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Background: Tumor immunological heterogeneity potentially influences the

prognostic disparities among patients with clear cell renal cell carcinoma

(ccRCC); however, there is a lack of macroscopic imaging tools that can be

used to predict immune-related gene expression in ccRCC.

Methods: A novel non-invasive radiogenomics biomarker was constructed for

immune-related gene expression in ccRCC. First, 520 ccRCC transcriptomic

datasets from The Cancer Genome Atlas (TCGA) were analyzed using a non-

negative matrix decomposition (NMF) clustering to identify immune-related

molecular subtypes. Immune-related prognostic genes were analyzed through

Cox regression and Gene Set Enrichment Analysis (GSEA). We then built a risk

model based on an immune-related gene subset to predict prognosis in patients

with ccRCC. CT images corresponding to the ccRCC patients in The Cancer

Imaging Archive (TCIA) database were used to extract radiomic features. To

stratify immune-related gene expression levels, extracted radiogenomics

features were identified according to standard consecutive steps. A nomogram

was built to combine radiogenomics and clinicopathological information

through multivariate logistic regression to further enhance the radiogenomics

model. Mann–Whitney U test and ROC curves were used to assess the

effectiveness of the radiogenomics marker.

Results: NMF methods successfully clustered patients into diverse subtypes

according to gene expression levels in the tumor microenvironment (TME). The

relative abundance of 10 immune cell populations in each tissue was also

analyzed. The immune-related genomic signature (consisting of eight genes)

of the tumor was shown to be significantly associated with survival in patients

with ccRCC in TCGA database. The immune-related genomic signature was

delineated by grouping the signature expression as either low- or high-risk.

Using TCIA database, we constructed a radiogenomics biomarker consisting of

11 radiomic features that were optimal predictors of immune-related gene
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signature expression levels, which demonstrated AUC (area under the ROC

curve) values of 0.76 and 0.72 in the training and validation groups, respectively.

The nomogram built by combining radiomics and clinical pathological

information could further improve the predictive efficacy of the

radiogenomics model (AUC = 0.81, 074).

Conclusions: The novel prognostic radiogenomics biomarker achieved

excellent correlation with the immune-related gene expression status of

patients with ccRCC and could successfully stratify the survival status of

patients in TCGA database. It is anticipated that this work will assist in

selecting precise clinical treatment strategies. This study may also lead to

precise theranostics for patients with ccRCC in the future.
KEYWORDS

clear cell renal cell carcinoma, radiogenomics, tumor heterogeneity, immune
microenvironment (IME), contrast-enhanced computed tomography (CECT)
Introduction

Kidney cancer is one of the most common urological

tumors, with the number of new patients with renal cancer

reaching up to 90,0000 each year (1, 2). Clear cell renal cell

carcinoma (ccRCC) is the most common pathological subtype of

kidney cancer, accounting for 70%–80% (3, 4) of renal cancers.

Early surgical intervention is currently the primary treatment for

ccRCC (5, 6). Most patients who undergo early resection have an

overall 5-year survival rate of >90%. Some patients with ccRCC

have extremely high rates of recurrence and metastasis, which

severely affects postoperative survival (7, 8). Some targeted

therapies have shown decent treatment effects in ccRCC

patients, including sorafenib and axitinib (9, 10). However, the

indications for the application of targeted drugs remain highly

controversial (11, 12). Therefore, there is an urgent need for

non-invasive indicators to effectively diagnose ccRCC patients

with different therapeutic reactions, thus enabling rational

selection of clinical ccRCC treatment strategies.

Tumor heterogeneity is closely associated with the significant

prognostic variability of current tumor therapies in ccRCC patients

(13, 14). The synergy between tumor cells and the

microenvironment is an important factor in tumor heterogeneity

(15, 16). Immune and stromal cells, which represent important

components of the TME, are considered to be closely related to the

aggressiveness and the developmental potential of ccRCC. The

heterogeneous expression of immune-related genes is thought to

correlate with ccRCC prognosis (17, 18). Therefore, the

exploitation of immune-related prognostic markers is considered

an important tool to improve the diagnosis and treatment of
02
ccRCC. Radiogenomics combines gene expression information

with medical imaging features, thus enabling an in-depth

understanding of tumor biology and capture of internal tumor

heterogeneity information (19, 20). Traditional genetic analysis of

the tumor based on invasive biopsy is costly and cannot fully reflect

the heterogeneity of tumor microenvironment (TME) (21).

