common type. However,

these studies have some limitations, such as having a single

dataset, small sample size, incomplete analysis, and no

combination of clinical characteristics and immune correlation

analysis. In addition, there is no bioinformatics study of m1A in

gliomas. Therefore, to build a more accurate prognostic model

and identify the potential prognostic biomarkers, it is necessary to

conduct an in-depth analysis of m6A/m5C/m1A-related genes

in gliomas.

This study used TCGA and CGGA databases to acquire

RNA sequencing data and clinical information from glioma

patients to explore the potential role of m6A/m5C/m1A-

associated genes in glioma. After the difference analysis of

m6A/m5C/m1A-related genes via consensus cluster analysis,

risk models were created to better predict the prognosis of

patients with glioma. We used the glioma-related data from

the CGGA database to test the model’s accuracy. In addition, we

investigated the role of m6A/m5C/m1A-associated genes in

immune infiltrating cells, immunological function, clinical

characteristics, and chemosensitivity in glioma, to determine

potentially effective biomarkers.
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2 Materials and methods

2.1 Data collection and genes related to
m6A/m5C/m1A

The GBM and LGG samples, including 5 control samples,

500 LGG samples, and 145 GBM samples, were retrieved from

TCGA, and clinical data of patients, including sex, living

situation, and follow-up period, were obtained. The GBM and

LGG datasets were integrated, tumor patients with travel follow-

up data were screened (Table 1), and patient microsatellite

instability data were obtained (14). The CCGA (15) data,

DataSet ID: mRNAseq 693, which includes 693 patients with

glioma, were downloaded to obtain the matched clinical data,

such as living conditions and follow-up period, for verifying the

TCGA dataset. m6A has identified 23 genes. m5C/m1A-related

genes are mainly derived from the literature, but some genes are

not detected in the two data sets of TCGA or CGGA. Finally,

there are 41 genes associated with m6A/m5C/m1A were collected

(Supplement Material 1).
2.2 Bioinformatic analysis

Deseq2 package and rank sum test were used to compare

the differences in genes related to m6A/m5C/m1A between the

normal samples and glioma tumor samples in TCGA and

display the differences with a box plot, P<0.05 represents a

significant difference. The clusterProfiler R software package

(16) was used to explore the biological processes, molecular

function,cellular components and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) of the m6A/m5C/m1A related

differentially expressed genes,the results with P<0.05 & q<0.05

was considered to be statistically significant. The STRING

database (17) is a database of the interactions between known

and predicted proteins. The protein-protein interaction

ne twork be tween m6A/m5C/m1A-re la ted genes i s

constructed in the STRING database. The coefficient was set

as 0.7, and different colors represent log2FC values. The
Frontiers in Immunology 03
protein-protein interaction results were derived from the

STRING database and further visualized using Cytoscape

(18). The correlation network diagram and chromosome

dis t r ibut ion diagram of the m6A/m5C/m1A genes

were created.

The differentially expressed genes were analyzed via

univariate Cox regression analysis, and then the m6A/m5C/

m1A differentially expressed genes with prognostic values

were detected. The “ConsensusClusterPlus” R package (19)

was used for consistent cluster analysis to better distinguish

the different clusters of gliomas. The number of clusters was

set from 2 to 5, 80% of the total samples collected were

r e p e a t e d 1 0 0 t im e s u s i n g c l u s t e rA l g = ” p am ” ,

distance=”euclidean”. To study the differences in biological

processes among subtypes, gene set enrichment analysis

(GSEA) was used, and the results with P <0.05 were

considered significantly enriched. The differentially

expressed genes of m6A/m5C/m1A with prognostic values

among clusters and the survival of different clusters were

analyzed. The immune function gene set was downloaded

from the marker (Supplement Material 2) of 28 types of

immune cells and the Immport database (https://www.

immport.org/resources) (Supplement Material 3). The

single-sample GSEA (ssGSEA) of TCGA glioma samples was

carried out using the gene set variation analysis (GSVA)

package (20). The composition and abundance of 28 types of

immune cells in glioma samples were estimated, and the

differences between different subtypes of immune cells and

immune function were compared.

