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Road testing new CAR design
strategies in multiple myeloma
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and James J. Driscoll 1,3*

1Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University,
Cleveland, OH, United States, 2Department of Biochemistry, Case Western Reserve University,
Cleveland, OH, United States, 3Case Comprehensive Cancer Center, School of Medicine, Case
Western Reserve University, Cleveland, OH, United States
A deeper understanding of basic immunology principles and advances in

bioengineering have accelerated the mass production of genetically-

reprogrammed T-cells as living drugs to treat human diseases. Autologous

and allogeneic cytotoxic T-cells have been weaponized to brandish MHC-

independent chimeric antigen receptors (CAR) that specifically engage

antigenic regions on tumor cells. Two distinct CAR-based therapeutics

designed to target BCMA are now FDA-approved based upon robust,

sustained responses in heavily-pretreated multiple myeloma (MM) patients

enrolled on the KarMMa and CARTITUDE-1 studies. While promising, CAR T-

cells present unique challenges such as antigen escape and T-cell exhaustion.

Here, we review novel strategies to design CARs that overcome current

limitations. Co-stimulatory signaling regions were added to second-

generation CARs to promote IL-2 synthesis, activate T-cells and preclude

apoptosis. Third-generation CARs are composed of multiple co-stimulatory

signaling units, e.g., CD28, OX40, 4-1BB, to reduce exhaustion. Typically, CAR

T-cells incorporate a potent constitutive promoter that maximizes long-term

CAR expression but extended CAR activation may also promote T-cell

exhaustion. Hypoxia-inducible elements can be incorporated to conditionally

drive CAR expression and selectively target MM cells within bone marrow. CAR

T-cell survival and activity is further realized by blocking intrinsic regulators of

T-cell inactivation. T-Cells Redirected for Universal Cytokine Killing (TRUCKs)

bind a specific tumor antigen and produce cytokines to recruit endogenous

immune cells. Suicide genes have been engineered into CAR T-cells given the

potential for long-term on-target, off-tumor effects. Universal allo-CAR T-cells

represent an off-the-shelf source, while logic-gated CAR T-cells are designed

to recognize tumor-specific features coupled with Boolean-generated binary
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gates that then dictate cell-fate decisions. Future generations of CARs should

further revitalize immune responses, enhance tumor specificity and reimagine

strategies to treat myeloma and other cancers.
KEYWORDS

CAR T-cell therapy, multiple myeloma, hypoxia, armored CAR, self-driving CAR,
logic-gates
CAR T-cells as a strategy to treat
multiple myeloma

Multiple myeloma (MM) is hematologic malignacy that

lacks curative therapy (1, 2). In 2022, an estimated 34,470 new

cases of MM will be diagnosed in the US (19,100 men, 15,370

women) and MM will account for ~12,640 deaths (7,090 men,

5,550 women) (3). Preclinical studies revealed a more precise

understanding of the pathobiology of MM that has translated

into therapeutic strategies that significantly improved patient

quality-of-life and overall survival (OS) (4–6). Since the turn of

the century, the myeloma field has witnessed two paradigm-

shifting approaches that rapidly yielded clinical benefit and

abruptly altered treatment patterns (7). Since plasma cells

(PCs) are professional antibody-producing factories, myeloma

cells are exquisitely sensitive to proteasome inhibitors (PIs) that

disrupt protein homeostasis (8–12). Clinical success of the first

U.S. Food and Drug Administration (FDA)-approved PI

bortezomib launched a meteoric rise in interest of MM by

basic scientists, physicians and the pharmaceutical industry

(5–7, 13–15). Recently, immunotherapy in the form of

antibodies, antibody-drug conjugates and engineered T-cells

has been incorporated into first-line and relapse regimens, to

improve OS for newly diagnosed and relapsed and/or refractory

MM (RRMM) (14–16). Despite these advances, constitutive

genetic complexity combined with an immunosuppressive

microenvironment, remain obstacles (17–19). Standard of care

therapy for MM patients includes chemotherapy, autologous

stem cell transplantation (ASCT), the PIs bortezomib,

carfilzomib, and ixazomib, immunomodulatory drugs (IMiDs;

thalidomide, lenalidomide, and pomalidomide) and the

monoclonal antibodies daratumumab and elotuzumab. Despite

the recent FDA approval of >15 therapies, many of those

diagnosed with MM develop drug-resistant disease and relapse.

Chimeric antigen receptor (CAR) T-cell therapies represent

a transformative means to revamp immunologic responses and

improve the outcomes for difficult to treat malignancies such as

RRMM (20–23). CARs are fusion proteins that consist of an

antigen-recognizing extracellular single chain variable fragment

(scFv) merged with a membrane-spanning region and a
02
cytoplasmic co-stimulatory domain, e.g., the CD3z portion of

the T-cell receptor (TCR) (23–27, Figure 1). CD3z promotes T-

cell activation, while other co-stimulatory molecules, e.g., CD-

28, 41BB, and OX-40, augment T-cell responses. The 4-1BB

domain is associated with a memory phenotype to enhance T-

cell persistence while CD28 is linked with effector T-cells.
Mechanisms of resistance to CAR
T-cell therapy

Despite impressive responses that have observed in different

cancer types, numerous escape mechanisms to evade CAR-T

cells have been identified, including antigen escape (through

mutation, loss or downregulation), proteolytic cleavage of the

target antigen, intratumoral heterogeneity, T-cell exhaustion and

cancer immunoediting (28–31). Of the known escape

mechanisms that have been identified, the best defined

etiology of disease relapse has been due to target antigen loss.

