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Introduction: The character and composition of leukemia-related T cells are

closely related to the treatment response and prognosis for patients. Though B

cell-acute lymphoblastic leukemia (B-ALL) patients have benefited from

immune-based approaches, such as chimeric antigen receptor T cells

therapy, some of them still end with poor prognosis, especially for adult

patients. Therefore, deep understanding of the developmental relationship

between T cell subtypes in relation to B-ALL patient prognosis is urgently

needed.

Methods: We analyzed the peripheral blood T cell single-cell RNA sequencing

data of three B-ALL patients, using data from 11 healthy individuals as controls.

In total, 16,143 and 53,701 T cells from B-ALL patients and healthy adults,

respectively, were objectively analyzed for detailed delineation of 13 distinct T

cell clusters. Cluster-specific genes were used as marker genes to annotate

each T cell subtype.

Results: Unbiased analysis enabled the discovery of circulating CD103+ T cell

(CD3+CD103+MKI67+), also defined as tissue-resident memory-like T (Trm-

like) cell, populations were elevated in B-ALL patients, which expressed high

level of cell proliferation and exhaustion related genes. In addition, cell fate

trajectory analysis showed these Trm-like cells, which shared T-cell receptor

(TCR) clonotypes with exhausted T (Tex) cells and effector T (Teff) cells, were
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supposed to transition into Teff cells; however, mainly transformed into Tex

cells in leukemia environment. More importantly, Trm-like cells transformation

into Teff cells and Tex cells potentially led to favorable or poor prognosis for B-

ALL patients, respectively.

Conclusion: In sum, a circulating Trm-like cell subset with high level

expression of cell proliferation and exhaustion related genes was elevated in

B-ALL patients. The bidirectional developmental potential of these T cells into

Teff or Tex is closely associated with favorable or poor prognosis, respectively.

Together, our study provided a unique insight of alteration of leukemia related

T cells, also showed a potential immunotherapy direction and prognosis

assessment model for B-ALL patients.
KEYWORDS

hematologic neoplasms, immunity, T-lymphocytes, immunologic memory, gene
expression profiling
Introduction

B-cell acute lymphoblastic leukemia (B-ALL) is a

hematopoietic malignancy characterized by abnormal

proliferation of B-lymphoid progenitor cells throughout the

blood system. Analyses from the SEER (Surveillance,

Epidemiology, and End Results Program) database have shown

that the 5-year overall survival (OS) rate of B-ALL in children is

about 89% (1). However, this rate for adult patients remains low

at approximately 20%–40% (2). Prognostic factors of B-ALL

include various disease-related and patient-specific factors. For

example, clinical characteristics, e.g., age, white blood cell count

at diagnosis, cytogenetics, and response to chemotherapy have

been identified to be of prognostic significance in patients with

B-ALL (3). Recently, increasing research has shown that the

composition and dysfunction of immune cells are correlated

with clinical treatment and prognosis in cancer patients (4–6).

Besides conventional chemotherapy and allogeneic

hematopoietic stem cell transplantation, immunotherapy is

surging in the last few years for fighting B-ALL (7). Novel

immunotherapies comprise immune checkpoint inhibitors,

tumor-targeting monoclonal antibodies, bispecific T-cell

engager, and chimeric antigen receptor T-cell therapy (8).

These strategies all require a deep understanding of the

alteration of the host immune system, especially the T-cell

immunity. Furthermore, growing experience revealed that the

properties of T cells could be robust prognostic factors for

disease risk and outcome in leukemia (9, 10).
02
In our previous work (11), we depicted different T-cell

subtypes and found an exhausted cluster that specifically existed

in B-ALL patients and possessed remarkable heterogeneity.

However, the developmental relationship between T-cell

subtypes in relation to B-ALL patient prognosis remains elusive.

To address this question, further analysis was performed on these

T cells in B-ALL. A subset of T cells with features of tissue-resident

memory T (Trm) cells was found in the peripheral blood of B-

ALL patients, which we defined as circulating CD103+ T cell or

tissue-resident memory-like T (Trm-like) cell. These Trm-like

cells expressing high levels of immune checkpoint molecules and

cytotoxicity markers also shared similar TCR signatures with

exhausted T (Tex) cells and effector T (Teff) cells. The

traditional view thought that Trm cells were low in migration

and long-term survival in peripheral tissues; however, more recent

studies indicated that upon secondary antigen presentation, Trm

cells can rejoin the circulation pool, transforming into Teff cells

(12, 13). Through cell fate trajectory analysis, we found that Trm-

like cells that were supposed to transit into Teff cells, however,

mainly transformed into Tex cells in leukemia environment.

Furthermore, Trm-like cell to Tex cell transformation

potentially led to poor prognosis of B-ALL patients, while

transition toward Teff cells would likely improve prognosis. Our

data suggest that Trm-like cells contribute to B-ALL

immunosurveillance and may provide valuable prognostic

information. Further understanding of the development,

maintenance, and regulation of Trm-like cells would be crucial

for successful immunotherapeutic development in B-ALL.
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Methods

Single-cell RNA sequencing datasets

The single-cell RNA sequencing (scRNA-seq) datasets of

peripheral blood T cells were acquired from the Gene Expression

Omnibus (GEO) database (GSE172158 and GSE157007).