In TCGA, the correlation between the expression of the

differentially expressed gene and overall survival (OS) was

calculated using univariate Cox regression analysis, and the

genes with P <0.1 were retained. Then, the lasso regression

was used to eliminate multiple collinearity and screen the

variables for univariate Cox regression analysis. To obtain

more accurate independent prognostic factors (prognostic

characteristic genes), a prognostic model was established by

using multivariate Cox regression analysis. The risk score

formula was established as follows: risk score = (exp-

Gene1*coef-Gene1) + (exp-Gene2*coef-Gene2) +… + (exp-

Gene*coef-Gene). According to the given risk score, the

patients were divided into the high-risk group and the low-

risk group. Kaplan-Meier analysis and logarithmic rank test were

performed using a survival package to analyze the OS of the test

set. In addition, the time-dependent subject operating

characteristic (ROC) curve was used to evaluate survival

prediction, the timeROC package (21) was used to calculate

the area under the curve (AUC) to measure prognosis or

prediction accuracy, and the model was verified using the

CGGA database. The differences in immune cells and immune

function between the high- and low-risk groups were analyzed.

Finally, the relationship between the risk score and tumor grade,

sex, survival status, and age was determined.
TABLE 1 Glioma patients with clinical data in TCGA.

Category Number

Overall 638

OS.Dead (%) 236 (37.0)

Grade (%) G2 207 (32.4)

G3 232 (36.4)

G4 143 (22.4)

Unknown 56 (8.8)

Gender.Male (%) 369 (57.8)

Age ≤ 60 (%) 556 (87.1)
OS, Overall Survival.
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To study the key genes in the model, we first mapped the

distribution of these genes in high- and low-risk groups and

analyzed their relationship with tumor grade, MSI, and immune

cells. The drug sensitivity was analyzed using the CellMiner

database (https://discover.nci.nih.gov/cellminer/). The

correlation between the expression of key genes and

compound sensitivity was calculated by using Pearson’s

correlation coefficient. The values with P <0.05 were

considered statistically significant.
2.3 Immunohistochemical verification
and ethics approval statement

Fresh glioma tissues and paracancerous tissues were

collected, and the expression of hub genes was verified by

using an immunohistochemical experiment. Xylene and

anhydrous ethanol were added to the tissue-fixed embedded

slices, which were alcohol-soaked and then washed with

distilled water. After the antigen was repaired, it was heated

in the microwave oven and cleaned with phosphate buffered

saline after cooling. Bovine serum albumin was dripped into

the submerged tissue, and then WTAP (Abbkine), TRMT6

(Cusabio), DNMT1 (Abcam) and DNMT3B (Abbkine) were

added. The tissue was incubated overnight in a wet box at 4°C,

and DAB chromogenic solution was added. The tissue was

then restained and differentiated with hematoxylin. The tissue

slices were dehydrated and cleared to make them transparent,

and the neutral gum was sealed after drying. Under a

microscope, the images were taken: negative without

coloring, weak positive light yellow, medium positive brown,

and strong positive brown. In this clinical study, the patients

and their families have been informed about the project and

they have signed written consent. The project has been

approved by the Clinical Ethics Committee of the Second

Affiliated Hospital of Kunming Medical University (Code : PJ-

2021-106).
2.4 Statistical analysis

All calculations and statistical analysis were carried out

using R software (https://www.r-project.org/Magiversion4.0.

2). For the comparison of two groups of continuous

variables, the differences between variables were analyzed by

using the Mann-Whitney U test (Wilcoxon rank-sum test). For

the comparison of more than two groups of continuous

variables, the differences between variables were analyzed via

the Kruskal-Wallis test. All the statistical p values were

bilateral, and the results with P <0.05 were regarded as

statistically significant.
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3 Results

3.1 Technical flow chart of this study

Figure 1 shows the technical flow chart of our study.