Multiple strategies have been proposed to override the

limitations of conventional and current approaches that

employ CAR T-cells in cancer treatment. Recently reported

clinical data indicated that 7–33% of responders in CAR-19 T-

cell trials for B-cell acute lymphoblastic lymphoma (B-ALL)

relapsed because of the loss of cell-surface CD19 (32). Following

CAR-19 T-cell therapy, Sotillo et al. identified acquired

mutations as well as alternatively spliced CD19 alleles in

malignant B cells of relapsed patients. This resulted in a lack

of CD19 expression or expression of CD19 variants that did not

contain the epitope recognized by the CAR T-cells. Fischer et al.

suggested that CD19 isoforms lacking the CAR T-cell binding

epitope (CD19-negative relapse) are present in some patients

prior to therapy, predisposing these individuals to treatment

failures (33).

In pre-clinical studies, targeting HER2 in a glioblastoma

multiforme (GBM) cell line resulted in the emergence of HER2-

null tumor cells that maintained expression of non-targeted

tumor-associated antigens. Combinational targeting of these

tumor-associated antigens could counter mechanisms of

antigen escape. Hegde et al. reported single-cell co-expression
frontiersin.org

https://doi.org/10.3389/fimmu.2022.957157
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rana et al. 10.3389/fimmu.2022.957157
patterns of HER2, IL-13Ra2, and EphA2 in primary GBM

s amp l e s u s i n g mu l t i c o l o r flow c y t ome t r y a n d

immunofluorescence (34). The authors applied a binomial

routine to the permutations of antigen expression and

mathematical modeling demonstrated that co-targeting HER2

and IL-13Ra2 could maximally expand the therapeutic reach of

the T-cell product. Schneider et al. also reported results with

another CD19–CD20 tandem CAR (35). Constructs were

generated where CD19 or CD20 was expressed as the distal

receptor on the CAR protein (designated CAR1920 or

CAR2019) and compared to single antigen CARs. Both

CAR1920 and CAR2019 tandem constructs were superior to a

CD19 single-CAR in a murine xenograft model. Lastly, Vie et al.

engineered T-cells to express CD16 (FcgRIII) CARs capable of

mediating antibody-dependent cellular cytotoxicity (ADCC)

(36). Taken together, it is reasonable to speculate that multi-

targeting CAR T-cell strategies may overcome the current

limitations and improve efficacy.

Relevant to the treatment of MM, the B-cell maturation

antigen (BCMA) is detectable on the extracellular membrane of

clonal and polyclonal PCs, as well as healthy, memory B cells
Frontiers in Immunology 03
(37–40). BCMA represents a favorable target for CARs because

of exclusivity to cells of the B-cell lineage, prevalence on PCs and

promising preclinical results. Interestingly, the degree of

expression varies because of g-secretase-mediated cleavage and

shedding of soluble BCMA (sBCMA) into the circulation (41,

42). Shedding of BCMA also indicates that MM can persist

without expression of this target. In addition, the biallelic loss of

BCMA locus represents a mechanism of resistance to therapies

targeting this molecule (43, 44).

Since CAR T-cells have been designed to specifically recognize

and eliminate BCMA-marked cells, these agents have now been

evaluated in clinical trials and yielded high response rates. However,

current limitations to therapy include antigen downregulation and

escape, T-cell dysfunction, an immunosuppressive tumor

microenvironment (TME), unwanted toxicities, and resistance to

therapy. CAR T-cell success is exemplified by FDA-approval of the

anti-CD19 CAR T-cell tisagenelcleucel for treatment of acute

lymphoblastic leukemia (ALL) and axicabtagene ciloleucel for

diffuse large B-cell lymphoma (DLBCL). In early 2021, liso-cel

received FDA-approval for DLBCL, based upon significant efficacy

and low toxicity (45, 46).
FIGURE 1

Generations of CAR T-cells. The first-generation CAR T-cells consisted of an intracellular CD3 z- chain or FcϵRIg domain. However, first-
generation CAR T-cells did not generate sufficient IL-2 and exogenous IL-2 supplementation was required. In the second- generation,
additional signaling domains comprised of T-cell cytokine and costimulatory receptors CAR T-cells were included in the design. Co-stimulatory
domains promote IL-2 synthesis to enhance T-cell activation and reduce apoptosis. Third-generation CAR T-cells contain an antigen
recognition domain, hinge, membrane-spanning region and a cytoplasmic domain. Third-generation CAR T-cells consist of two co-stimulatory
signaling units, e.g., CD28 (B7), CD137 (4-1BB), CD134, (OX40), DAP10, as well as a CD3z or FcϵRIg domain. Third-generation CARs promote
cytokine secretion to increase T-cell proliferation and survival. Fourth-generation CARs T-cells (TRUCKs) store transgenic cytokine and release it
when induced to attract innate immune cells. Some constructs also incorporate a suicide gene, e.g., Caspase-9, to rapidly withdraw CAR T-cells
once anti-tumor effects are reached. Two examples of newly emerging fifth (next)-generation CAR T cells are shown. Next-generation (fifth-
generation) CAR T-cells integrate CAR transgenes into the TCR-a constant (TRAC) locus. CAR can be directed to the TRAC locus, resulting in
uniform CAR expression, reduced tonic signaling, decreased exhaustion and increased antitumor efficacy and gives the added benefit of
producing a potential universal product. To induce JAK-STAT pathway activation in CAR-T cells in an antigen-dependent manner, the full-
length or truncated cytoplasmic domain of a membrane receptor, e.g., IL-2 receptor-b can be incorporated between the cytoplasmic domains
of CD28 and CD3z. The cytokine receptor domain triggers JAK/STAT signaling to promote proliferative capacity and functional activity.
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Clinical studies that led to FDA-
approval of CAR T-cell therapies
for myeloma