Radiogenomics has the potential to become a promising non-

invasive diagnostic method that can reflect gene expression

information (22).

In this study, we constructed a novel radiogenomics method

based on TME-related gene profiles. The immune-related gene

expression risk score was calculated and predicted using the

radiogenomics approach to build molecular markers for the

non-invasive prognosis evaluation of ccRCC. Such a strategy

may assist in making precise clinical treatment decisions and

achieving precise theranostics for ccRCC.
Materials and methods

Data processing

Transcriptomic data and relevant clinical and pathological

information were extracted from The Cancer Genomics Atlas

(TCGA) for ccRCC patients, with a total of 539 samples. To obtain

reliable conclusions, samples with a <30-day survival rate were

excluded, leaving 520 ccRCC samples enrolled in the downstream

analysis. In addition, immune-related (IR) gene symbol names were

obtained from the Immunology Database and Analysis Portal

(ImmPort). The corresponding enhanced CT digital images were
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acquired from The Cancer Imaging Archive (TCIA) database.

Initially, we collected 267 digital images, and some CT images were

excluded based on set criteria for image collection (poor image quality

or failure to identify the area of the lesion by the imaging physicians).
Identification of ccRCC subtypes

The obtained TME-related genes were used for non-negative

matrix decomposition (NMF) clustering to identify ccRCC

molecular subtypes, and the optimal cluster number K value

was determined to be 2. Non-negative matrix factorization

(NMF) is an unsupervised learning algorithm that extracts

available features. NMF works similar to the principal

component analysis and can be employed for dimensionality

reduction. Principal component analysis (PCA) was performed

to determine the robustness and reliability of ccRCC

molecular subtypes.
Investigation of immune cell
nfiltration status

To evaluate the status of immune cell infiltration in the

TME, the R package “MCPcounter” was used to manage the

relative abundance of 10 immune cell populations in each

tissue according to the transcriptome data. The cell types

included T cells, CD8+ T cells, cytotoxic lymphocytes, B

lineage cells, NK cells, monocytic lineage cells, myeloid

dendritic cells, neutrophils, endothelial cells, and fibroblasts.

Wilcoxon rank-sum test analysis was performed to assess the

differences in immune cell infiltration among the distinct

molecular subtypes.
Construction and validation of the
risk model

To quantify immune-related correlation patterns for

individual tumors, we divided the patients into training and

validation groups in a ratio of 7:3, and univariate Cox

proportional hazard regression was conducted to identify

immune-related prognostic markers. We further applied

significant factors to Least Absolute Shrinkage and Selective

Operator (LASSO) and univariate Cox proportional hazard

regression analyses to construct the risk model. The risk score

was calculated based on the coefficients of the candidate

genes. According to the median risk score, patients were

divided into low- and high-risk groups. To improve the

accuracy and practicability of the clinical predictive model,

we constructed a nomogram model that included the

following parameters: risk score, clinical stage, TNM stage,

age, and sex. A calibration curve of the nomogram model was
Frontiers in Immunology 03
established to assess the consistency between the predicted

and observed results.

Gene Set Enrichment Analysis (GSEA) used predefined gene

sets (gmt files C2 and C5) to rank genes according to their

differential expression levels in the two risk groups using the

clusterProfiler R package. Only items with a P-value < 0.05 were

considered. GSEA was conducted to normalize the gene

expression profile and to excavate GO and KEGG pathways.
Imaging protocol

In the radiogenomics section, the study initially included 245

patients, all of whom underwent preoperative abdominal CT or

MRI, with ccRCC from TCGA-KIRC database. The patients

underwent standard three-phase scans, including the cortical

phase (25–30 s after contrast injection), parenchymal phase (60–

70 s after contrast injection), and secretory phase (2–3 min after

contrast injection). Iodine contrast injection standards were

obtained from TCIA database for each hospital reference

standard. The inclusion criteria were as follows: (1)

confirmation of ccRCC with TNM staging obtained based on

postoperative pathology; (2) preoperative contrast-enhanced CT

(CECT) scan imaging data were complete, and a standard kidney

CT triple enhancement scan protocol was used; and (3)

recognizable mass lesions that could be detected in the kidney

by parenchymal images with CE-CT scans. Exclusion criteria

included the following: (1) a dissatisfactory quality of the CE-CT

scans or the presence of large artifacts influencing the judgment

of the lesion area; (2) radiomic features that cannot be

successfully extracted through CECT scans. The detailed

procedures of our study are shown in Figure S1.
Image preprocessing and region-of-
interest acquisition