3.1.1 Differentially expressed gene analysis and
correlation of m6A/m5C/m1A-related genes

In the difference analysis of 41 m6A/m5C/m1A-related genes

between glioma and normal samples, 20 genes (METTL3,

METTL14 , WTAP , VIRMA , RBM15B , FTO, ALKBH5 ,

YTHDF1, HNRNPC, HNRNPA2B1, LRPPRC, TRMT6, RRP8,

ALKBH1, NSUN2, DNMT1, DNMT3B, ALYREF, YBX1,TET2)

showed significant differences (Figure 2A, Table 2). The

interaction network map of m6A/m5C/m1A-related genes was

obtained by using the STRING database and visualized using

Cytoscape software(Version 3.7.1). Different colors in Figure 2

represent the log2FC values obtained via difference analysis:

orange represents log2FC >0, blue represents log2FC <0, and the

darker the color, the larger the |log2FC| value (Figure 2B). We

analyzed the correlations between the m6A/m5C/m1A-related

genes, drew the correlation network diagram, and showed the

genes with an absolute value of the correlation coefficient greater

than 0.4 (Figure 2C). A chromosome map (Figure 2D) was

drawn to show the distribution of m6A/m5C/m1A-related genes

on chromosomes.
3.2 GO and KEGG enrichment analysis

We analyzed the biological processes, molecular function, cell

components, and related pathways of the differentially expressed

m6A/m5C/m1A-related genes. They affect biological processes

such as RNA modification, mRNA methylation, methylation,

regulation of mRNA metabolic processes (Figure 3A), oxidative

RNA demethylase activity, S-adenosylmethionine-dependent

methyltransferase activity, N6-methyl adenine-containing RNA

binding, methyltransferase activity and other molecular functions

(Figure 3B), RNA N6-methyladenosine methyltransferase

complex, mRNA editing complex, methyltransferase complex,

cell components such as methyltransferase complex (Figure 3C:

Supplement Material 4), and pathways such as cysteine and

methionine metabolism, spliceosome, and microRNAs in cancer

(Table 3). We also showed the hsa05014 pathway associated with

cancer (Figure 3D).
3.3 Glioma cluster analysis

Based on the glioma samples from TCGA, 20 differentially

expressed m6A/m5C/m1A-related genes were analyzed using the
frontiersin.org
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univariate Cox regression analysis, and 16 genes were found to

have prognostic significance (P< 0.1, Supplement Material 5).

Cluster analysis identified distinct glioma subtypes (k=2–5)

based on these 16 genes, and k=2 was chosen to divide

gliomas into two clusters (Figures 4A-C). t-Stochastic neighbor

embedding (tSNE) showed the differentiation between different

subcategories (Figure 4D). The overall survival rate of patients in

cluster 2 was significantly higher than that in cluster 1

(Figure 4E). We used a box chart to show the expression levels

of 16 genes between different clusters. Ten genes (METTL14,

WTAP, VIRMA, FTO, ALKBH, LRPPRC, DNMT3B, ALYREF,

YBX1, TET2) were differentially expressed (Figure 4F).
3.4 GSEA and immune correlation
analysis among different clusters

To further analyze the differences in pathways between

different clusters, GSEA was used to show that the calcium
Frontiers in Immunology 05
signaling pathway, melanogenesis, neuroactive ligand-receptor