GSE172158 contains scRNA-seq data of peripheral blood T

cells from three newly diagnosed and untreated B-ALL

patients and two healthy individuals, while GSE157007

contains scRNA-seq data of peripheral blood mononuclear

cells (PBMCs) from nine healthy individuals aged between 23

and 100 years. All samples except h1 of GSE172158 had

matching single-cell TCR sequencing data. The information

about cell preparation, scRNA-seq, TCR profiling, and quality

control of GSE172158 and GSE157007 can be found from the

original publications (11, 14). The GEO database accession

numbers of all of these samples with other detailed

information are listed in Supplementary Table S1.
Quality control, data processing, and
determination of cell types

scRNA-seq raw data quality control was performed to filter out

low-quality cells and low-expression genes. Cells with less than 200

detected genes were removed. Meanwhile, cells withmore than 15%

of reads mapped to mitochondrial genes were removed. Moreover,

only genes expressed in more than 10 cells were kept. Then, for the

GSE157007 dataset, we removed potential doublets in each sample

by using R package “DoubletFinder” (version 2.0.3) (15). After

quality control, downstream analyses were performed using R

package “Seurat” (version 4.0.4) (16). scRNA-seq data were

normalized using the Seurat “NormalizedData” function with

default parameters. Highly variable genes were identified with

parameters “selection.method = vst” and “nfeatures = 2000” using

the “FindVariableFeatures” function. Then, these were scaled by

performing the “ScaleData” function. The “RunPCA” function was

performed for dimension reduction analysis, and the “ElbowPlot”

function helped to select suitable dimensionality. Different

resolution parameters for unsupervised clustering were tested to

find the best numbers of clusters. Non-linear dimensional reduction

was performed by the “RunUMAP” function. Batch effects were

removed by using the “RunHarmony” function of R package

“HARMONY” (version 0.1.0) (17) before the clustering analysis

in Seurat. In total, 84,219 PBMCs were annotated as different major

cell types based on their average gene expression of well-known

marker genes, including T cell (CD3E, CD3D, CD3G), B cell

(MS4A1, CD19, CD79A), natural killer cell (FCGR3A, NKG7),

monocyte and dendritic cell (LYZ, CD14, FCER1A), platelet

(PPBP, PF4), and erythrocyte (HBA1, HBA2). Next, the T-cell

cluster was placed in a subset using the Seurat “subset” function.
Frontiers in Immunology 03
The average expression value of CD3D, CD3E, CD3G, and CD247

genes was calculated to infer the average expression level of CD3,

and only cells of the T-cell cluster with the average expression of

CD3 greater than 0.5 were merged with two healthy individual

samples from GSE172158 dataset using the “merge” function. After

that, 16,143 and 53,701 high-quality T cells of B-ALL patients and

healthy individuals were acquired and analyzed using “Seurat” and

“HARMONY” packages as above, respectively. According to the

expression of marker genes and auxiliary annotation with reference

to the “MonacoImmuneData” dataset through “SingleR” (version

1.6.1) (18, 19), T cells were grouped into 13 and 11 cell types from

B-ALL patients and healthy individuals, respectively. Finally, we

used the Seurat4 integration method to integrate the scRNA-seq

data of B-ALL patients and healthy individuals.
Calculation of the functional gene
module score

To evaluate the potential functions of interest for cell clusters,

the enrichment scores of the functional gene modules were

calculated by using the “AddModuleScore” function in “Seurat” at

the single-cell level. The average expression levels of the

corresponding cluster or group were subtracted by the aggregated

expression of control gene sets. The functional modules included

genes for inferring cell proliferation, cytotoxicity, and exhaustion

scores. The gene sets for the functional module score calculation are

listed in Supplementary Table S2.
Pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis was conducted using R

package “clusterProfi ler” (version 4.0.5) (20). The

“FindMarkers” function of Seurat with parameters “min.pct =

0.50” and “logfc.threshold = 0.50” was used to identify the

upregulated genes in Trm-like cells of B-ALL patients in

comparison to healthy individuals. Then, the “enrichGO” and

“enrichKEGG” functions were used for pathway enrichment

analysis of these genes. Gene symbols were converted using the

“bitr” function before pathway enrichment if necessary. Full

results of the pathway enrichment analysis were listed in

Supplementary Tables S3 and S4.
T-cell receptor repertoire analysis

T-cell clonotype data were integrated with the T-cell

phenotype based on the shared cell barcodes. Clonotypes that

are shared by more than or equal to two cells were defined as

“Clonal,” while clonotypes identified in only one cell were

defined as “Non-clonal.” T cells without a TCR clonotype
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detected due to sequencing limitations were defined as “Non-

TCR detected.” R package “STARTRAC” (version 0.1.0) (21)

was used to assess the enrichment of TCR in each cell type from

the CD4+ and CD8+ T-cell subset. The degree of clonal

expansion and cell fate state transition of T-cell clusters upon

TCR tracking were determined using three “STARTRAC”

indices, “Expansion,” “Transition,” and “pIndex.tran.”
Reconstructing cell development
trajectories

To explore the developmental progression of the selected

CD4+ and CD8+ T-cell subset, R package “Monocle” (version

2.20.0) (22) was used for reconstructing their development

trajectories. In detail, the raw counts for cells in each cell type

were extracted and normalized by the “estimateSizeFactors” and

“estimateDispersions” functions with the default parameters.

Then, the “differentialGeneTest” function was used to select

the top 1,000–2,000 significant genes (ordered by Q value) of

CD4+ and CD8+ T-cell subset, respectively, for cell fate

trajectory reconstruction. After trajectory reconstruction, the

top 100 genes that had the most significantly correlated (or

anti-correlated) expression profile (ordered by Q value) to the

trajectory branch state were selected using the “BEAM” function.