The US FDA recently approved the use of idecabtagene

vicleucel (ide-cel) in patients with MM who received >4 prior

lines of therapy. The ide-cel CAR is comprised of a murine

extracellular scFv specific for recognizing BCMA, attached to a

human CD8-a hinge and a transmembrane domain fused to the T-

cell cytoplasmic signaling domains of CD137 4-1BB and CD3-z
chain, in tandem. Ide-cel recognizes and binds to BCMA on the

surface of MM cells leading to CAR T-cell proliferation, cytokine

secretion, and subsequent cytolytic killing of BCMA-expressing

cells. In March 2021, idecabtagene vicleucel (ide-cel) was the initial

BCMA–directed CAR T-cell immunotherapy approved to treat

patients with RRMMbased upon results of the KarMMa study (47).

The KarMMA study determined the safety and efficacy of ide-cel in

heavily pre-treated MM patients per International Myeloma

Working Group (IMWG) criteria and that did not respond to the

last regimen received. Patients who had received >4 previous

therapies that included an IMiD, a PI and a CD38-targeting

antibody demonstrated a PFS of ~9 months. The overall response

rate (ORR) was 73%, median progression-free survival (PFS) was

8.8 months and most subgroups, e.g., high-risk, the elderly, had an

ORR of >50%. CAR T-cells were detected in 59% of patients at 6

months and 36% at 12months following receiving therapy. Adverse

events (AEs) of any-grade included cytokine release syndrome

(CRS), neutropenia, thrombocytopenia, and neurotoxicity.

Importantly, the KarMMa study reported outcomes for 128 of

the 140 patients enrolled on the study. Two of the 12 patients who

underwent leukapheresis but did not receive CAR T-cell infusion

died following lymphodepletion chemotherapy.

Ciltacabtagene autoleucel (cilta-cel) features two BCMA-

targeting single domain antibodies and has also been recently

FDA-approved for RRMM patients after having received >4

lines of therapy that included a PI, an IMiD, and a monoclonal

antibody that targeted CD38 (48). BCMA-positive patients

treated with cilta-cel exhibited an ORR of 98%, a stringent

complete response (sCR) rate of 80.4% and a very good partial

response (VGPR) of 14.4%. The median time to first response

was 1 month, median time to best response and CR or greater

was 2.6 months and median duration of response was 21.8

months. Over 90% of patients were minimal residual disease

(MRD) negative and patients displayed an 18-month

progression-free survival (PFS) rate of 66.0%. Patients that

achieved a sCR had an 18-month PFS rate of 75.9%. These

trials have transformed the treatment armamentarium of

RRMM, with unprecedented ORRs in this difficult-to-treat

patient population. However, a significant proportion of

patients ultimately relapse despite achieving deep remission.

MM appears to have emerged as a model system to develop

and study novel CAR T-cell design strategies to overcome drug
Frontiers in Immunology 04
resistant and/or refractory diseases. Several innovative

approaches including alternative and dual-antigen–specific

CAR T-cell constructs, genetically-engineered off-the-shelf

CAR T - c e l l s , a n d s t r a t e g i e s t o c o un t e r a c t a n

immunosuppressive microenvironment may reshape the CAR

T-cell field. These strategies are being actively investigated to

enhance the durability of responses and extend patient survival.
Correlation of MM patient baseline
characteristics with CAR T-cell
response

Baseline cytogenetic abnormalities are associated with

unique clinical and immunological characteristics of MM at

diagnosis and may influence response to CAR T-cell

therapy (49).

Whether these factors are significantly associated with the

prognosis of patients undergoing CAR T-cell therapy remains to

be fully understood. In a high-risk subgroup analysis from the

pivotal KarMMa study, high incidences of response were

consistently observed in most subgroups examined, including

older patients, and those with more aggressive disease features,

including high-risk cytogenetic abnormalities, a high tumor

burden, and extramedullary disease (47–51). However, other

groups showed poorer PFS for patient receiving anti-BCMA

directed CAR-T cell therapy with extramedullary disease, light

chain MM and high-risk cytogenetics (TP53 mutation, deletion

of 17p13 or gains/amplification of 1q21 (52). A meta-analysis of

anti-BCMA CAR T-cell studies associated the presence of high-

risk cytogenetics with lower ORRs, whereas extramedullary

disease was not associated with reduced response (53). Other

cytogenetic mutations are being studied as potential targets for

CAR T-cells. The t(14;16)(q32;q23) and t(14;20)(q32;q11)

translocations are observed in ~4% and 2% of NDMM

patients in which MAF and MAFB are overexpressed,

respectively (54). Ectopic overexpression of large MAFs results

in dysregulated expression of downstream genes, including

integrin b7 (ITGB7). In MM cells, overexpression of ITGB7

enhances cell adhesion, migration, and invasion, which are

related with cell-adhesion-mediated drug resistance (55).