interaction, and phosphatidylinositol signaling system were

significantly enriched in cluster 2 (Figure 5A). Cell cycle,

primary immunodeficiency, cytokine receptor interaction, and

extracellular matrix-receptor interaction are significantly

enriched in cluster 1 (Figure 5C; Supplement Material 6). 28

types of cells in clusters 1 and 2 showed statistical differences

except for activated B cells and monocytes, and 17 immune

function gene set scores showed significant differences between

the two groups with ssGSEA to calculate the immune cell

infiltration and immune function gene set score of glioma

(Figures 5B, D).
3.5 Establishment of the
prognostic model

As a starting point, we performed a univariate Cox

regression analysis on TCGA and CGGA data to seek
FIGURE 1

Flow chart in the current study. TCGA database was used to extract and integrate glioma data, and the differences of m6A/m5C/m1A related genes were
analyzed. Based on these differentially expressed genes, different glioma clusters were obtained by consistent cluster analysis, and the survival and
immunity of different clusters were analyzed. The prognostic model was constructed by Cox and Lasso regression, the risk score was calculated, the
survival and immunity between high and low risk groups were compared, and the accuracy of the model was verified by CGGA database. Finally, the
correlation between hub genes and immune cells and the sensitivity of drugs were analyzed and verified by immunohistochemistry.
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characteristics linked to OS in patients with glioma and found

six variables with P <0.1 (Figure 6A). To eliminate

multicollinearity in these six variables, we performed a lasso

regression analysis (Figures 6B, C). Finally, four genes were

acquired by multivariate Cox regression analysis, and the

p r e d i c t i o n m o d e l w a s d e v e l o p e d ( T a b l e 4 ) .

Riskscore=WTAP*1.048+TRMT6*0.3159+DNMT1*-0.2019

+DNMT3B*0.4305. The patients were separated into high- and

low-risk groups based on their median risk score. The survival

curve revealed that the high-risk group had a significantly poorer

survival rate than the low-risk group (Figure 6D). The ROC

curve of the risk score on prognosis revealed that for the first,

second, and third years, the AUC was 0.716, 0.730, and 0.765,

respectively (Figure 6E). A risk triad map was also drawn. When

the risk score increases, patients’ survival time decreases, and

their relative survival rate rises dramatically (Figures 6F, G).

WTAP, TRMT6, DNMT1, and DNMT3B are distributed

differently in high- and low-risk groups, as seen in the

heatmap (Figure 6H).
Frontiers in Immunology 06
3.6 Validation of CGGA

There were two types of patients in the CGGA database,

based on the median risk score: high-risk patients and low-risk

patients. High-risk patients had a poorer survival rate than low-

risk patients according to the ROC curve (P = 6.32e-11,

Figure 7A) for prognosis. The AUCs for one, two, and three

years was 0.610, 0.660, and 0.663 (Figure 7B).
3.7 Immunoanalysis of high- and
low-risk groups

The immune infiltration comparison between high- and

low-risk groups is presented in the box plot (Figure 8A).

Among 28 types of immune cells, 24 showed significant

variations in immune function sets including Antibiotics,

chemokines, chemokine receptors, cytokines, interferons,

interferon receptors, interleukins, leukin receptor, natural
B C D

A

FIGURE 2

m6A/m5C/m1A related genes analysis. (A) The difference expression of m6A/m5C/m1A related genes between glioma and control samples, with
red representing tumor group and blue representing normal group. (B) Protein-protein interaction diagram, different colors represent log2FC
values (obtained by comparing normal group and tumor group with Deseq2 package), orange represents log2FC >0, blue represents log2FC <
0, and the darker the color, the larger |log2FC|. (C) Correlation network diagram, red line represents positive correlation and blue represents
negative correlation; chromosome map shows the distribution of genes related to m6A/m5C/m1A on chromosomes (D). (NS:no significant)
(*P < 0.05, **P < 0.01, ***P < 0.001).
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killer cell cytotoxicity, T cell receptor signaling pathway, TGFb

family member, TGFb family member receptor, and tumor

necrosis factor (TNF) family members. Additionally, there are

notable variations in receptors between the two risk

groups (Figure 8B).
3.8 Clinical correlation analysis and
immunohistochemistry

In TCGA, the risk score was significantly correlated with sex,

survival status, and age of the patients (p<0.05) (Figures 9A-D).