Differential genes between the three branch states were placed

into three groups by the expression pattern using the ward.D2

clustering algorithm (23). Meanwhile, GO enrichment analyses

were performed on genes in different clusters. Finally, the

expression heatmap of the top 100 genes correlated (or anti-

correlated) to the T-cell fate pseudotime was visualized using the

“plot_genes_branched_heatmap” function. The top 100 genes to

the T-cell fate pseudotime of the selected CD4+ and CD8+ T-cell

subset were listed in Supplementary Table S5.
Gene signature generation and
survival analysis

To examine the role of each trajectory branch state as markers

for B-ALL patient prognosis, specific gene signatures of each state

were derived. Differentially expressed genes (DEGs) within each

trajectory branch state were identified using the Seurat

“FindAllMarkers” function. DEGs with expression having an

absolute value of average log2 fold change ≥1 and being

detected in more than 50% of cells were included in enrichment

calculations. All DEGs used for the enrichment calculations were

listed in Supplementary Table S6. Then, we assessed the

enrichment of each state transcriptional signature through the

Binding Association with Sorted Expression (BASE) algorithm

(24–26) based on those DEGs. The BASE algorithm allows the
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generation of cell subpopulation enrichment scores in which a

higher score is indicative of higher enrichment for a given cell

signature. Moreover, the enrichment of each trajectory branch

state in a patient was calculated by using BASE algorithm on the

bulk-cell RNA-seq data from the corresponding individuals from

the B-ALL dataset in the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) (https://ocg.cancer.

gov/programs/target) database. Patients were stratified into high

and low level based on the median of the transcriptional

signatures for each trajectory branch state. Survival analysis

between B-ALL patients were assessed by Kaplan–Meier using R

package “survival” (version 3.2-13). Results of the survival analysis

were visualized using R package “survminer” (version 0.4.9).
Integrated analysis of the
pan-cancer datasets

We reanalyzed scRNA-seq data of tumor-infiltrating leukocytes

(TILs) by using the Python package “SCALEX” (27) from multiple

cancers (GEO accession numbers: GSE130116, GSE116256,

GSE124310, GSE169246, GSE108989, GSE98638, GSE140228,

GSE162025, GSE99254, GSE155698, PRJNA705464, and

GSE145281) (21, 28–37).
Flow cytometry

Flow cytometry was performed for three newly diagnosed

and untreated B-ALL patients and three healthy individuals. The

clinical information of these samples is listed in Supplementary

Table S7. Cell surface staining and intracellular staining were

carried out in 1× phosphate buffered saline (PBS) and using the

BD Transcription Factor Buffer Set, respectively. Flow cytometry

was performed using the BD LSRFortessa cytometer, and data

analysis was performed using FlowJo (version 10.5.3) (BD). Cell

surface and intracellular staining was performed using the

following fluorophore-conjugated antibodies: CD45-BUV395

(clone HI30, BD), CD3-AF700 (clone UCHT1, BD), CD4-

APC-H7 (clone RPAT4, BD), CD8-Percp-cy5.5 (clone SK1,

BioLegend), Ki-67-PE-CF594 (clone Ki-67, BioLegend), PD-1-

BV421 (clone MIH4, BD), and CD103-BB515 (clone Ber-ACT8,

BD). Cell surface and intracellular staining was performed

according to the manufacturer’s instructions.
Statistics analysis

All statistical analyses were performed using R (version 4.1.0),

including Wilcoxon rank sum test, chi-square test, and Kruskal–

Wallis test. P < 0.05 was considered as statistically significant.
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Code availability

Analytical scripts and codes are available upon request from

the corresponding authors.
Results

Delineation of T cells uncovers enlarged
circulating CD103+ T (Trm-like) cell
population in B-ALL patients

We analyzed the T-cell scRNA-seq data of three B-ALL

patients, with data from 11 healthy individuals as controls (11,

14) (Methods; Supplementary Figures S1A–D). The analyzed

scRNA-seq dataset included 16,143 and 53,701 T cells from B-

ALL patients and healthy individuals, respectively. Clustering of the

T cells from B-ALL and healthy individuals grouped separately, and

cell cluster annotation based on the expression of T-cell marker

genes classified the cells into 13 distinct T-cell subtypes (Figures 1A,

B; Supplementary Figures S1E, S2A–E). In detail, two naive T-cell

clusters (CD4+ Naive and CD8+ Naive) were characterized by the

high expression of SELL, TCF7, CCR7, and LEF1 (38). Two Teff cell

clusters (CD4+ Teff and CD8+ Teff) were defined by low expression

of naive T-cell markers and high expression of effector cytokines

(NKG7, GNLY, PRF1, and GZMB). Two cell populations with low

naive and effector cytokine expression were defined as central

memory T cells (Tcm) and CD8+ effector memory T (CD8+

Tem) cells, respectively. T-helper cell cluster (Th) was not further

subdivided due to transcriptome similarity. For regulatory T cell

(Treg), mucosal-associated invariant T cell (MAIT), and gd T-cell

clusters, we used FOXP3, TRAV1-2, and TRDC and TRDV2 as their

marker genes, respectively (39–41). Two Tex cell clusters (CD4+

Tex and CD8+ Tex) in B-ALL patients were identified based on cell

exhaustion markers PDCD1, LAG3, HAVCR2, CTLA4, and TIGIT

(42, 43). In addition, we also examined Tex cell clusters in the

peripheral blood and tumors of non-leukemia cancer patients. The

results showed that Tex in peripheral blood was close to 0; however,

the Tex cells among the tumor-infiltrating T cells of solid tumors

were similar to the peripheral blood of B-ALL (13.3% on average)

(Figure 1C; Supplementary Figure S2F) (21, 28, 29). This

suggests that Tex cells are only typically present in the

cancerous microenvironment.