MMG49, CAR-T cells targeting the activated ITGB7 protein

are a potential therapeutic option for patients with t(14;16) or t

(14;20) (56, 57).

Despite the significant improvement in survival outcomes of

MM over the past two decades, myeloma remains a nearly

universally incurable disease. Patients with MM with triple-

class (PI, IMiD, and anti-CD38 monoclonal antibody)

refractory status have limited effective treatment options (49).

Hence, the development of new therapeutic options for these

patients is critical. MM has emerged as a model system to

evaluate novel CAR designs and CAR T-cell therapies
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represent an innovative, personalized and groundbreaking

approach to improve myeloma treatment.
Alternative antigenic proteins for
CAR T-cells to target in multiple
myeloma

The expression of BCMA is variable and there is a significant

risk of relapse due to antigen escape. Hence, there is a need to

identify additional surface-associated targets on MM cells.

Attractive molecules to target need to be stably expressed with

low intratumoral and interpatient heterogeneity, lack expression

on other essential tissues and demonstrate negligible antigen

solubility (58–60). CARs designed to target CD19, CD38,

CD138, SLAMF7 and GPRC5D antigens are in development.
CD19

CD19 is detected on a subset of myeloma cells (61, 62). It has

been postulated that CD19+“stem cells” that propagate myeloma

and that these cells can be best targeted following high-dose

chemotherapy debulking of the non-CD19+ population.
CD38

CD38 is expressed at high levels on PCs and preclinical

results supports the anti-myeloma effect of CAR T-cells that

target CD38 (63). CD38 is similarly detected on healthy

erythrocytes, NK cells, and other cell types, increasing the

likelihood of “on-target, off-tumor” effects (64).
CD138

CD138 is found on PCs but also on many normal tissues

increasing the risk of off-tumor effects. CAR T-cells that target

CD138 were shown to not be toxic to epithelial cells and patients

treated with these CAR T-cells did not develop adverse

toxicities (65).
SLAMF7

SLAMF7 (signaling lymphocyte activation molecule F7, CS1) is

detected on PCs, healthy B cells, T-cells, NK cells, monocytes, and

DCs. CAR T-cells that target SLAMF7 demonstrate promising

activity in preclinical studies (66). Since SLAMF7 is also found on

many other normal (healthy) cell types, SLAM7-directed CAR T-
Frontiers in Immunology 05
cells may exhibit fratricide of SLAMF7high+ B, T, and NK cells, but

spare SLAM7−/low cells.
GPRC5D

GPRC5D expression is >500 times greater on PCs and MM

cells than other cell types (67). GPRC5D may represent a novel

antigen than can be used alone or in multi-CAR strategies.
SEMA4A

SEMA4A is a new target for MM and is expressed at a

greater level on MM cells than BCMA and SLAMF7. SEM4A is

rapidly internalized, displays a low level of shedding and appears

essential for MM survival, making it unlikely to be genetically

eliminated (68).
Design strategies to Improve CAR
T-cell efficacy in cancer treatment

CAR T-cell designs that incorporate multiple target antigens

can be combined with established CAR T-cells, e.g., BCMA, to

increase tumor lysis, prevent antigen escape in order to improve

overall efficacy and sustain clinical responses. Potential

combinations include anti-BCMA CAR T-cells with CD19,

CD38, SLAMF7, and GPRC5D (69–76). Dual CAR T-cells can

be either administered simultaneously by infusion of two pools

of T-cells that express separate CARs or by infusion of a single

T-cell pool in which two T-cell populations express separate

CARs. Conceivably, dual targeting by distinct CAR T-cells is

advantageous since both CAR T-cell products can be controlled

separately. However, generating two separate batches of CAR T-

cells could be an expensive and time-consuming process. Dual

target specificity can be accomplished using bispecific tandem

CAR constructs or ligand-based CARs to target distinct antigens,

e.g., APRIL-CAR (73).
Targeting multiple tumor cell surface
proteins

Targeting more than one antigen receptor can be

accomplished by generating two or more cell populations

expressing different CARs and infusing them together or

sequentially; a bicistronic vector that encodes two different

CARs on the same cell; simultaneously engineered T-cells with

two different CAR constructs (co-transduction), which generates

three CAR T-cell subsets consisting of dual and single CAR-
frontiersin.org
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expressing cells; or two CARs on the same chimeric protein

using a single vector, i.e., bi-specific or tandem CARs. CD19-

positive relapse is usually associated with limited persistence,

low potency of CARs, low response to CARs in patients, and

transient B-cell aplasia. The CAR co-stimulatory domain

influences the persistence of CAR T-cells. The anti-CD19 scFv

used in clinical research is mostly murine-derived, which might

result in CAR T-cell exhaustion in patients due to its high

antigenicity. Recently reported studies support the sequential

administration of CAR T-cell therapies (77–79). Sequential

CD19-22-20 CAR-T cell therapies demonstrated 41.7% overall

CR rate in 17 pediatric patients with r/r B-cell lymphoma,

including 13 Burkitt lymphoma (77). For the non-

remission patients who received the prior CD19 CAR T-cells,

CD20 and CD22 CAR T-cells were subsequently infused on day

30, and three of six patients further achieved CR. With extended

duration of CAR-T cell expansion which was contributed by

separated expansion of each kind of CAR T-cells, 70.6% overall

CR rate was further achieved in six months after traditional

sequential CAR-T cell therapies. Sequential infusions of CD20

and CD22 CAR T-cells significantly improved the prognosis of

the B-NHL patients, while some advanced patients still

progressed to death during these CAR-T cell treatments (78).