Based on previous studies on kidney-associated radiomics,

we selected the parenchymal phase in CECT scans to extract the

radiomics features most associated with immune heterogeneity

(23, 24). In the process of image sketching, an imaging physician

(with 15 years of work experience in diagnostic urologic CT

imaging) identified and fragmented the lesion contours on each

slice within the sequence using the 3D Slicer software (version

4.11.2; Boston, MA, USA). Features were then established using

the radiomics extraction software Pyradiomics (3.0.0; https://

github.com/Radiomics/pyradiomics). Following this, we

processed the obtained feature data by utilizing the min–

max approach.

Intra-class and inter-class correlation coefficients (ICC) were

used to assess the stability of the acquired features. Fifty patients

were randomly selected for repeat region-of-interest (ROI)

fragmentation by both the previous radiologist and a new
frontiersin.org
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radiologist (with 8 years of experience in urologic CT imaging)

30 days after the initial segmentation. Both physicians were

unaware of the history of kidney disease and pathological

diagnosis of the patients.
Preliminary construction of the
radiogenomics biomarker

In TCGA-KIRC database, radiogenomics features extracted

from CECT images were filtered, and radiogenomics models

were constructed according to the following sequential steps.

Firstly, features with both intra-class and inter-class correlation

coefficients greater than 0.75 were allowed as components of the

potential immune-related radiogenomics model. The minimum

redundancy-maximum relevance (mRMR) method was used for

further feature dimensionality reduction with sufficient stability.

LASSO analysis was then used for the selection of optimal

radiogenomics features. The selected optimal features were

linearly combined with pass-through coefficients to construct

radiogenomics labels associated with immune-related gene

expression levels, also known as RADscores. Evaluation of the

novel radiogenomics biomarker was performed using the

Mann–Whitney U test, mainly to classify patients into high-

or low-risk groups based on immune-related gene expression.

ROC curves were calculated to assess the predictive efficacy of

the preliminary radiogenomics model.
Nomogram construction based on the
radiogenomics model

To further increase the credibility of the model, clinical and

pathological information from the TCIA-KIRC database was

combined in the radiogenomics model. Univariate analysis was

performed to screen for elements associated with altered genetic

subsets in the tumor microenvironment. In the training cohort,

variables with P < 0.1 in the univariate regression were

subsequently assigned to the multivariate logistic regression. A

clinical model was constructed to include factors with P < 0.1 in

the previous step of the multivariate analysis; backward stepwise

selection was performed using the likelihood ratio test. We

also compared the predictive power of the preliminary

radiogenomics marker with clinical models for tumor

immune-related gene risk model stratification. Finally, a

combined multivariate logistic model was constructed using

the RADscores and the selected clinicopathological factors.

Variance inflation factor (VIF) analysis was performed on the

combined model to further reduce the probability of overfitting.

A nomogram was developed to visualize the final radiogenomics

model, specifically to score each patient and quantify the levels of

immune-related gene expression.
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Radiogenomics biomarker validation

The combined model was evaluated in the patient cohort,

including the training and testing groups. ROC curves and AUC

values were adopted to assess the predictive recognition

capability of the immune microenvironment in the combined

model. Calibration curves and Hosmer–Lemeshow tests were

used to estimate the agreement between the predicted outcomes

and the expected probabilities in the radiogenomics model.

We also used decision curve analysis (DCA) to analyze the

clinical potential of the radiogenomics biomarker and calculated

the net benefit of the model for different threshold probabilities.
Statistical analysis

All statistical analyses were performed using the R software

(version 3.6.3). The “survivalROC” package was employed to

calculate the area under curve (AUC) of the ROC curve to assess

the clinical utility of the prognostic model for clinical outcome.

