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Hepatocellular carcinoma (HCC), accounting for ~90% of all primary

liver cancer, is a prevalent malignancy worldwide. The intratumor

heterogeneity of its causative etiology, histology, molecular landscape, and

immune phenotype makes it difficult to precisely recognize individuals with

high mortality risk or tumor-intrinsic treatment resistance, especially

immunotherapy. Herein, we comprehensively evaluated the activities of

cancer hallmark gene sets and their correlations with the prognosis of HCC

patients using gene set variation analysis (GSVA) and identified two HCC

subtypes with distinct prognostic outcomes. Based on these subtypes, seven

immune-related genes (TMPRSS6, SPP1, S100A9, EPO, BIRC5, PLXNA1, and

CDK4) were used to construct a novel prognostic gene signature [hallmark-

guided subtypes-based immunologic signature (HGSIS)] via multiple statistical

approaches. The HGSIS-integrated nomogram suggested an enhanced

predictive performance. Interestingly, oncogenic hallmark pathways were

significantly enriched in the high-risk group and positively associated with

the risk score. Distinct mutational landscapes and immune profiles were

observed between different risk groups. Moreover, immunophenoscore (IPS)

and tumor immune dysfunction and exclusion (TIDE) analysis showed different

sensitivities of HGSIS risk groups for immune therapy efficacy, and the

pRRophetic algorithm indicated distinguishable responses for targeted/

chemotherapies in different groups. KIF2C was picked out as the key

target concerning HGSIS, and the top 10 small molecules were predicted to

bind to the active site of KIF2C via molecular docking, which might be

further used for candidate drug discovery of HCC. Taken together, our study
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offers novel insights for clinically significant subtype recognition, and the

proposed signature may be a helpful guide for clinicians to improve the

treatment regimens.
KEYWORDS

hepatocellular carcinoma, hallmark gene sets and molecule subtypes, immunotherapy
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Introduction

Liver cancer is the fourth leading cause of cancer-related

death and hepatocellular carcinoma (HCC) is the most prevalent

type of liver cancer (1). The infection of hepatitis B virus (HBV)

and hepatitis C virus (HCV) is the main etiological risk factors

for HCC, although non-alcoholic steatohepatitis (NASH)

associated with metabolic syndrome or diabetes mellitus is the

fastest-growing cause of HCC, especially in the West (2). HCC is

a highly heterogeneous disease, which arises in a background of

long-time chronic liver diseases in most cases (3). HCC

heterogeneity is constituted by multiple features including

genomic instability, molecular and signal transduction network

disorders, and microenvironment discrepancies, contributing to

the main reason for the ineffectiveness of traditional treatment

(4–6). Likewise, the intralesional, interlesional, and intertumoral

heterogeneity of HCC is challenging the prognostic prediction

and personalized therapy development for HCC patients (7).

Thus, identification of HCC subtypes with clinical significance

and novel prognostic biomarkers or signatures are urgently

needed for improved risk stratification and personalized

treatment in HCC patients.

Exploring molecular alterations and signaling pathways

related to cancer hallmarks is critical for classifying HCC

subtypes to devise personalized treatments. While traditional

experimental approaches that focus on one signaling pathway or

a molecule could provide insight into the understanding of

cancer initiation or progression, they are not suitable to

develop a valid standard of HCC classification for further risk

assessment. Meanwhile, gene set-based approaches have

attracted considerable attention for HCC risk stratification

recently; for example, ferroptosis-related genes, hypoxia-

related genes, and lipid metabolism-related genes have been

investigated to develop prognostic gene signatures in HCC

(8–10). However, systematic exploration of cancer hallmark-

related multiple gene sets to define HCC subtypes with appealing

implications for the prediction of prognosis, treatment

responses, and candidate drugs is still limited.

Recent studies have found that the tumor immune

microenvironment (TIME) has a significant impact on the
02
occurrence and development of tumors (11, 12). In HCC,

cancer immunotherapy is developing rapidly since

encouraging clinical outcomes have been obtained with

monoclonal antibodies (mAbs), which target immune

checkpoints to reverse the inactivation of T cells to eliminate

tumor cells. Hopefully, for patients with advanced HCC,

nivolumab, the PD1 inhibitor, was approved in the United

States (13). Tremelimumab, an anti-CTLA4 immune

checkpoint inhibitor (ICI), made exciting progress in a clinical

trial (14). The combination of the anti-PD1 antibody

atezol izumab and the VEGF-neutral iz ing antibody

bevacizumab is exceedingly promising as a first-line drug for

the treatment of HCC (15). However, immune cells constitute

the trickiest component of the tumor microenvironment (TME)

in HCC, of which the heterogeneity poses a significant challenge

for the classification of HCC, leading to the uncertainty of

prognosis (16).