It was hypothesized that sequential CAR-T cell infusions may

induce co-expansion of different CAR T-cells when residual

prior CAR T-cells still remain detectable in PB, which leads to

the prolonged duration of peak expansion of CAR T-cells with

enhanced antitumor effects (79). Sequential infusions of different

CAR T-cells enhanced anti-tumor effects, which is consistent

with the synergistic effects of multi-agent immunotherapies on

eradicating disease and prolonging remission in the patients

with relapsed hematologic malignancies. Taken together, the

results demonstrate that short-interval sequential infusion of

different CAR T-cells can augment CAR-T cell expansion and

enhance the anti-tumor effects in vitro, in animal models, and in

two patients with advance B-cell lymphomas. The broad

applicability of sequential infusion of CAR T-cells remains to

be determined.
Dual CAR T-cell therapy

Another approach separates primary activation from co-

stimulatory signaling events using separately expressed CARs

directed towards two distinct antigens. Splitting the T-cell

activation signals enables tumor specificity since dual CAR-

transduced T-cells can only be activated fully if both CARs

simultaneously target tumor cells but not if they recognize only

one of the antigens on healthy tissues. Another form of dual

CAR T-cell therapy uses inhibitory CARs (iCARs) to improve

efficacy and safety of myeloma-directed CAR T-cells where a

second-generation CAR is combined with an iCAR (80, 81).
Frontiers in Immunology 06
Armored CAR T-cells

Armored CAR T-cel ls are devised to overcome

immunosuppressive activities elicited by the TME. The type of

‘armor’ is predicated on the cytokine milieu of the TME and the

roles of innate and adaptive immune cell types that are present.

Armored CAR T-cells have been constructed to permit

constitutive and/or inducible secretion of active cytokines,

express specific ligands, and secrete antibody-like peptides to

improve T-cell proliferation and survival (82, 83). These types of

CAR T-cells are engineered to be resistant to immune

suppression and could more likely be modified in the future to

no longer express immune checkpoints.
T-cells redirected for universal
cytokine killing

T-cells Redirected for Universal Cytokine Killing (TRUCKs)

are fourth-generation CAR T-cells that, upon binding a specific

tumor antigen, specifically produce cytokines designed to attract

certain immune cells while suppressing other cell types (84–86).

TRUCK CAR T-cells represent a specific type of armored CAR

T-cell which secretes cytokines to interfere with the

immunosuppressive cytokine profile within the solid

tumor. TRUCKs are specifically armored to co-express a CAR

as well as a cytokine that improves T-cell growth, survival and

expansion while simultaneously providing resistance to

immunosuppression. TRUCK-driven cytokines also promote

the removal of antigen-negative tumor cells by bystander T-

cells. Cytokines employed in TRUCKs thus far include IL-8 (87),

IL-9 (88), IL-11 (89, 90), IL-12 (91, 92), IL-15 (92), IL-21 (93)

and IL-18 (94). Transgenic production of IL-15 (95) and IL-21

further enhances the effects by stimulating innate immunity. IL-

23 secreting CAR T-cells increase therapeutic effects with less

adverse toxicities relative to IL-15 and IL-18-expressing CAR T-

cells. Pro-inflammatory signaling from bone marrow (BM)

promotes tumor growth to suggest that TRUCKs may require

regulated cytokine release to decrease inflammation and

preserve responses.

Transforming growth factor-beta (TGF-b) is a pleiotropic

factor produced within the BM niche that promotes tumor

initiation, progression and the emergence of drug resistance

(96, 97). TGF-b suppresses T-cell immunosurveillance, drives T-

cell differentiation towards regulatory T-cells (Tregs) and TGF-

b levels correlate with poor prognosis in cancer patients. TGF-b
elicits an inhibitory effect on cytotoxic T-cell proliferation,

activation, and effector functions to subvert T-cell immunity

through Foxp3-dependent and independent mechanisms by

favoring Treg differentiation. TGF-b also confers resistance to

CAR T-cells and promotes T-cell exhaustion and senescence.

CAR T-cells can be created to secrete cytokines that negate
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immunosuppression within the BM niche. CD28-z CAR T-cells

secrete IL-2 that offsets the immune suppressive effects of TGF-

b. Inhibitory cytokines can also be eliminated by increasing

expression of IFN-g and IL-12 which leads to more effective

tumor clearance (98).

It has been proposed that BCMA CAR T-cells can be

“armored” to repel TGF-b-mediated immunosuppression.