Kaplan–Meier (KM) analysis was conducted to assess survival

differences among subtypes, with overall survival (OS) as the

primary outcome. Disease-specific survival (DSS) and

progression-free survival (PFS) were calculated as secondary

outcomes. Continuous data were evaluated using the Wilcoxon

rank-sum test. In addition, Fisher’s exact test was used to

calculate differences in categorical data. Statistical significance

was set at P value < 0.1.
Results

Identification of molecular subtypes

To investigate the molecular subtypes of ccRCC,

transcriptomic data of ccRCC patients from TCGA database

were retrieved. The expression information of tumor

microenvironment-related genes was extracted. The heatmap

displayed a different distribution of TME-related genes between

tumor tissues and normal tissues in ccRCC (Figure 1A). The

NMF algorithm was used to cluster patients into diverse

subtypes according to TME gene expression levels. To ensure

robust clustering results, the cophenetic correlation coefficient

was used to determine the optimal number of clusters, and K = 2

was selected as the optimal cluster number after comprehensive

consideration (Figure 1B). When k = 2, we observed that the two

subtypes (C1 and C2) had clear boundaries, indicating that the

ccRCC samples had stable and reliable clustering (Figure 1C).

The survival curve (Figures 1D, E) showed that the overall

survival of cluster 1 was significantly better than that of cluster

2 (P < 0.001). In addition, C1 had a significant advantage in

progression-free survival compared to C2 (P < 0.001).
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Relationship between molecular
subtypes and the tumor
microenvironment

To determine immune-related gene expression in the tumor

microenvironment, we explored immune cell infiltration in the

two ccRCC subtypes using the MCPcount algorithm. The degree

of invasion of the 10 immune cell populations in each ccRCC

patient was evaluated, as shown in Figure 2. Ten immune cell

groups were variable between the two subtypes. The levels of T

cells, myeloid dendritic cells, monocyte lineage cells, fibroblasts,

and cytotoxic lymphocytes were significantly increased in cluster

2. In contrast, the numbers of endothelial cells and neutrophils

were decreased in cluster 1. For each type of immune cell

expression data, the FDR values (q-values) for statistical

differences between the two groups are available in the

supplementary material.
Identification of prognostic features in
renal clear cell carcinoma

To further investigate the quantification of TME indicators

for individual ccRCC patients, we performed in-group validation

using TCGA datasets. The patients were divided into training

and validation groups on a 7:3 scale. Univariate Cox regression
Frontiers in Immunology 05
analysis was performed to select genes with prognostic

significance; 245 significant prognostic genes were retained.

LASSO and Cox regression analyses were then performed to

reduce redundancy. Fourteen genes were identified. Finally, in

the prognostic model constructed by the multivariate regression

method, a total of eight risk genes were selected, including

PIMREG, CXCL5, UCN, KRBA1 PABPC1L RNASE2 IL4I1,

and ABCB4. We then constructed a risk score formula based

on the expression of specific genes and the coefficients calculated

by multivariate Cox regression as follows: risk score =

0.461*PIMREG+0.11*CXCL5+0.526*UCN-0.465*KRBA1

+0.200*PABPC1L+0.254*RNASE2+0.261*IL4I1-0.595*ABCB4.

We further investigated the clinical outcomes of high-risk

and low-risk patients using a risk prognostic model. Kaplan–

Meier curves exhibited lower overall survival (OS) in the high-

risk group in the training, validation, and TCGA datasets (P <

0.001, Figures 3A–C). We further investigated the clinical

outcomes of patients with high or low expression of these

eight risk genes alone as genomic markers through Kaplan–

Meier analysis of OS, and the specific results are presented in the

supplementary material. It should be noted that, although

individual genes also have good survival prediction, the

immune-related genetic risk model we constructed was able to

significantly improve the predictive efficacy of survival

stratification. We also adopted other survival times (including

DSS and PFS) as the survival evaluation method, demonstrating
B C

D E

A

FIGURE 1

Two distinct TME-related molecular subtypes were identified by NMF analysis for ccRCC (A) The heatmap displays the expression patterns of
TME-related genes in the tumors and normal tissues. N is equal to normal tissues, T is equal to tumor tissues. (B) Factorization rank for k = 2–
10. (C) The heatmap of the consensus matrix when the consensus clustering k = 2. The value range is 0–1. The columns and rows are sorted
through hierarchical clustering according to the Euclidean distance of the average link. (D) Kaplan–Meier OS curves and (E) PFS curve for the
two clusters in TCGA-ccRCC dataset. The assessment of difference was achieved by log-rank test.
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the predictive value of our immune-related genetic risk model

for the clinical prognosis of ccRCC patients.
Validation of prognostic features
in ccRCC