Gene set variation analysis (GSVA) is a state-of-the-art

framework to generate sample-level pathway scores in an

unsupervised manner from gene expression profiles, which

represents the starting point to develop pathway-centric

models of biology and provides increased power than other

sample-wise enrichment approaches to evaluate the variation of

pathway activity. Compared with the popular gene set

enrichment analysis (GSEA) method, GSVA is a more

convenient algorithm without having to pre-define the classes

of a given sample population, and it provides greater biological

interpretability (17). In the present study, the GSVA scores of 50

hallmark gene sets from the molecular signature database

(MSigdb) (18, 19) were computed using the TCGA-LIHC

dataset, and robust prognostic hallmark gene sets were

comprehensively screened and used to generate two HCC

subtypes with divergent survival outcomes. Based on the two

subtypes, a seven-gene immunologic signature that was named

HGSIS for predicting the prognosis of HCC was established and

validated with multiple statistical approaches. Distinct TIME

profiles and mutational landscapes regarding HGSIS were

characterized, and the significant association between HGSIS

and immunotherapy efficacy was unraveled. Notably, we

predicted candidate drugs that might bind to the crucial target
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of HGSIS with molecular docking. The flowchart of the study is

shown in Figure 1.
Materials and methods

Patient information and
data collection

Gene expression data of HCC patients were downloaded

from The Cancer Genome Atlas (TCGA) and International

Cancer Genome Consortium (ICGC) databases. Those patients

with incomplete overall survival (OS) information and with an

OS time of <30 days were excluded as reported before (20, 21).

The clinicopathological features and other types of survival

outcomes including progression-free survival (PFS), disease-

free survival (DFS), and disease-specific survival (DSS) were

also collected. The transcriptomic stemness index mRNAsi

evaluating the degree of cancer stemness for each of all the

HCC patients from the TCGA dataset was computed with the

OCLR-based algorithm (22). Consequently, 336 samples from

TCGA (the whole TCGA cohort) and 238 samples from the

ICGC (ICGC-LIHC-JP) were included in the study. The whole

TCGA cohort was randomly divided into the training dataset

(n = 222) and validation dataset (n = 114) with an approximate

ratio of 2:1. Moreover, the whole TCGA cohort and the ICGC-

LIHC-JP cohort further served as the internal and external

va l ida t ion se t s . The pa t i en t popu la t i on and the

clinicopathological characteristics are summarized in

Supplementary Table 1. The normalized RNA sequencing

profiles were retrieved and preprocessed as previously

reported (20, 23, 24). For the analysis of somatic mutation

information, we gathered the available mutation annotation
Frontiers in Immunology 03
format (MAF) file from the TCGA data portal (http://tcga-

data.nci.nih.gov/tcga/) using the “maftools” package (25).

Additionally, 1,118 unique immune-related genes (IRGs)

were achieved from the Immunology Database and Analysis

Portal (ImmPort) database (https://www.immport.org/

home) (26).
Gene set variation analysis and
consensus clustering

The relative enrichment scores of the 50 cancer hallmark

gene sets from Msidb (h.all.v7.1.symbols) (19) for the whole

TCGA cohort, which were used to estimate the activities of these

cancer hallmark pathways, were computed by the GSVA

algorithm using the “GSVA” package (17). Kaplan–Meier

analysis with log-rank test was utilized to examine the

associations between each gene set and the OS. To increase the

robustness of the prognostic gene sets, we adopted the “multi-

split” strategy with 100 randomized subsamples as we reported

before (24), and only those that repeatedly showed significance

in all 100 times were considered as prognostic gene sets

(Supplementary Figure 1). Based on the prognostic gene sets,

unsupervised clustering was applied for all the HCC patients

from TCGA with the “ConsensusClusterPlus” package (27) to

distinguish different molecular patterns with divergent OS

outcomes. This process was performed with 1,000 iterations by

sampling 80% of all the data for each iteration to ensure

clustering stability. The optimal clustering number was

comprehensively determined by the item-consensus plots, the

consensus heatmap, and the change in the area under the

cumulative distribution function (CDF) curves, which was

further confirmed by the proportion of ambiguous clustering
FIGURE 1

Flowchart of the current study.
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(PAC) algorithm (28, 29). Two hallmark-guided subtypes with

distinct OS outcomes were recognized and visualized with

principal component analysis (PCA) plots. Additionally,

Kaplan–Meier plots were depicted to evaluate the prognosis of

patients in different Hallmark-guided subtype groups.
Screening of the immune-related DEGs
(IRDEGs) between HCC subtypes