Most importantly, using ITGAE (CD103) and MKI67 as

markers, clusters of cells were identified as circulating CD103+ T

(Trm-like) cells in B-ALL patients and healthy individuals,

respectively (12, 44, 45), which were not previously

characterized as such (11, 14). We then compared the

proportion of each T-cell subtype in B-ALL and HI groups,

and it was evident that B-ALL patients had significantly larger

Trm-like cell population than healthy individuals, both

collectively (6.39% vs. 0.28%) and per individual (6.82% ±
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0.059% vs. 0.27% ± 0.0017%) (Figures 1C, D). In addition,

multicolor flow cytometry detected larger CD103+ T-cell

populations in the peripheral blood samples of three

additional B-ALL patients (2.33% on average) compared to

three healthy individuals (0.92% on average) (Supplementary

Figures S3A–C), which corroborated the results of our scRNA-

seq analysis. Similar to B-ALL, we also found that this

population of T cells highly expressing ITGAE and MKI67 was

elevated in the tumor microenvironment of multiple solid

tumors (Supplementary Figures S4A–C).
Functional characterization of Trm-like
cells in the leukemia environment

To explore the differences in the function of Trm-like cells

between B-ALL patients and healthy individuals, we calculated

three functional enrichment scores (proliferation, cytotoxicity,

and exhaustion) according to the expression of four

corresponding gene sets (Supplementary Table S2; Methods).

The results indicated that these Trm-like cells from B-ALL had

significantly higher proliferation (P < 0.001) and exhaustion

(P < 0.001) than HI, and there was no statistical difference in

cytotoxicity between the two groups (Figure 2A). Meanwhile, we

performed DEG analysis and GO Biological Process and KEGG

signaling pathway enrichment analysis for the upregulated genes

in B-ALL Trm-like cells in comparison to those of healthy

individuals (Supplementary Tables S3, S4). The upregulated

genes in B-ALL Trm-like cells included proliferation-related

genes, POLA2, MCM2, and TFDP1, exhaustion-related genes,

PDCD1, LAG3, HAVCR2, TIGIT, and TOX, and T-cell

activation-related genes, CSK and CD27. The GO and KEGG

enrichment results showed that the enriched functions and

signaling pathways were related to both cell proliferation and

apoptosis, such as “regulation of mitotic cell cycle phase

transition,” “leukocyte apoptotic process,” “Cell cycle,”

“Apoptosis,” and “DNA replication” (Figure 2B). Flow

cytometry validation also revealed a higher percentage of Ki-

67+CD103+ T cells from three additional B-ALL patients

compared to healthy individuals (Supplementary Figure S3C).

These results potentially implied that the Trm-like cells in the

leukemia microenvironment were in a complex state, actively

proliferating but prone to apoptosis, which were similar to the

state of Trm-like cells in the solid tumor microenvironment (46).

Furthermore, Trm-like cells of B-ALL patients were of genes

upregulated in “Oxidative phosphorylation,” “T cell activation,”

“activation of innate immune response,” and “T cell receptor

signaling pathway” (Figure 2B), which suggested that Trm-like

cells were active and involved in first-line immunity against

tumors (47).

Next, we reclustered the 1,184 Trm-like cells from B-ALL

patients and healthy individuals into two subtypes, CD4+ and
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A

B

DC

FIGURE 1

Identification of CD103+ T (Trm-like) cells in the peripheral blood of B-ALL patients and healthy individuals through scRNA-seq. (A). UMAP
(uniform manifold approximation and projection) visualization of T-cell single cell clusters from B-ALL patients (left) and healthy individuals (HI;
right). Different clusters are depicted with distinct colors. (B). Dot plot of marker genes for each cell cluster. Color scale indicates the mean of
normalized expression of marker genes in each cell type, and dot size is proportional to the percentage of cells within each cell cluster
expressing the marker genes. The red box highlights the marker genes for Trm-like cells. (C). Variation of the proportion of each defined cell
type between sample groups (B-ALL vs. HI). (D). Proportion of Trm-like cells in each assayed sample. Red and green dots represent B-ALL
patients and healthy individuals, respectively. Trm-like, tissue-resident memory-like T cell; B-ALL, B cell-acute lymphoblastic leukemia; Teff,
effector T cell; Tem, effector memory T cell; Tcm, central memory T cell; Th, T-helper cell; Treg, regulatory T cell; MAIT, mucosal-associated
invariant T cell; Tex, exhausted T cell.
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CD8+ Trm-like cells, according to the expression of CD4 and