To evaluate the clinical applicability of the risk prognostic

model as a tool to predict the survival probability of patients with

renal clear cell carcinoma, receiver operating characteristic curve

(ROC) analysis was performed. The area under the curve (AUC)

values of the 1-year OS in the training, validation, and TCGA

datasets were 0.804, 0.731, and 0.784, respectively. The AUC
Frontiers in Immunology 06
values of 3-year OS were 0.765, 0.738, and 0.757, respectively.

The AUC values of 5-year OS were 0.782, 0.772, and 0.777,

respectively (Figures 3E–G). Then, univariate Cox regression

and multivariate Cox regression analyses demonstrated that the

risk prognostic model was an independent predictive biomarker

(Figures 3D, H). In addition, to improve the clinical applicability

of the risk prognostic model, we constructed a nomogram,

including TNM stage, sex, age, and clinical stage (Figure 4A).

The calibration diagram shows a fair agreement between

the prediction results and the actual observation results of the

nomogram model (Figure 4B). In addition, we compared the

advantages and disadvantages of the TME prognostic risk model

and other reported prognostic risk models, including models
B C

D E F

G H I

J

A

FIGURE 2

Differences of immune infiltrating cells in the immune microenvironment of two ccRCC molecular subtypes. (A-I) Levels of immune cell
infiltration in the two subtypes. (A) B lineage, (B) endothelial cells, (C) NK cells, (D) T cells, (E) myeloid cells, (F) monocytic lineage, (G)
fibroblasts, (H) neutrophils, (I) CD 8+T cells, (J) cytotoxic lymphocytes.
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constructed in previous studies. The AUC values of 5-year OS

were all higher than those of other known risk models (25–28)

(Figures 5A–E). The K-M curve indicated that our immune-

related prognostic risk model had the highest differentiation for

patients’ clinical outcomes (Figures 5F–J).
Comparison of clinicopathological
features in high- and low-risk groups

We investigated the clinicopathological features of

patients in the high-risk and low-risk groups, including T

stage, N stage, lymphatic metastasis, and distant metastasis.

The higher the clinical stage and T stage (Figures 4C, D), the

more extensive the tumor lesion, and the higher the risk score

(P < 0.05). In addition, there was a positive correlation

between clinical stage and risk score (P < 0.05). Patients

with lymphatic or distant metastasis had a higher risk factor

(P < 0.1) (Figures 4E, F).
Preliminary radiogenomics biomarker
construction and evaluation

The CT images of 193 patients corresponding to the above

transcriptomic data were included based on defined criteria for

image collection (poor image quality or failure to identify the

area of lesion by the imaging physicians) in TCIA-KIRC

database (Figure 6A). From the enhanced CT scans of all
Frontiers in Immunology 07
patients, 1,218 features were extracted separately. After ICC

evaluation, a minimum criterion of 0.75 for intra- or inter-ICC

values was applied, leaving 821 features for initial feature

screening. The most influential 30 features were then retained

using the mRMR algorithm. Thirteen radiomics features were

selected using LASSO regression (Figure 6B) to construct a

preliminary radiogenomics model; the specific features are

shown in Figure 6C. The formula for RADscores is shown in

Supplementary Material II.