B2ARM CAR T-cells were developed to co-express a BCMA-

specific CAR together with a TGF-b dominant-negative receptor

type II, in CD4+ and CD8+ T-cells (99). B2ARM CAR T-cells

effectively targeted myeloma (MM.1S) cells, whereas myeloma

killing activity of B2CAR T-cells without armor was blocked by

the addition of TGF-b. Moreover, following exposure to TGF-b,
B2ARM CAR T-cells demonstrated an increase in Ki67. The

serine protease granzyme is commonly found in granules within

T-cells that are secreted along with pore-forming perforin to

mediate apoptosis in target cells. Granzyme B levels were also

greater in B2ARM CAR T-cells, as was CD107a. B2ARM CAR

T-cells also blocked TGF-b-driven changes in the levels of CD25,
PD-1, LAG3 (exhaustion markers), and CD45RA+ CD45RO-

CD62L- (differentiation markers). B2ARM CAR T-cells

improved the survival of NSG mice that harbored RPMI-8226

tumors and overexpressed TGF-b. B2ARM CAR T-cell infused

mice displayed greater infiltration of tumors 7 days after

treatment, and greater IFN-g, TNF-a, Ki67, granzyme B, and

PD-1 expression relative to tumor-infiltrating non-armored

B2CAR T-cells. Mice also received RPMI-8226 cells in which

exogenous TGF-b was administered and mice that received

B2ARM CAR T-cells rejected tumors faster than mice that

received non-armored B2 CARs. Mice that received B2ARM

CAR T-cells also demonstrated a higher number of CD3+ and

CD3+CAR+ cells as well as central memory and effector

memory T-cells. Armored B2ARM CAR T-cells appear to

promote enhanced persistence, increased survival, greater

differentiation of effector cells and superior anti-myeloma

activity. Armored B2ARM CAR T-cells abrogated a number of

TGF-b-driven functional activities that suppress anti-myeloma

immunity (100–102).
CAR T-Cells that target tumors under
hypoxic conditions

Tumor cells responses to low oxygen (O2) concentrations are

mediated primarily through hypoxia-inducible factors that

modulate transcriptional changes (103–105). In myeloma,

higher proliferative rates, greater metabolic needs, and

insufficient vasculature to meet tumor demands, yield an O2

deficient environment, measured to be <2% compared with

healthy tissues where the O2% is ~20% (106–108). In cancer

patients, a hypoxic TME has been linked with resistance to

chemotherapy, radiotherapy and CAR T-cells as well as an

overall poor prognosis. Since hypoxia differentiates BM from
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normoxic tissues, hypoxia-inducible CARs may represent an

attractive signaling system to selectively induce the expression of

antigen recognizing molecules on the myeloma surface.

Since hypoxia is a characteristic of the myeloma TME,

studies were performed to determine the effects of low O2

concentrations (hypoxia) on CAR T-cell growth, proliferation

and differentiation (109). CD19 and BCMA-specific CAR T-cells

were cultured under atmospheric (18% O2) and hypoxic (1% O2)

conditions. CAR T-cells cultured in 1% O2 expanded much less

than cells cultured at 18% O2, were less differentiated and had an

increased the ratio of CD4 to CD8. CAR T-cells cultured under

atmospheric or hypoxic conditions were then added to

antigen-pos or antigen-neg tumor cells and displayed

comparable cell-killing activities with upregulation of PD-1. In

contrast, the production of cytokines and granzyme B release

were lower under hypoxic conditions, even CAR T-cells

generated under atmospheric conditions. Since hypoxia

modulates tumor growth and immune editing, a dual oxygen-

sensing switch was designed to provide stringent hypoxia-

dependent regulation of a CAR (110). The microdevice

platform mimics the 3-D tumor with an O2 gradient that

facilitates evaluation of CAR T-cell anti-tumor infiltration

and efficacy.
Self-driving CAR T-cells

CAR T-cells utilize potent promoters to enforce long-term

CAR expression, but constitutive CAR activation may promote

T-cell exhaustion. To overcome this limitation, self-driving CAR

T-cells were generated that regulate their own function with the

help of signal transducer promoters. CD19-targeting CAR

engages the antigen controlled by the activator protein 1

(AP1)-nuclear factor kappa−B (NF-kB) or signal transducer

and activator of STAT5 promoters (111). Self-driving CAR T-

cells exhibit comparatively low T-cell exhaustion in vitro and

offer a solution to limitations imposed by CAR-T

cell persistence.
Suicide gene inactivation of CAR T-cells

Genetically-engineered overexpression of immune

stimulatory cytokines requires built-in safeguards to prevent

potential toxicities. The introduction of a conditional suicidal

phenotype or a safety switch into allogeneic CAR T-cells can

enhance the safety profile and facilitate future clinical

development and applications. Since SLAMF7 is expressed on

healthy leukocytes, especially NK cells that control viral

infections, inclusion of a suicide gene with an anti-SLAMF7

CAR is prudent (112). In general CAR T-cell depletion, as

another OFF/safety-switch for cell-based therapies can be

realized by constructing CARs that express a suicide gene, e.g.,
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inducible delta Caspase 9 (i-delta-Casp9) (113–117). Constructs

that harbor an IL-15 and i-delta-Casp-9-based suicide gene (iC9/

CAR.19/IL-15) also offer potential (118). T-cells that expressed i-

delta-C9/CAR.19/IL-15(+) demonstrated more expansion upon

stimulation, reduced cell death rate, lower PD-1 receptor

expression and enhanced anti-tumor efficacy. Activated T-cells

obtained from either normal (healthy) donors or acute myeloid

leukemia (AML) patients were treated with retroviral

supernatant that encoded inducible i-delta-Casp9, a DCD19
marker for selection, and a CAR that recognized CD33. T-cells

that express iC9-CAR.CD33 may be included as part of the

conditioning therapy for ASCT in AML, since Casp9 activation

would remove genetically-modified T-cells before the infusion of

stem cells to reduce engraftment failure. Casp9 fused to the

FK506 binding protein (FKBP) is a safety switch that allows for

conditional dimerization. However, activation of the Casp9

domain of iCasp9 depends on dimer formation of FKBP12

domains, achieved using the drug rimiducid (AP1903) (119).
Logic-gated CAR T-cells