Differentially expressed genes (DEGs) between the two

hallmark-guided subtypes were screened by the “limma”

package with the criteria of adjusted p-values <0.01 and |

logFC| >1 (30, 31). A volcano plot was drawn to show these

DEGs using the “ggplot2” package (https://cran.r-project.org/

web/packages/ggplot2), followed by the identification of

IRDEGs with a Venn plot. The “pheatmap” package was

utilized to show the IRDEGs’ expression patterns between the

two HCC subtypes. As previously described, Gene Ontology

(GO) enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis for these IRDEGs were conducted

via the “clusterProfiler” package with an adjusted p < 0.05 (20,

23, 32).
Signature establishment
and evaluation

The aforementioned IRDEGs were next subjected to the

comprehensive feature selection, followed by the construction

of the HGSIS signature on the training set, whose effectiveness

and performance were evaluated on the training and validation

datasets. Specifically, Univariate Cox (UniCox) proportional

hazards regression analysis was used to pick out candidate

IRDEGs with prognostic significance according to the criteria

of p < 0.05. The least absolute shrinkage and selection operator

(LASSO) regression algorithm was then applied by the

“glmnet” package to find out the best subset of prognostic

genes (33). We chose the significant IRDEGs that repeatedly

appeared more than 50 times from 100 models to develop the

scoring system HGSIS: Risk score = S(coef (b)*EXPb), where b
stands for each selected IRDEG. All patients were classified

into the high- and low-risk groups using the median risk score

of the training set.

To assess the reliability of HGSIS, Kaplan–Meier curves were

depicted for the TCGA training set, the TCGA validation set, the

whole TCGA cohort, and the external validation set to compare

the OS of different risk groups via the “survival” package. Time-

dependent receiver operating characteristic (tROC) curves were

also drawn to evaluate the predictive performance of HGSIS. In

addition, we compared the area under the curve (AUC) values of

the 3-year and 5-year tROC curves between HGSIS and other
Frontiers in Immunology 04
published HCC signatures as well as popular biomarkers for

immunotherapy, i.e., a TP53-associated gene signature by Long

et al. (“Long signature”) (34) and two immune-related gene

signatures (“Dai signature” and “Wang signature”) (35, 36),

TMB, and PD1.
Correlation of HGSIS with
clinicopathological features

The relationship between HGSIS and clinicopathological

parameters was examined using nonparametric tests and

visualized by the “ggplot2” package. The correlation between

HGSIS and mRNAsi was measured using the Pearson

correlation test via the “ggstatsplot” package. Stratified survival

analysis was carried out for selected clinicopathological factors

such as age, gender, and BMI to further validate the additional

prognostic value of the HGSIS model. Then, univariate and

multivariate regression analyses were conducted to verify the

independent prognostic value of HGSIS in HCC. Based on the

univariate analysis, an HGSIS-integrated nomogram was created

by the “rms” package to quantitatively predict the OS

probability, whose predictive accuracy was evaluated by

calibration plots. The concordance index was further used to

assess its performance. Moreover, decision curve analysis (DCA)

was used to explore the potential clinical benefit of HGSIS as

described (20). Additionally, Kaplan–Meier analysis with a log-

rank test was applied to the output of the nomogram-based

classifier for the whole TCGA cohort to further compare the

differences in OS, DFS, PFS, and DSS between different

risk classes.
Genomic alterations and hallmark
pathway analysis

Genomic mutations have been reported to be relevant to

immunity and immunotherapy (20, 37–39); thus, we explored

the somatic mutation analysis for the HGSIS high- and low-risk

groups. The “maftools” R package was used to depict the waterfall

plots showing the mutation landscapes of different risk groups of

the whole TCGA cohort. Mutation types and frequencies of the

most commonly mutated genes in each risk group were

manifested. TMB values were computed with non-synonymous

mutations as described previously to reveal the total mutation

numbers of HCC patients (40, 41). Meanwhile, a linear model was

employed to compare the GSVA scores of the 50 cancer hallmark

gene sets between HGSIS risk groups to uncover the relative

activities of these pathways in terms of HGSIS (42). Those with

an adjusted p-value of < 0.01 were defined as significant gene sets

and Kaplan–Meier analysis was then used to verify the prognostic

value of typical oncogenic hallmark pathways.
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TIME patterns and immunological targets
of HGSIS