CD8A (Figures 2C, D). Compared to Trm-like cells of healthy

individuals, the DEG analysis revealed a high expression of

chemokine receptors (CCR1, CCR3, CX3CR1, CXCR6, CCR5,
Frontiers in Immunology 07
and ACKR3) and selectins (SELP) and low expression of

integrins (CD69, ITGA4, ITGAL, ITGB7, and ITGA1) and

sphingosine-1-phosphate (S1P) receptors (S1PR1 and S1PR5)

in both CD4+ and CD8+ Trm-like cells of B-ALL patients,
A

B

D

E

C

F

FIGURE 2

Functional characterization of Trm-like cells. (A). Single-cell transcriptome-derived Trm-like cell proliferation, cytotoxicity, and exhaustion score
comparison between B-ALL patients and healthy individuals. (B). GO biological process (upper) and KEGG signaling pathway (lower) enrichment
of upregulated genes in Trm-like cells of B-ALL patients in comparison to healthy individuals. (C). UMAP visualization of CD4+ and CD8+ Trm-
like cells after reclustering of Trm-like cells from B-ALL patients and healthy individuals. (D). Projection of CD4 and CD8A expression level on
Trm-like cells from B-ALL patients and healthy individuals. (E). Heatmap visualization of the expression of cell migration and chemotaxis-related
genes in CD4+ and CD8+ Trm-like cells from B-ALL patients and healthy individuals. (F). Single-cell transcriptome-derived proliferation,
cytotoxicity, and exhaustion score comparison between CD4+ and CD8+ Trm-like cells from B-ALL patients. For boxplots, the outlines of the
boxes represent the first and third quartiles. The line inside each box represents the median, and boundaries of the whiskers are found within
the 1.5× IQR value. ***P < 0.001; NS, not significant. Wilcoxon rank sum test (two-sided).
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which were responsible for the regulation of T-cell migration

(48) (Figure 2E). Finally, we compared the proliferation,

cytotoxicity, and exhaustion scores between CD4+ and CD8+

Trm-like cells from B-ALL patients. The results indicated that

compared to CD4+ Trm-like cells, CD8+ Trm-like cells had

higher cytotoxicity (P < 0.001) and exhaustion (P < 0.001) scores

but a lower proliferation (P < 0.001) score (Figure 2F). This

potentially suggests that CD8+ Trm-like cells might play a

stronger anti-leukemia effect (6, 47).
Lineage transition tracing of T cells in B-
ALL patients by TCRab clonotypes

To analyze the clonal expansion status of T cells in B-ALL

patients, we defined T cells with shared TCRab clonotype as

“Clonal” and the other as “Non-clonal” or “Non-TCR detected”

accordingly. We considered T cells with identical TCRab
clonotypes differentiated from the same origin, thus, TCRab
clonotype was used for T-cell lineage transition tracing. We

observed that T-cell clonal expansion was mainly in Teff, Tem,

Tex, and Trm-like cell clusters, and especially in Teff (Figure 3A).

Then, we characterized the lineage transition by investigating the

fraction of clonotypes shared between each pair of T-cell types
Frontiers in Immunology 08
(Figure 3B). The results revealed that between CD4+ T-cell

subtypes, Teff cells had 14% clonotypes identical to Trm-like cells,

and Trm-like cells had 13% clonotypes identical to Tex cells, which

suggested CD4+ Teff, Trm-like, and Tex cells frequently share

TCRab clonotypes. Similarly, in CD8+ T-cell subtypes, there were

frequent overlaps of clonotypes between CD8+ Tem, Teff, Trm-like,

and Tex cells: 13% clonotypes of Teff cells identical to Trm-like cells,

15% clonotypes of Tex cells identical to Trm-like cells, and 35%

clonotypes of Teff cells identical to Tem cells. These findings

suggested that those T-cell clusters with shared clonotypes may

have the same origin. In addition, there were frequent overlaps of

clonotypes between CD4+ and CD8+ Teff cells, which made us

speculate that the CD4+ Teff cells were also involved in tumor

killing (49). To confirm this, we quantified the clonal expansion

(Expansion) and transition (Transition) index between T-cell

subtypes (Figures 3C, D; Methods) (21). Among CD8+ T-cell

subtypes, we found that Teff cells were of the most significant

clonal expansion. Finally, we calculated the pairwise transition

index (pIndex.tran) within CD4+ and CD8+ T-cell subsets

(Figures 3E, F). Among the CD4+ T-cell subtypes, Teff, Trm-like,

and Tex cells had higher pairwise transition indices, with Trm-like

and Tex cells having the highest pairwise transition (0.098)

likelihood and Trm-like and Teff cells having less frequent

pairwise transition (0.048) likelihood (Figure 3E). Similar results
A

B

D

E

F

C

FIGURE 3

TCRab clonotype characterization of T cells from B-ALL patients. (A) TCRab clonal expansion status of T cells from B-ALL patients. (B). Summary of
shared proportion of TCR clonotypes between T-cell subtypes. (C). Clonal expansion and transition ability comparison between CD4+ T-cell
subsets of B-ALL patients. Kruskal–Wallis test. (D). Same as panel (C) but for CD8+ T-cell subsets. Kruskal–Wallis test. (E). Heatmap visualization of
pairwise transition likelihood (based on clonotypes) of CD4+ T-cell subsets. (F). Same as panel (E) but for CD8+ T-cell subsets.
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were also observed in the CD8+ subsets that Trm-like and Tex cells

have the highest pairwise transition (0.16) likelihood (Figure 3F).