G4 and G3 risk scores are higher than G2 risk scores, male

groups are higher than female groups, death groups are higher

than survival groups, and young groups are higher than old

groups. We analyzed the link betweenWTAP, TRMT6, DNMT1,

DNMT3B expression and MSI. We used the median value to

divide the expression of four genes into high- and low-

expression groups and investigated the relationship between

genes and MSI (Figures 9E-H). WTAP was substantially

linked with MSI, and MSI in the high-expression group was

low (P = 3.8e-10). Immunohistochemistry analysis showed that

the expression of WTAP (Figure 9I), DNMT1 (Figure 9J), and

DNMT3B (Figure 9K) in tumor tissues was significantly higher

than that in paracancerous tissues, whereas the expression of

TRMT6 (Figure 9L) was low in tumor tissues. The results were

consistent with the results of database bioinformatics analysis.
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3.9 Immunity and drug
resistance analysis

The four hub genes had a strong association with immune

cells based on gene ssGSEA data (Figure 10A). The genes for

TRMT6, DNMT1, and DNMT3B had negative correlations,

whereas the gene for WTAP had positive correlations with the

majority of immune cells. Using the Cellminer database, the 12

most sensitive genes to medicines were ranked according to the

absolute value of their correlation coefficients, and a correlation

map was generated (Figure 10B). The expression of WTAP and

the antineoplastic medication Vemurafenib were favorably

connected with the sensitivity of anticancer drugs such as

chelerythrine, PX-316, 3-bromopyruvate, nelarabine,

and allopurinol.
4 Discussion

Glioma is the most common type of malignant brain tumor;

especially GBM has the characteristics of invasive development,

rapid progression, and a high degree of aggressiveness (22). The

pathophysiology and specific mechanism of glioma are currently

unknown, therapeutic options are restricted, the overall treatment

impact is not optimal, and relapse after surgical resection,

radiation, and chemotherapy is still common (23). Recurrent

GBM has no conventional or effective treatment. A more

effective treatment plan is urgently required to increase patients’

overall survival time and quality of life. Immunotherapy has

shown promise in the treatment of different cancers.

Researchers are currently conducting numerous studies on

chimeric antigen receptor T-cell (CAR-T) immunotherapy,

immune checkpoint inhibitor therapy, oncolytic virus, and

tumor vaccine immunotherapy for patients with GBM with

promising results, but the immune microenvironment of glioma

warrants further investigation (24). The most prevalent RNA

modification type at the moment is m6A/m5C/m1A, and there is

considerable research on cancer pathogenesis (25), but limited

research on glioma. Further research on the role of m6A/m5C/

m1A-related genes in glioma and their possible implications on

the tumor immune microenvironment is required.

In this study, we first analyzed the expression of 41 m6A/m5C/

m1A-related genes in glioma and normal tissues. Twenty genes

showed significant differences, including 12 m6A (METTL3,

METTL14, WTAP, VIRMA, RBM15B, FTO, ALKBH5, YTHDF1,

HNRNPC, HNRNPA2B1, LRPPRC, ALKBH1), 6 m5C (NSUN2,

DNMT1, DNMT3B, ALYREF, YBX1, TET2), and 2 m1A (TRMT6,

RRP8). 4 genes (FTO, ALKBH5, LRPPRC, TRMT6) were

downregulated in tumor tissues, whereas the other 16 genes

were upregulated in tumor tissues including METTL3,

METTL14, and NSUNA. Upregulated expression of METTL3

has been reported to increase resistance to temozolomide
TABLE 2 Differentially expressed analysis of m6A/m5C/m1A-related
genes.

Gene type P

METTL3 m6A 0.0044

METTL14 m6A 0.0265

WTAP m6A 0.0059

VIRMA m6A 0.0047

RBM15B m6A 0.0104

FTO m6A 0.0107

ALKBH5 m6A 0.0011

YTHDF1 m6A 0.0035

HNRNPC m6A 0.0004

HNRNPA2B1 m6A 0.0097

LRPPRC m6A 0.0296

TRMT6 m1A 0.0473

RRP8 m1A 0.0429

ALKBH1 m1A 0.0038

NSUN2 m5C 0.0249

DNMT1 m5C 0.0175

DNMT3B m5C 0.0294

ALYREF m5C 0.0009

YBX1 m5C 0.0002

TET2 m5C 0.009
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(TMZ) in patients with GBM and inhibit resensitization of drug-

