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Introduction
As of February 2022, the COVID-19 pandemic, which began at the end of 2019, has

now killed 5.6 million people and infected hundreds of millions of others. One of the

biggest concerns since the early days of the pandemic has been the development of drugs

to control the severity of the disease, and several drugs have been proposed and are

already in clinical use. However, in light of the current pandemic situation, as well as

possible future pandemics, it is still important to develop novel drugs with a more diverse

range of therapeutic targets. In this opinion, we focus our attention on hemolysis as a

candidate target. We consider possible mechanisms underlying the relation between

COVID-19 severity and hemolysis, and the feasibility of using drug candidates (or

repositioning) targeting hemolysis as a protective strategy against severe COVID-19.
Hemolysis in sepsis, including severe
COVID-19-related sepsis

Many efforts have been made to treat hemolytic diseases, including congenital (e.g.,

sickle cell disease: SCD) and acquired (e.g., autoimmune disease, heterozygous

transfusion) hemolytic diseases, which are characterized by increased destruction of

red blood cells (RBC). The adverse effects of hemolysis include not only a decrease in

oxygen-carrying capacity of the blood due to RBC depletion, but also the damaging

activities of free hemoglobin, heme, and Fe2+ as damage associated molecular patterns

(DAMPs). These three hemolytic products produce signals and amplify inflammation via

toll-like receptors (TLRs) and oxidative stress. Hemoglobin causes vasoconstriction via

nitric oxide inactivation (1). Heme has been reported to be highly toxic to many types of

cells through its promotion of free radical formation and oxidative stress. On the other

hand, Fe2+ produces hydroxyl radicals through the Fenton reaction (2), which is also

harmful to the cells. In addition to the damage caused by these products, the

nephrotoxicity caused by severe hemolysis can be lethal (3, 4). Recently, hemolysis has

also been recognized as an aggravating factor in sepsis (5), but there is still controversy in

regard to suitable targets for the treatment of hemolysis.
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In the context of COVID-19, several reports have considered

the potential of hemolysis as both a biomarker and therapeutic

target, but to our best knowledge, no clinical trials targeting

hemolysis are undergoing. Reports regarding the possibility of

using hemolysis in COVID-19 as a biomarker have considered

various indices of hemolysis for this purpose, including

decreased hemoglobin (6, 7), elevated free heme (8), increased

RBC distribution width (RDW) (9), high ferritin, high lactate

dehydrogenase (10, 11), and high bilirubin (12). Heme

oxygenase-1 (HO-1) induction (13), and supplementation of

haptoglobin and hemopexin (14) have anti-inflammatory effects

via scavenging and clearance of hemolysis-related degradation

products. In addition, it has been reported that protecting RBCs

against hemolysis is important for the proper functioning of the

central nervous system (15). Moreover, the increasing risk is

reported in the case of COVID-19 infection in patient with

glucose-6-phosphtase dehydrogenase (G6PD) deficiency, who

usually have structurally vulnerable RBCs which are easy to

hemolysis, has been suggested (16). There are also reports on

changes in structural proteins and membrane lipids remodeling

in RBCs in COVID-19 patients (17). From these data, both

targeting hemolysis-related products and protection of RBCs are

considered to be reasonable therapeutic strategies to protect

against the development of severe COVID-19.

Many of the mechanisms in terms of COVID-19 related

hemolysis are thought to be similar to those reported in the

pathogenesis of sepsis (e.g. , mechanisms involving

inflammation, complement activation, autoantibodies) (18).

However, mechanisms specific for COVID-19 have also been

proposed, for example, viral invasion of the SARS-CoV-2 virus

into RBCs (through ACE2, CD147, CD26), which then undergo

hemolysis (19–21). Regarding viral infection to RBCs, binding of

virus and heme may lead to resistance against the anti-viral effect

of heme. In other words, a component protein of SARS-CoV2,

such as open-reading frame 8, may bind to heme, resulting in

decreased anti-viral activity of heme-induced miRNA processing

(22). In fact, a study using a computational-experimental

approach reported a direct binding between SARS-CoV2 and

heme (23). Interestingly, there are many viruses that have been

reported to have an affinity for RBCs (e.g., hepatitis C and B,

Ebola, human immunodeficiency virus (HIV), dengue, and

Zika) (24–28). On the other hand, there is a report of 6

patients with paroxysmal nocturnal hematuria (PNH) who

developed severe hemolysis after the vaccine for COVID-19

(29), which implies that some autoantibodies against SARS-

CoV2 component proteins may cause hemolysis (30).