Therefore, we deduced that there was a transition potential between

Teff, Trm-like, and Tex cells, among which the transition potential

is greater between Trm-like and Tex cells.
Cell fate trajectory analysis confirms two
transition directions of Trm-like cells

To further explore the transition relationships between those

T-cell clusters with transition potentials (Teff, Trm-like, and Tex

cells), we performed cell fate trajectory analysis for these CD4+
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and CD8+ T-cell subsets. For the selected CD4+ T cells, the

trajectories formed a branched tree shape with one splitting

point, which divided the cells into three states. The three

branched states (State1, State2, and State3) were significantly

enriched with CD4+ Trm-like, Tex, and Teff cells, respectively

(P < 0.001, P < 0.001, and P < 0.001, respectively; Figure 4A;

Supplementary Figure S5A). We observed similar results of

cell fate trajectory for the selected CD8+ T-cell subsets as well,

with State1, State2, and State3 significantly enriched with CD8+

Trm-like, Tex, and Teff cells, respectively (P < 0.001, P < 0.001,

and P < 0.001, respectively; Figure 4B; Supplementary Figure

S5B). Furthermore, Tex cells from State2 branch had

significantly higher exhaustion score (P < 0.001) than that
A B

DC

FIGURE 4

Cell fate trajectory of T cells from B-ALL patients. (A). The discriminative dimensionality reduction (DDR) tree visualization of selected subtypes
of CD4+ T cell trajectory with cell type (top), state (middle), and pseudotime (bottom) information mapping, respectively. (B). Same as panel (A)
but for selected CD8+ T-cell subsets. (C). Gene expression fold change between T cells in distinct cell fate trajectory states. The expression fold
change of each gene in a T-cell state is determined by comparing to the average expression of the same gene in the other two states. (D). Left:
expression heatmap of the top 100 genes that had the most significantly correlated (or anti-correlated) expression profile to the CD8+ T-cell
fate pseudotime in panel (B) The correlation significances (Q values) were calculated by branched expression analysis modeling (BEAM). Right:
enriched GO biological process terms for genes that were specifically expressed in CD8+ T cells of each state.
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from State1 and State3, which might suggest that Tex cells of

State2 were terminally exhausted T cells (Supplementary Figures

S5C, D). Similarly, we also found that Trm-like cells had the

potential to differentiate into Teff in healthy individuals, despite

that the number of Trm-like cells was low (Supplementary

Figure S5E).

Next, we performed branched expression analysis modeling

(BEAM; Methods) to discern the significant expression differences

between the three branched states of the selected CD4+ and CD8+

T-cell subsets (Figures 4C, D; Supplementary Figure S5F). We

selected the top 100 genes (Supplementary Table S5) that had the

most significantly correlated (or anti-correlated) expression profile

to the CD4+ and CD8+ T-cell fate trajectory pseudotime. We

observed that the terminal portion of State2 significantly expressed

cell exhaustion marker genes (42, 43) in both selected CD4+ and

CD8+ T-cell subsets, while the terminal portion of State3

significantly expressed effector cell marker genes (Figure 4D;

Supplementary Figure S5F). Furthermore, GO enrichment

analysis of the pseudotime-aligned gene sets showed that T cells

in State2 were enriched for genes related to “Lymphocyte apoptotic

process” and “T cell apoptotic process,” and State3 was enriched for

T-cell killing-related pathways, like “T cell mediated cytotoxicity,”

and State1 was enriched for “Regulation of actin filament

organization” and “T cell activation” (Figure 4D; Supplementary

Figure S5F). According to these results, we speculate that Trm-like

cells have the potential to be activated and become Teff cells but

instead mainly transformed into an exhausted state in the leukemia

microenvironment possibly due to binding of immunosuppressive

checkpoint proteins (43, 45, 47, 50).
Impact of Trm-like cell transformation
direction on B-ALL prognosis

To investigate the potential prognostic significance of

different transition fates of Trm-like cells in B-ALL patients,

we summarized transcriptional signatures based on the DEGs in

each branched state of the cell fate trajectory analysis from the

selected CD4+ and CD8+ T-cell subsets for B-ALL survival

analysis (Figure 5A; Supplementary Table S6; Methods). The

results showed that patients with a high transcriptional signature

of State2 of the selected CD8+ T-cell subset would have poor

event-free survival (EFS) (P = 0.028) and OS (P = 0.017), while

patients with a high transcriptional signature of State3 of both

the selected CD8+ and CD4+ T-cell subsets would have better

EFS (P = 0.016; P = 0.005) (Figure 5B; Supplementary Figure

S5G). These results of the survival analysis suggested that Trm-

like cell (State1) transition toward Tex cells (State2) or Teff cells

(State3) is potentially associated with poor or favorable

prognosis of B-ALL patients, respectively (6, 47, 51).
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Discussion

Through the comprehensive single-cell transcriptome study

of T cells on B-ALL, we speculate that in the leukemia

microenvironment, circulating CD103+ T (Trm-like) cells are

in a complex state that actively proliferate but are also prone to

apoptosis and participate in the first-line immune function for

leukemia cells. Upon recognizing lymphoblasts in the peripheral

blood, Trm-like cells had the capability to transform into Teff

cells for tumor killing; however, Trm-like cells tended to

gradually become Tex cells possibly due to binding of

immunosuppressive checkpoint proteins in the leukemia

microenvironment (Figure 5C).

Trm cells are thought of as a third subset of memory T cells (52)

and characterized by a distinct transcriptional program with

CD103/CD69/CD49a as cell surface markers. It has been known

for quite some time that Trm cells reside in the epithelium and

occupy the frontline defense against antigens (13, 53). Trm cells

usually provide strong long-term immune protection against

antigen recurrence either by directly killing or by amplifying local

recruitment of other innate and adaptive immune cells through the

release of cytokines and chemokines (54). Recent studies have

shown that Trm cells can rejoin the circulation pool and give rise

to Teff cells in response to antigen stimulation (12, 13). In case of

the leukemia environment, leukemia cells spread and express

specific chemokines and cytokines as well as leukemia-associated

antigens over the circulation system. Upon stimulation, Trm cells,

which originally reside in tissues, reenter the circulation and allow

for surveillance. It was reported that CD69, CCR7, and S1P1 likely

played a role in modulating this migrating process (55). In our data

of B-ALL, Trm-like cells were indeed elevated in peripheral blood

and the low expression of CD69 was supposed to contribute to

the migration.