resistant GBM to TMZ by METLL3 (26). Through the study of

M6A of glioma stem cells, Cui et al. (27) discovered thatMETTL3

andMETTL14 play an important role in the proliferation and self-

renewal of glioma stem cells. Zeng et al. (28) reported that

DNMT1 is highly expressed in gliomas to promote tumor

development and block tumor apoptosis in vivo, which is

related to the WNT pathway. NSUN2 is highly expressed in

U87 and regulates the migration ability of tumor cells. Silencing

NSUN2 significantly reduces and inhibits migration (29). These

results show that the differentially expressed genes do play an

important role in the occurrence and development of gliomas, but

there are few studies on other genes in gliomas, especially m1A-

related genes. The GO enrichment analysis showed that the

biological processes involved in differentially expressed genes

mostly focused on RNA modification, and KEGG analysis

revealed cancer-related pathways.

Subsequently, univariate Cox regression analysis revealed 16

differentially expressed genes with prognostic values, 2 clusters
Frontiers in Immunology 08
were detected by consistent cluster analysis, and 10 genes were

differentially expressed between cluster 1 and cluster 2. The

overall survival rate of patients with glioma in cluster 2 was

higher than that of those in cluster 1. Cluster 1 was investigated

using GSEA to discover its biological roles, which included cell

cycle, immunological microenvironment, and receptor

modulation. The pathway enriched by cluster 2 has been

linked to various glioma oncogenic pathways (30, 31). We also

analyzed the immune cell infiltration score and the immune

function gene set in clusters 1 and 2. Except for activated B cells

and monocytes, there were statistical differences between 26

types of cells in clusters 1 and 2, and the infiltration level of most

immune cells in cluster 1 was higher than in cluster 2. Hara et al.

(32) discovered that macrophages directly induced GBM cells to

change into a mesenchymal-like state, which was linked to an

increase in the abundance and cytotoxicity of tumor-infiltrating

T cells, implying a functional interaction between immune cells

and the GBM cell state. Friedrich et al. (33) discovered that

glioma cells could penetrate immune cells by reprogramming
B

C D

A

FIGURE 3

GO and KEGG enrichment analysis. (A) GO enrichment analysis histogram (biological process), the abscissa is the number of genes, the ordinate
is GO term, and the color indicates padj. (B) Histogram of enrichment analysis (molecular function), the abscissa is gene number, the ordinate is
GO term, and the color indicates padj. (C) Enrichment analysis histogram (cell components), the abscissa is the number of genes, the ordinate is
the GO term, and the color indicates padj. (D) Path diagram of hsa05014.
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TABLE 3 KEGG enrichment analysis of differentially expressed m6A/m5C/m1A-related genes.

ID Description P Count

hsa00270 Cysteine and methionine metabolism 0.0003 2

hsa03040 Spliceosome 0.0003 2

hsa05206 MicroRNAs in cancer 0.0134 2

hsa05014 Amyotrophic lateral sclerosis 0.0183 2

hsa03015 mRNA surveillance pathway 0.0583 1

hsa03013 Nucleocytoplasmic transport 0.0648 1

hsa05168 Herpes simplex virus 1 infection 0.2700 1
Frontiers in Immunology
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FIGURE 4

Molecular typing. (A–C) Consistent clustering of differentially expressed m6A/m5C/m1A-related genes (k=2–5). (D) According to t-distributed
stochastic neighbor embedding (t-SNE) analysis, there is a good distinction between different cluster samples, with blue representing cluster 1
and red representing cluster2. (E) Kaplan–Meier curve between different clusters, blue represents cluster1, and red represents cluster2. (F) The
box plot shows the expression levels of genes related to m6A/m5C/m1A among different clusters, with blue representing cluster1 and red
representing cluster2. (NS:no significant) (**P < 0.01, ***P < 0.001).
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some common mutations, effectively crippling the human

immune system’s fight against the brain. To that aim, the

researchers have devised a new therapeutic that reactivates the

“paralyzed” immune system in mice with isocitrate

dehydrogenase mutant tumors, allowing them to live longer.