In addition to hemolysis, a recent study has conjectured that

increased erythrophagocytosis may cause the decrease in

hemoglobin in COVID-19 patients (31). In this case, the

mechanism would involve TLR9 on the surface of RBCs

binding to mitochondrial CpG, which would lead to decreased

RBC deformability and erythrophagocytosis by macrophages
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(31). This suggests that RBCs are “immune sentinels” that

work at the forefront of the immune system (32). In other

words, RBCs block the invasion of viruses, including SARS-

CoV2, and thus any entry of the virus into RBCs would be part

of a biological defense response rather than a passive invasion.

Lastly, we should consider the relationship between COVID-

19 and previously reported severity factors, including

hypertension, obesity, diabetes, and thromboembolism caused

by neutrophil extracellular traps (NETs) (33–35). Interestingly,

hemolytic products such as free heme have been shown to

induce NETs as DAMPs (36, 37). Thus, hemolysis could be a

marker of disease progression, and a therapeutic target.
Therapeutic mechanisms of
dexamethasone in COVID-19

One of the reasons why we focus on the importance of

hemolysis in COVID-19 is that dexamethasone is known to

have a beneficial effect in the treatment of COVID-19 (38–41).

Dexamethasone is one of the earliest therapeutic agents to be

applied clinically, as its efficacy was demonstrated in several

clinical trials in the early stages of COVID-19. However, its

therapeutic mechanism is still not fully understood (42).

Surprisingly, although corticosteroids, including dexamethasone,

have long been used clinically for sepsis (mainly bacterial sepsis),

the results of multiple trials have reported that efficacy of

corticosteroids cannot be proven until now (43, 44). Whether

viral or bacterial (or fungal), the pathways of the sepsis cascade

containing dysregulated innate immune responses are similar in

many respects, but the effect of dexamethasone was clearly

demonstrated in COVID-19. We hypothesize that an

acceleration in the scavenging of hemolytic products by

dexamethasone may be one of the therapeutic mechanisms. In

fact, corticosteroid therapy has been used for decades in patients

with SCD and PNH, which are typical hemolytic diseases (45–47).

Corticosteroids have a wide range of pharmacological effects, but

the main one is a strong immunosuppressive effect via the

glucocorticoid receptor, and one corticosteroid, dexamethasone,

is known to promote scavenging of hemolytic products by

inducing CD163 receptor expression (48–51). The CD163

receptor is widely known as a scavenger receptor for the

hemoglobin-haptoglobin complex, which is abundantly

expressed in macrophages (52). In the pathogenesis of COVID-

19, the CD163 induction effect of dexamethasone may suppress

the deteriorated inflammation by hemolytic products such as free

hemoglobin. Since sepsis is a disease condition involving a wide

spectrum of pathological processes, the degree of involvement of

hemolysis may vary greatly in each individual. In the case of

COVID-19-induced sepsis, it is possible that hemolysis might be

an exacerbating factor for transition from mild to severe COVID-

19 based on the clinical examination data.
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Another study reported that dexamethasone was effective in

a group of COVID-19 patients who were ventilated or

oxygenated, while there was no reduction in mortality in the

patients without oxygen (41). A possible explanation for this

may be hemolytic toxicity via free radical generation by high

oxygen concentration, or ventilator-related hemolysis. On the

other hand, in the group of patients whose blood oxygen

saturation was so low that they required a ventilator or

oxygen, hemolysis at the alveolar level (leakage of RBC into

the alveolar space) was prominent, suggesting that the

hemolysis-scavenging effect of dexamethasone was of great

benefit. In any case, it is clear that dexamethasone is effective

for preventing mortality in patients with COVID-19. By setting a

new target of scavenging hemolytic products, it would be

possible to consider a combination therapy with anti-

hemolytic serum proteins, such as haptoglobin and
Frontiers in Immunology 03
hemopexin, to maximize the efficacy of CD163 upregulation

by dexamethasone.
Impaired scavenging
hemolytic products under
inflammatory conditions