Previous studies show that Trm and/or Trm-like cells appear

to play an important role in the control of malignancies by

tumor cell killing (56–59). A recent study showed that after the

first-line treatment with immune checkpoint blockers in solid

tumor patients, it was Trm and CD103+ cycling T cells that exert

the powerful killing and antitumor effects in the tumor immune

microenvironment (59). Notably, “Trm and/or Trm-like cell

accumulation” was found in neoplasms of epithelial cell origin,

such as uterine neck cancer (60), colorectal cancer (61), and lung

cancer (57), as well as in non-epithelial cell origin, such as

malignant glioma (62) and melanoma (63). The proportion of

tumor-infiltrating T cells with a tissue-resident memory

phenotype varied from 25% to 75%, which was partly due to

the distinct specific markers used to identify these cells and the

local tumor microenvironment. Thus, we speculate that Trm-

like cells may be a distinct subcluster of tumor-infiltrating

lymphocytes based on the expression of CD103. Our data
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further confirmed that Trm-like cells are of cytotoxic potential,

expression of T-cell checkpoints, and capacity for cell

proliferation. Tracking the dynamic shifts of these cells

throughout the course of B-ALL progression would be of

prognosis prediction value. In this way, Trm-like cells, as a

part of the immune sensing network, monitor the fluctuations of

the microenvironment and possibly play an important role in

the occurrence and development of tumor or autoimmune
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diseases (47). Nevertheless, this study did not clarify from

which tissue site these cells were derived and whether these

cells could recirculate to tissue sites. Further understanding of

the development, maintenance, and regulation of Trm-like cells

would be crucial for addressing this question.

Through shared clonotype and cell fate trajectory analysis, we

put forward a Trm-like cell evolution model in which Trm-like cells

transform into Tex cells rather than Teff cells in the B-ALL
A

B

C

FIGURE 5

Patient survival impact comparison related to T cells in distinct cell fate trajectory states. (A). Schematic workflow of survival analysis based on
the enrichment of CD4+ and CD8+ T cells in each state for patients enrolled in the TARGET (Therapeutically Applicable Research to Generate
Effective Treatments) B-ALL database. The enrichment of T cells of each state in a patient was calculated by using BASE algorithm on the bulk-
cell RNA-seq data from the corresponding individual. (B). Kaplan–Meier plots for the prognostic value of event-free survival (EFS) and overall
survival (OS) according to the transcriptional signatures of each CD8+ T-cell state in patients from TARGET B-ALL dataset (n = 137). Patients
were stratified into high and low level based on the median of the transcriptional signatures for each CD8+ T-cell state. P value was determined
by log-rank test. (C). Proposed Trm-like cell functional transition model in B-ALL patient.
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microenvironment. We assumed that this might be due to the

expression of specific cytokines in certain states (64). As the high

transcriptional signature of State2 (Tex cells) links to a poor

prognosis, while State3 (Teff cells) links to a favorable prognosis,

the transition directions of Trm-like cells in B-ALL patients may be

a potential prognostic factor for patient survival. Previous research

had shown that the percentage of infiltration of Trm-like cells was

positively correlated with a favorable prognosis. For example, the

higher percentage of CD103+ tumor-infiltrating lymphocytes

indicated a better prognosis of patients with high-grade serous

ovarian cancer (65). Here, we also found that the transition fates of

Trm-like cells were potentially related to patient prognosis. In

addition, it has been reported that in solid tumors, programmed

cell death protein 1 (PD-1) blocker treatment will induce Trm-like

cells to transform toward Teff cells and improve the clinical

outcome. As for immunoregulation, how to promote Trm-like

cell transformation toward Teff cells will be of clinical value. Our

study highlights the potential of Trm-like cells to increase our

understanding of the leukemia microenvironment, potentially

identifying new prognosis factors and guiding possible therapeutic

strategies in the future.

Cancer immunotherapy has become the most promising

treatment after surgery, radiotherapy, chemotherapy, and targeted

therapy. How to achieve the proliferation and maintenance of

tumor-specific CD103+ T cells may be critical to the clinical

application of tumor immunotherapy. Despite being described in

a number of solid tumor studies, the characteristics of Trm-like cells

in B-ALL patients are revealed in this study. As a specific

lymphocyte type in the leukemia microenvironment, the

percentage of Trm-like cells in B-ALL was lower than TILs in

solid tumor. However, considering the ease of sample acquisition,

Trm-like cell responses in the peripheral blood may be an optimal

indicator of treatment reactivity and long-term survival, at least in

B-ALL. Further studies on the biological characteristics of Trm-like

cells and their regulation on leukemia or solid tumors are urgently

needed to explore novel immunotherapies.
Conclusions

In conclusion, to the best of our knowledge, we uncovered a

Trm-like cell subset with a high level of expression of cell

proliferation- and exhaustion-related genes and with different

expression profiles of T-cell migration-related genes in

peripheral blood of B-ALL patients. Importantly, these Trm-

like cells might have two opposite roles for the clinical outcome

of B-ALL: transitioning into Teff cells leading to a favorable

prognosis or into Tex cells resulting in a poor prognosis for B-

ALL patients. Overall, these results provided unique insights on

alterations of leukemia-related T cells and showed a possible
Frontiers in Immunology 12
immunotherapy direction and prognosis assessment model for

B-ALL patients.
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SUPPLEMENTARY FIGURE 1