There were significant differences in the scores of 17 immune

function gene sets between the two clusters. A recent study (34)

has reported that it is not the cancer cells that consume a

considerable amount of glucose. The researchers used 18F-

FDG-PET to detect glucose consumption in mouse tumor

models to quantify glucose intake by different cell populations

in the tumor microenvironment. Glucose intake by infiltrating

immune cells was larger than that by cancer cells. Our findings

strongly imply that immunotherapy may have a curative effect

on glioma patients, but further research is needed.

Then, utilizing m6A/m5C/m1A-related genes, we created a

gene prediction model that includes WTAP, TRMT6, DNMT1,

and DNMT3B. The median risk score was separated into two

groups: high-risk and low-risk. The high-risk group’s survival

time was dramatically reduced, and the calculated risk score

performed well in predicting the prognosis of the patients with

glioma. We further tested the model’s prediction efficiency and

reliability using the CGGA database, which contains 693 glioma

patients. WTAP was found to be significantly expressed in
Frontiers in Immunology 10
glioma tissues among the four genes studied, and its high

expression was linked to poor postoperative survival (35).

WTAP can also encourage glioma cell invasion and migration

(36, 37). DNMT1 plays a role in glioma growth, apoptosis, and

migration (28). Glioma growth is slowed in vitro and in vivo

experiments when a DNMT1 inhibitor is given (36). Currently,

there is no specific research on DNMT3B in glioma, but

DNMT3B has been reported to accelerate the occurrence and

progression of esophageal cancer (38), lung cancer (39), breast

cancer (40), and ovarian cancer (41), implying that DNMT3B is

an essential biomarker in cancer pathogenesis.

Immune cell analysis and immune function set analysis

revealed valuable results in this study. 24 types of immune

cells in high- and low-risk scores were significantly different,

and TRMT6, DNMT1, and DNMT3B were mainly negatively

correlated with immune cells, whereas WTAP was positively

correlated with most immune cells. TGFb family members, TNF

family members, and TNF family member receptors were among

the 15 immune function sets with significant variations.

Blocking DNMT1 can stop TGF-induced glioma cell growth,

migration, and invasion (42). By increasing the expression of

TNFAIP3, the Circ0008399/WTAP combination can prevent

bladder cancer cells from dying. The circ0008399/WTAP/

TNFAIP3 pathway can help increase cisplatin treatment
B

C D

A

FIGURE 5

GSEA analysis. (A) Calcium signaling pathway, melanogenesis, neuroactive ligand-receptor interaction, and phosphoinositol signaling system are
significantly enriched in cluster2. (B) Box plot of the difference of immune infiltration abundance between cluster1 and cluster2. The horizontal
axis represents immune cells, the vertical axis represents immune cell infiltration abundance, blue represents cluster1, and red represents
cluster2. (C) Cell cycle, primary immunodeficiency, cytokine receptor interaction, and extracellular matrix-receptor interaction are significantly
enriched in cluster1. (D) Box plot of cluster1 and cluster2 and immune function set score. The horizontal axis represents the immune function
set, the vertical axis represents the immune function set score, blue represents cluster1, and red represents cluster2. (NS:no significant) (*P <
0.05, **P < 0.01, ***P < 0.001).
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sensitivity in bladder cancer (43). This research supports the

scientific validity of our findings. The risk of death in the G4 and

G3 groups was more than twice as high as that of survival in the

G2 group, and in the male group, it was more than twice as high

as that in the female group. The risk of death was also more than

double that of survival. Only WTAP was significantly correlated

with MSI, with MSI in the high expression group being relatively

low. Finally, sensitivity analysis of antineoplastic drugs showed

that except for the negative correlation between WTAP
Frontiers in Immunology 11
expression and antineoplastic drug Vemurafenib, there was a

positive correlation between gene expression and anticancer

drug sensitivity, indicating that the high expression of genes is

more likely to help patients benefit from antineoplastic drugs.