Computationally designed assembly of recombinant

proteins allows for the programmable control of protein-

protein interactions that function as tunable, molecular

sensors to govern critical cellular activities and dictate cell fate

decisions (120–122). A strategy for the design of more specific

and effective CARs is to merge CAR T-cells that target more than

one antigen equipped with “AND”, “OR” and “NOT” Boolean-

derived logic-gates, i.e., on/off switches that produce a single

binary output. Logic-gated CARs perform a specific functional

operation triggered by one or more physical or chemical input

signals linked by an output transistor to downstream elements

that activate a defined output (Figure 2). Simultaneous targeting

of a second protein or co-factor triggers a selective response and

represents an “AND” binary decision logic-gate. The premise

that CARs can respond to more than one feature specific to the

cancer cell represents a rational approach to develop more

efficacious “on-target, on-tumor” therapies. Given the limits of

most cancer drugs, one approach is to continue to identify and

target unique features of myeloma cells in order to design more

specific CARs (22, 123–125).
Loss of MRD negativity as a general
mechanism of disease relapse

MM patients frequently attain a BM MRD negativity status

in response to treatment (126). Time from ASCT revealed

patients with MRD conversion during the first three years had

inferior OS and PFS compared with patients with sustained
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MRD negativity. MRD conversion correctly predicted relapse in

70%, demonstrating the utility of serial BM MRD assessment to

complement standard laboratory and imaging to make informed

salvage therapy decisions. CAR T-cell therapy is also highly

effective in the treatment of B-ALL or B-cell lymphoma,

providing alternative therapeutic options for patients who

failed to conventional treatment. However, up to 60% patients

relapse, probably due to persistence of CAR T-cells and escape or

downregulation of CD19 antigen, which is a great challenge for

disease control. For CD19-negative relapse, CD19 is absent,

causing tumors to evade CAR recognition and clearance in

spite of CAR T-cell persistence. Jacoby et al. found in murine

studies that immune pressure rather than immune selection of

CD19 by CAR T-cells led to the reprogramming of the B-ALL

lineage, resulting in late relapse (127).

Trogocytosis is a process in which lymphocytes extract

surface molecules from antigen-presenting cells (APCs)

through immunological synapses (128). Intriguing studies have

shown that CAR T-cells extricate and acquire target antigens

into T-cells through trogocytosis. A minimum density of the

targeted antigen at the cell surface appears necessary for T-cells

to elicit cytotoxicity. Trogocytosis may reduce antigen density

below the minimum threshold needed to promote T-cell activity.

Combinatorial strategies to target more than one antigen may

permit next-generation CARs to prevent or overcome tumor

escape caused by trogocytosis.
Conclusions and perspectives

A biologic rationale for the evolutionary development of

mechanisms that elicit cell-mediated cytotoxicity within

multicellular organisms remained a quandary for decades

(129). While multicellular organisms depend on cooperation

and communication between different cell types, it was not clear

why sensitized lymphocytes produced cytopathogenetic and

cytolytic effects on homologous cells in vitro, in the absence of

classical humoral antibodies (130). It is now understood that

cell-mediated cytotoxicity is directed against syngeneic cells that

bear infectious agents or have been mutated through oncogenic

transformation. Sacrificing a population of defective cells

ultimately improves the survival probability of the entire

organism. In the 1960’s, a number of studies collectively

demonstrated cell-mediated cytotoxicity in vitro primarily

using combinations of allogeneic cells (131–136). The

cumulative results demonstrated that lymphoid cells

specifically promoted cytotoxicity with a context similar to

that of graft-versus-host disease. Subsequently, in 1976

Morgan et al. showed that T lymphocyte growth selectively

occurred when fractionated BM cells were incubated in

conditioned medium from lymphocytes that had been
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stimulated with phytohemagglutinin (137). Interleukin-2 was

described as a “T-cell growth factor” that induced the

proliferation of antigen-stimulated T-cells. IL-2 addition also

promoted T-cell expansion and maintained T-cell functional

activities. The administration of IL-2 in clinical trials lead to

durable, complete tumor regression in patients with solid tumors

(138, 139). Subsequently, in 1989 Gross et al. pioneered the first

CAR design (a “double-chain” CAR: TCRaVH+TCRbVL)

followed in 1993 by Eshhar et al. with the first scFv genetically

engineered CAR in T-lymphocytes that were redirected to a

target, to combine antibody-specificity with T-cell cytotoxicity

(132, 133). The introduction of co-stimulatory signals mimic the

natural series of steps that occur when T-cells recognize an

antigen (134–136). Collectively, a number of seminal studies

over the past seven decades have led to the development of T-

cell-centric approaches which have been translated into superior

anti-cancer and anti-myeloma therapies (62, 136–147).

The paucity of accurate biomarkers to detect early disease,

presentation of disease at later stages and intratumoral

heterogeneity collectively reduce the impact of conventional

treatments in oncology. Chemotherapy, surgery and
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radiotherapy provide little benefit for many patients that

present with relapsed and/or refractory disease, while in

contrast, immunotherapeutics have shown significant promise.