From the Mann–Whitney U test (Figure 6D), there was a

significant difference in expression between the subsets of tumor

microenvironment gene composition in the training cohort (P <

0.01), which was confirmed in the independent validation cohort

(P < 0.05). The AUC values of the preliminary radiogenomics

model were 0.76 in the training cohort and 0.72 in the validation

cohort (Figure 6E).
Nomogram construction based on the
radiogenomics model

In the univariate analysis of the clinical model building, only

grade was significantly associated with tumor microenvironment

gene subset grouping (P < 0.1). It retained statistical significance

in the multivariate logistic regression analysis (P < 0.1) and

therefore constituted the clinical model. The combined model

was constructed by combining RADScore and Grade. Finally, we

visualized this ultimate radiogenomics marker in the form of a

nomogram, as shown in Figure 6F.
B C D

E F G H

A

FIGURE 3

Development of eight risk genes for ccRCC. (A-C) Kaplan–Meier OS curve for high- and low-risk groups. (A) Training group, (B) validation
group, and (C) TCGA dataset. (D) Forest plots displayed the univariate Cox regression analysis results of the risk score and clinical factors with
OS. (E-G) Receiver operating characteristic curves (ROC curves) for the 1-, 3- and 5-year OS periods. (E) Training group, (F) validation group,
and (G) TCGA dataset. (H) Forest plots display the multivariate Cox regression analyses results of the risk score and clinical factors with OS.
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Final radiogenomics model validation
and clinical use evaluation

The radiogenomics biomarker based on the subset of

tumor immune-related gene expression showed good

predictive performance (AUC of 0.81 and 0.74 in the

training and validation cohorts, respectively) in reflecting
Frontiers in Immunology 08
tumor immune-related gene expression alterat ions

(Figure 6G). The Delong test showed a statistically

significant difference in AUC values between the combined

nomogram and the clinical model (P < 0.01). The calibration

curves (Figure 6H) showed good agreement between the

p red i c t ed and the obs e rved probab i l i t i e s o f the

combined nomograms.
B C

D E F

A

FIGURE 4

Validation of prognostic features in ccRCC. (A) Construction of a nomogram combining the risk prognostic signature and clinical features for
prediction of OS. (B) Calibration plots display the actual and nomogram-predicted probability of the 1-, 3- and 5-year OS periods. (C-F) The box
plot depicts the relationship between risk score and clinicopathology. (C) N stage, (D) M stage, (E) clinical stage, and (F) T stage. *P < 0.05; **P <
0.01; ***P < 0.001.
B C D E

F G H I J

A

FIGURE 5

Comparison between prognostic models. (A–E) Receiver operating characteristic curves (ROC curves) for the 1-, 3-, and 5-year OS periods. (A)
TME-related risk prognostic model, (B) Dai signature, (C) Guan signature, (D) Liu signature, and (E) Shao signature. (F–J) Kaplan–Meier OS curve
for high- and low-risk groups. (F) TME-related risk prognostic model, (G) Dai signature, (H) Guan signature, (I) Liu signature, and (J) Shao
signature.
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Decision curve analysis showed that the radiogenomics

nomogram provided a net benefit compared to the “treat all”

or “no treatment” strategy with a threshold probability of

more than 10% for the clinical model (Figure 6I). This

indicates that the radiogenomics nomogram has an

excellent clinical utility.
Discussion

In this study, a novel radiogenomics biomarker was

constructed to predict the prognosis of patients with ccRCC.

Such a biomarker was built on its close relationship with

immune-related gene expression detected by transcriptomic

analysis in patients with ccRCC. Survival statistics

demonstrated that it could effectively stratify the prognosis of

ccRCC patients. We aim to improve the process of precise tumor

diagnosis and treatment through radiogenomics and to promote

the deep investigation and mining of genetic information by

imaging methods.
Frontiers in Immunology 09
As solid tumors exhibit completely different drug

therapeutic efficacies and disease progression in different

patients, the tumor microenvironment is increasingly

becoming a scientific hotspot for research on therapeutic

resistance of tumors as well as target selection. In clear cell

renal cell carcinoma, large-scale genomic studies have identified

somatic mutations that affect tumor progression and the

response to immune checkpoint blockade therapy (29–31).

Unfortunately, despite the large number of genetic markers

currently constructed for the tumor microenvironment of

kidney cancer and the good results they have achieved in

prognosis prediction, their reliability and practical clinical

application remain unconvincing; there are still major

obstacles facing the use of multiple genetic markers in

practical clinical application. Therefore, it is extremely

important to identify the infiltration of TME and immune-

related gene expression in ccRCC patients using non-invasive

diagnostic methods.