Park et al. (44) reported that DNMT1 levels can alter the

susceptibility of patients with glioma to Decitabine, and

DNMT1 can be used to predict glioma responsiveness to

Decitabine therapy. Decitabine can help patients with glioma

who have high DNMT1 expression. Zhou et al. (45) showed that
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FIGURE 6

Prognostic model. (A) Screening of genes with P <0.1 by univariate Cox regression analysis. (BC) Lasso–Cox regression to screen the related
genes of m6A/m5C/m1A. (D) Survival curves of high- and low-risk groups in TCGA. (E) Time-dependent ROC curve for prognosis based on risk
score. (F–H) Risk trigram showing risk distribution of patients and expression of key genes in different subgroups.
TABLE 4 Multivariate Cox.

Gene HR_95CI P

WTAP 2.851 (2.23-3.645) 6.21E-17

TRMT6 1.371 (0.918-2.048) 0.123

DNMT1 0.817 (0.615-1.086) 0.164

DNMT3B 1.538 (1.142-2.072) 0.0004
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DNMT1 mediates chemosensitivity by reducing the methylation

of microRNA-20a promoter in glioma cells, and the expression

of DNMT1 in drug-resistant U251 cells is downregulated. The

epigenetic modulation of TMZ during chemotherapy in patients

with GBM is not yet known. Undoubtedly, there are some
Frontiers in Immunology 12
limitations to our study. The mechanism of how the identified 4

genes participate in the regulation of the tumor immune

microenvironment is unclear. The prognostic model needs to

be verified in a large-scale and multicenter clinical cohort.

However, this study does provide a comprehensive overview of
BA

FIGURE 7

Verification of the prognostic model by CGGA. (A) Survival curves for high- and low-risk groups in the CGGA test set. (B) Test set based on
time-dependent ROC curve for prognosis based on the risk score.
B

A

FIGURE 8

Immunoassay for ssGSEA. (A) The horizontal axis represents immune cells, the vertical axis represents immune cell infiltration abundance, red
represents the high-risk group, and blue represents the low-risk group. (B) Box plot of high- and low-risk groups and immune function set
scores, the horizontal axis represents the immune function set, and the vertical axis represents the immune function set score.(NS:no significant)
(*P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 9

Clinical correlation analysis and immunohistochemistry. (A–D) There was a significant correlation between tumor grade, sex, survival status, age and
risk score of patients with glioma. (E–H) Correlation between genes WTAP,TRMT6, DNMT1, DNMT3B and MSI (P = 0.78, P = 0.44, P = 0.27,
P = 3.8e-10). Immunohistochemistry showed that the expression of WTAP (I), DNMT1 (J), and DNMT3B (K) in tumor tissue was significantly higher
than that in adjacent tissue, whereas the expression of TRMT6 (L) was low in glioma tissue, which was consistent with the data analysis results.
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m6A/m5C/m1A-related genes in glioma, which guide us to

further study the role of RNA methylation modification in

glioma in the future.
5 Conclusion

We systematically assessed the expression of m6A/m5C/

m1A-related genes in glioma, identified different clusters of

m6A/m5C/m1A-related genes using consistent cluster analysis

in glioma, and investigated the potential biological function

mechanism of clusters 1 and 2 as well as the role of immune

cells and immune functions. We created a four-gene prognostic

marker, and a validation model is a viable tool for predicting the

survival outcomes of patients with glioma. Compared with the

paracancerous tissues, the immunohistochemical results showed

that the expression of TRMT6 was low in the tumor, and the

other three genes were significantly higher, which was consistent

with the results of the bioinformatics analysis. Finally, the
Frontiers in Immunology 14
investigation of anti-tumor drug sensitivity, immunological

microenvironment, and clinical features yielded valuable

results. These important findings will serve as the foundation

for additional research into the prevalence, development, and

impact of m6A/m5C/m1A-related genes in glioma.
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