A number of immunotherapeutics recently have been FDA-

approved or are in development to treat MM when administered

alone or in novel combinations (148). Resistance to anti-

myeloma therapy, in particular to the PIs, inevitably emerges

and is a leading cause of relapsed and/or refractory disease and a

number of mechanisms have been proposed to characterize PI

resistance which is characterized by slowly proliferating, drug

tolerant cells that display cross-resistance to numerous PIs (149).

CAR T-cell therapies may potentially provoke life-

threatening complications, require careful patient selection

criteria as well as a clinical team experienced in the

administration of autologous and allogeneic cell therapies.

Moreover, responses using currently available CAR T-cells are

frequently not sustained. Genomic heterogeneity, drug-induced

selection and molecular evolution of tumor clones increase the

difficulty to design universally effective CAR T-cells for

myeloma. Disease relapse of antigen-expressing tumor cells

appears to be tightly related to CAR T-cell durability and
B

C

A

FIGURE 2

Logic-gated CAR T-cell design strategies. Shown are various designs for logic-gated CAR T-cells. (A) “A and B” logic-gated CAR T-cell design “A
and B” Logic Gated CAR T-cells: Two Tumor Antigens Required for Activation. Tumor cells express two distinct tumor-specific antigens. CAR T-
cells express two separate CARs that each are required to recognize and bind a single tumor antigen. Binding of a single antigen alone does not
promote CAR T-cell activity. The two distinct CARs are co-expressed with complementary signaling domains in one T-cell that
fully activates the T-cell only in the presence of both cognate antigens. (B) “A and B” Logic Gated CAR T-cells: Tumor and Non-Tumor Antigens
Required for Activation. Tumor cells express one tumor-specific antigen as well as a non-tumor antigen. CAR T-cells are designed to express
two separate CARs that each are required to recognize and bind a single antigen. Binding of a single antigen alone does not promote CAR T-
cell activity. (C) “A and NOT B” Logic Gated CAR T-cells: One Tumor Antigen and the Absence of an Inhibitory Antigen Required for Activation.
Inhibitory CARs (iCARs) are not able to adequately activate cytotoxic activity upon recognition and binding cells that express one of the two
targeted antigens. iCAR-T cells selectively kill target cells that express only one antigen, whereas healthy (off-target) cells co-expressing another
inhibitory ligand recognized by the iCAR are protected, allowing T-cells to distinguish target cells from healthy (non-tumor) cells.
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exhaustion. T cells from the BM of MM patients were more

severely impaired than peripheral T cells and displayed features

of exhaustion and senescence. T cells from MM patients are able

to recognize and eliminate myeloma, although this is subverted

in the majority of patients who eventually succumb to

progressive disease. T cell exhaustion and a suppressive bone

marrow microenvironment have been implicated in disease

progression, and once these are established, immunotherapy

appears largely ineffective. In summary, although MM remains

largely incurable despite the development of second-generation

novel agents and the introduction of monoclonal antibodies,

next-generation CAR design strategies should yield more potent

T-cell phenotypes that reinvigorate anti-myeloma immunity

(150–155).
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ADCC Antibody-dependent Cellular Cytotoxicity

AEs Any-Grade Adverse Events

ALL Acute Lymphoblastic Leukemia

AML Acute Myeloid Leukemia

AP1 Activator Protein 1

APCs Antigen-presenting Cells

ASCT Autologous Stem Cell Transplantation

B-ALL B-cell acute lymphoblastic lymphoma

BCMA B-Cell Maturation Antigen

BM Bone Marrow

CAR Chimeric Antigen Receptors

cilta-cel Ciltacabtagene Autoleucel

CI Confidence Interval

CRS Cytokine Release Syndrome

DLBCL Diffuse Large B-Cell Lymphoma

FDA Food and Drug Administration

FKBP FK506 Binding Protein

GBM glioblastoma multiforme

GPRC5D G-Protein Coupled Receptor Family C Group 5 Member D

iCasp9 inducible Caspase 9

ide-cel Idecabtagene Vicleucel

IMiD Immunomodulatory Drugs

iCARs Inhibitory CARs

IFN-g Interferon Gamma

IL Interleukin

IMWG International Myeloma Working Group

LAG3 Lymphocyte Activating 3

MM Multiple Myeloma

MRD Measurable Residual Disease

NF-&kappa;B Nuclear Factor Kappa-B

ORR Overall Response Rate

OS Overall Survival

PC Plasma Cell

PD-1 Programmed Cell Death Protein 1

PFS Progression-Free Survival

PI Proteasome Inhibitors

RRMM Relapsed and/or Refractory Multiple Myeloma

SEMA4A Semaphorin-4A

SLAMF7 Signaling Lymphocyte Activation Molecule F7

scFv Single-Chain Variable Fragment

sBCMA Soluble B-Cell Maturation Antigen

sCR Stringent Complete Response

STAT5 Signal Transducer and Activator of Transcription 5

TCR T-cell Receptor

TRUCK T-cells Redirected for Universal Cytokine Killing

TGF-&beta; Transforming Growth Factor-beta

TME Tumor Microenvironment

TNF-&alpha; Tumor Necrosis Factor-Alpha

VGPR Very Good Partial Response
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