Radiomics is different from the conventional perspective of

image information interpretation, which uses high-level
B C

D E F

G H I

A

FIGURE 6

(A) CT image phase selection and ROI segmentation. (B) LASSO regression applied in the radiomics feature screening process. (C) The radiomics
features finally screened for building the radiogenomics model. (D) M-W test showing that the radiomics model can effectively distinguish
between the established gene subsets in both the training and validation groups. (E) ROC curves of the predictive power of the pure radiomics
model for gene subsets in both the training and validation groups. (F) Nomogram built by combining radiomics as well as clinical and
pathological information. (G) Predictive performance of the nomogram in both training and validation groups. (H) Calibration curves showing
excellent fitting ability of the established radiogenomics model. (I) DCA curves of the established radiogenomics nomogram compared with the
clinical model.
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algorithms and advanced image processors (32–34). The

fundamental problems facing radiomics toward clinical

applications, such as the poor interpretability of extracted

features and the inability of more advanced deep learning

methods to explain them in a completely “black box,” have

not received much attention from researchers. In our study, we

found that a radiogenomics marker based on genetic

information from the TME can reflect profound alterations in

immune-related gene expression. Their expression levels are

closely correlated with a variety of immune cells, such as T

cells, myeloid dendritic cells, and fibroblasts. In addition, there

were significant correlations between the alterations and

pathways such as tumor fibrosis and microvascular infiltration.

This suggests that the novel radiogenomics marker we

constructed could adequately reflect the various profound

modifications of the TME. Few previous studies have reported

the application of radiogenomics approaches for the non-

invasive monitoring of TME. This gives our study a unique

advantage, although this research approach needs to be

supported by further experimental data. However, it also

provides a fresh and dynamic methodological guide for the

optimal combination of imaging and genomic data. However,

it must also be acknowledged that a direct association between

the immune microenvironment of ccRCC and the clinical

prognosis of patients has not been confirmed by large-scale

clinical data. Therefore, our study was based on transcriptomic

data, and it aimed to assess immune-related gene expression in

tumors in a non-invasive manner. This way, prognostic

differences in tumors can be explained from an immunological

perspective. Notably, some ccRCC patients often suffer from a

coexisting disease with abnormal autoimmune system function,

which may have a confounding effect on the ultimate predictive

efficacy of immune-based prediction models. We therefore

recommend that immune-related clinical treatment decisions

and predictive models be considered with caution in such

patients. In our work, we have incorporated some valid clinical

and pathological factors in addition to immune-related genes in

the hope of diluting the adverse effects on model prediction in

this subset of patients. However, specific predictive efficacy

requires future clinical validation of transcriptomic data and

imaging for this subset of immune abnormal ccRCC patients.

Some limitations exist in this study: (1) the images in the

study were obtained from TCIA database, utilizing different

imaging machines and image acquisition protocols. Although

strict inclusion and exclusion criteria were used, the results

need to be validated in future clinical trials in more centers. (2)

Robust data on radiogenomics and specific phenotypes of the

tumor microenvironment are still lacking, and we hope to

deepen our understanding of this in the future by combining

conventional methods with radiogenomics-based methods. (3)

Concerning the comprehensiveness of clinical information in

TCGA database, only select clinical and pathological factors
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were included in the radiogenomics model, and more factors,

such as conventional markers, may be needed in the future to

improve the predictive power and reliability of the model. (4)

Radiomics analysis was based on the ROI of the entire tumor,

while the biopsy was tumor-specific. Owing to the spatial

resolution of the CT image and the unavailability of tumor

sampling location information, it has not yet been possible to

achieve a more accurate prediction between the two

correspondences. We hope to make further breakthroughs on

this problem in future work.

In conclusion, this study constructed a novel non-invasive

radiogenomics marker for the prognostic stratification of ccRCC.

Based on the contrast-enhanced CT scans and radiogenomics

features in ccRCC patients, this biomarker achieved convergent

prediction of immune-related gene risk model stratification and

pathway alterations. Such a novel imaging-based approach, used

to reveal tumor microenvironment alterations, may have great

clinical value for future immunotherapy efficacy and

individualized tumor treatment.
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