The mechanism of hemolysis in the pathogenesis of severe

infections, the amplification of inflammation by hemolytic

products and the direct cytotoxicity of those products have

already been extensively investigated (2, 18). In this section,

we discuss the impaired efficacy of scavenging hemolytic

products under the inflammatory condition, which may be a

new therapeutic target.
FIGURE 1

Schematic diagram of spiraled inflammatory activation and tissue damage by hemolysis in severe COVID-19. Sepsis causes intravascular
hemolysis by many mechanisms (e.g., microvasculitis, complement activation, glucose metabolism, and eryptosis), leading to increased vascular
permeability, and thereby extravasation of both red blood cells and immune system cells. The first target in the proposed treatment strategy is a
decrease in intravascular hemolysis. In terms of the alveolar microenvironment, increases in extravasated cells, cytokines, and metal ions
deteriorate hemolysis in the extracellular space, which is associated with spiraled inflammatory activation in lung issue. Therefore, the second
therapeutic target is a decrease in extravascular hemolysis. (This figure was created at BioRender.com.).
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There are two main processing systems for hemolysis: a free

hemoglobin processing system using haptoglobin (52), and a

free heme processing system by hemopexin (53). Both systems

function by endocytosis via scavenging receptors (CD163 and

CD91, respectively) of macrophages and detoxification of

hemolytic products by a degradation and recycling system

thorough HO-1. It is clear that these physiological processing

systems for hemolysis are depleted or fail to adapt to acute

massive hemolysis or chronic persistent hemolysis. Therefore,

we focus on the hemolysis in COVID-19 and consider the

change in scavenging of hemolysis-related products under

severe inflammation and tissue destruction environment. In

particular, in the environment of ARDS, which is a major

cause of death in COVID-19, increased vascular permeability

due to inflammation is evident. ARDS is also associated with the

impairment of vascular endothelial cells, which causes RBC

leakage, hemolysis, and amplification of inflammation in the

extravascular spaces. Furthermore, increased dead cells as well as

overloaded macrophages by hemoglobin could cause a change in

the microenvironment, including the pH, and could increase the

release of some metal ions from platelets and activated mast cells

(54, 55). These factors may be responsible for the delayed

scavenging of hemolytic products. Thus, the therapeutic

targets for hemolysis in sepsis may include preservation of the

CD163 scavenger system, such as chelation for excessive metal

ions in the microenvironment in addition to the usual

therapeutic strategies. Indeed, shedding of the CD163 receptor

occurs under sepsis-mimicking conditions (e.g., TLR4

stimulation by lipopolysaccharide) (56). Furthermore, during

treatment of acute myelogenous leukemia with gemutuzumab

ozogamicin (a CD33-targeted antibody-conjugate), CD163-

positive macrophages are impaired and the scavenger ability

for hemolysis-related products is significantly reduced (57, 58).

In summary, it is necessary to consider the possibility that the

impaired scavenging function of CD163-positive macrophages

may occur under specific conditions.
Discussion

Typical hemolytic diseases include SCD and thalassemia

caused by hereditary b-globin abnormality, and acquired

hemolytic anemias such as autoimmune hemolytic disease,

PNH, and mechanical hemolysis caused by cardiopulmonary

bypass. In recent years, although it has been recognized that

hemolysis is also a factor in the severity of sepsis, no anti-

hemolysis therapy has been used in clinical settings. In this

opinion, we propose hemolysis as a new therapeutic target in

COVID-19, because severe COVID-19 is a viral sepsis with a

characteristic course of rapid deterioration of ARDS, and

thromboembolism with suspected NETs (Figure 1).
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The mechanism of hemolysis in COVID-19 is thought to be

similar to that in sepsis (microangiitis, vascular occlusion,

eryptosis, membrane deformability, complement activation,

hypoglycemia, etc.) (5), but some unique factors have been

identified. These factors include direct RBC destruction by

SARS-CoV2 (17, 20, 21) and autoantibody-induced hemolysis

against viral proteins (30). The accumulation of hemolytic

products due to increased hemolysis and delayed scavenging

of hemolytic products may amplify the inflammatory response

as DAMPs or aggravate the condition through direct tissue

damage, which may be the mechanism leading to the severity

of COVID-19.

Finally, in this opinion, we addressed the relevance of

hemolysis as a novel therapeutic target to reduce the severity

of COVID-19. It is necessary to verify hemolysis as a new target

and accumulate knowledge in order to alleviate the current

situation and prepare for future pandemics.
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