Characterization of peripheral immune cells from healthy individuals. (A).
UMAP visualization of PBMC single cell clusters from healthy individuals.
Different clusters are depicted with distinct colors. The T cell cluster was

further analyzed and compared to T cells from B-ALL patients. (B). Dot
plot of marker genes for each cell cluster in A. Color-scale indicates the
mean of normalized expression of marker genes in each cell type, and dot

size is proportional to the percentage of cells within each cell cluster
expressing the marker genes. (C). Expression heatmap of top 6 marker

genes for each cell cluster. Maker genes for each cell type were ranked by
expression fold-change between the corresponding cell type and the

other cell types. Color-scale indicates the mean of normalized expression
of genes in each cell type. (D). Harmony and PCA visualization of T cells

from B-ALL (top), healthy individuals (middle) and all combined (bottom).

Different samples in each plot are depicted with distinct colors. (E). UMAP
visualization of T cell single cell clusters from B-ALL patients and healthy

individuals when clustering was performed on all T cells from B-ALL
patients and healthy individuals combined. T, T cell; B, B cell; NK, natural

killer cell; Mono, monocyte; Ery, erythrocyte; DC, dendritic cell.

SUPPLEMENTARY FIGURE 2

Auxiliary annotation and marker genes expression of T cells. (A).
Characterization of the T cell clusters using independent reference

gene signatures of ‘MonacoImmuneData’ dataset. Heatmap shows
cross-labelling of T cell clusters of B-ALL patients defined in the present

study (columns, reported as in ) versus reference gene signatures (rows)
derived from the analyses in ‘MonacoImmuneData’ dataset, with color

indicating log-transformed frequency. (B). Same as A, but for healthy
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individuals. (C). Projection of selected marker genes expression level on T
cells from B-ALL patients. (D). Same as C, but for healthy individuals. (E).
Expression heatmap of top 5 marker genes for each cell cluster from B-
ALL and healthy. ITGAE is also included. Maker genes for each cell type

were ranked by expression fold-change between the corresponding cell
type and the other cell types. Color-scale indicates the mean of

normalized expression of genes in each cell type. (F). Boxplot
comparison of proportion of exhausted T cells in the peripheral blood

and among TILs in different solid tumor patients.

SUPPLEMENTARY FIGURE 3

Gating schemes used for the detection of CD103+ T cells. (A). The gating

strategies for CD103+CD3+, Ki-67+CD103+CD3+ and PD-1+CD103
+CD3+ cells. (B). The proportion of CD103+CD3+ T cells of B-ALL

patients (n = 3) and healthy individuals (n = 3). Wilcoxon Rank Sum test
(one-sided). (C). The frequency of Ki-67+ (left) and PD-1+ (right)

populations in CD103+CD3+ subset of B-ALL patients (n = 3) and
healthy individuals (n = 3). Wilcoxon Rank Sum test (one-sided). BM,

bone marrow; PB, peripheral blood.

SUPPLEMENTARY FIGURE 4

Pan-cancer leukocyte analysis by scRNA-seq. (A). UMAP visualization of T
and NK cell single cell clusters from pan-cancer. Different cell clusters are

depicted with distinct colors. (B). Dot plot of marker genes for each cell

cluster. Color-scale indicates the mean of normalized expression of
marker genes in each cluster, and dot size is proportional to the

percentage of cells within each cell cluster expressing the marker
genes. (C). The ratio of cluster 19 (C19) to total T cells in different sites

of multiple type of solid tumor patient. Kruskal-Wallis test. *P < 0.05;
**P < 0.01; ***P < 0.001; NS not significant. BRC, breast cancer; CRC,

colorectal cancer; HCC, hepatocellular carcinoma; NPC, nasopharyngeal

carcinoma; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal
adenocarcinoma; RCC, renal cell carcinoma; mRCC, metastatic RCC; Adj

tissue, tissue adjacent to the tumor; Norm tissue, normal tissue.
SUPPLEMENTARY FIGURE 5

Ratio of cell type and exhaustion score of exhausted T cells in each state

branch. (A). Ratio of cell type in each state branch for CD4+ T cell subsets.

(B). Same as A, but for CD8+ T cell subsets. (C). Exhaustion score of
exhausted T cells in each state branch for CD4+ T cell subsets. (D). Same

as C, but for CD8+ T cell subsets. (E). DDR tree visualization of selected
subtypes of T cells trajectory from healthy with cell type (top) and

pseudotime (bottom) information mapping, respectively. (F). Left:
expression heatmap of top 100 genes that had most significantly

correlated (or anti-correlated) expression profile to the CD4+ T cell fate
pseudotime in . The correlation significances (Q values) were calculated

by branched expression analysis modeling (BEAM). Right: enriched GO

biological process terms for genes that were specifically expressed in CD4
+ T cells of each state. (G). Kaplan-Meier plots for the prognostic value of

event-free survival (EFS) and overall survival (OS) according to the
transcriptional signatures of each CD4+ T cell state in patients from

TARGET B-ALL dataset (n = 137). Patients were stratified into high and
low level based on the median of the transcriptional signatures for each

CD4+ T cell state. P value was determined by log-rank test. For boxplots,

the outlines of the boxes represent the first and third quartiles. The line
inside each box represents the median, and boundaries of the whiskers

are found within the 1.5×IQR value. *P < 0.05; **P < 0.01; ***P < 0.001; NS
not significant. Chi-square test (two-sided) for A and B, Wilcoxon Rank

Sum test (two-sided) for C and D.
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