For the estimation of TIME patterns regarding HGSIS,

ssGSEA, a deconvolution algorithm implemented in the GSVA

package (17, 43), was utilized to quantify the compositions of 30

types of TME cells, namely, 28 adaptive and innate immune cell

types (44) and 2 stromal components (fibroblasts and

endothelial cells) (45) based on the transcriptional data of the

whole TCGA cohort. The ssGSEA scores representing the

abundance of these TIME cells were next compared between

different HGSIS risk groups, and the Spearman correlation

analysis was performed to investigate the relationship between

the HGSIS risk score and each TIME cell type. The prognostic

values of these TIME cells were examined by Kaplan–Meier

survival analysis. Furthermore, we contrasted the expression

levels of 50 immunological targets that were classified into

several groups such as receptors, ligands, and co-inhibitors

(20, 46–48) to determine the intrinsic immune escape

regarding HGSIS groups.
Prediction of therapeutic responses

Based on the HCC patients’ data from TCGA, we predicted

the putative sensitivities of HGSIS in immunotherapy and

targeted/chemotherapies. For immunotherapy responses, we

used the immunophenoscore (IPS) (44), which is calculated

via machine learning and could be derived from The Cancer

Immunome Atlas (TCIA) (https://tcia.at/home) to represent

tumor immunogenicity of HCC patients. Moreover, the tumor

immune dysfunction and exclusion (TIDE) score is a framework

that was developed to infer the possible influences on survival

and responses to immunotherapy. Two primary mechanisms

(T-cell exclusion and T-cell dysfunction) of tumor immune

evasion were integrated by the TIDE algorithm (http://tide.

dfci.harvard.edu/) (49) with gene expression profiles of large

cohorts to determine the clinical response to immunotherapy of

HCC patients. The differences of IPS and TIDE scores between

different groups were compared by the Wilcoxon test, and a

lower TIDE score and a higher IPS indicate better sensitivities to

immunotherapy. Furthermore, the half-maximal inhibitory

concentration (IC50) values of 138 drugs were estimated by the

“pRRophetic package” (50) and further normally transformed to

evaluate the predictive capacity of HGSIS for the responses to

targeted/chemotherapies.
PPI network construction and key target
identification

The limma package (31) was adopted to screen the DEGs

between the HGSIS high- and low-risk groups using the whole
Frontiers in Immunology 05
TCGA cohort, and an adjusted p-value <0.01 and |logFC| ≥1.5

was set as the cutoff. The DEGs were then uploaded to the

STRING database (version 11.5), an online database for the

investigation of interactive relationships among proteins, to

build a PPI network with a combined confidence score of

≥0.7. The STRING-based PPI network was next imported into

Cytoscape (51) (version 3.8.2) for visualization. Furthermore,

the MCODE plugin (52) was applied for cluster analysis and

seed nodes identification, which were considered the key targets.
Molecular docking

The process of molecular docking was completed with Glide

of Schrodinger as previously reported (20). Specifically, the

crystal structure of the key target of HGSIS was derived from

the RCSB PDB database (www.rcsb.org/), followed by the

recognition of its active site using the DeepSite tool (53) from

the PlayMolecule platform (https://www.playmolecule.com/).

The protein docking structure was prepared by the Protein

Preparation Wizard in the Maestro 11.6 version of the

Schrödinger suite. Additionally, 111,178 compounds’

structures involved in the in-man subset were downloaded

from the ZINC 15 database (https://zinc15.docking.org). The

virtual screening was conducted with the Glide Virtual Screening

Workflow module integrated in the Schrödinger suite, the three

main steps of which were applied to screen the candidates of

KIF2C active affinity ligands. The first step was the high-

throughput virtual screening (HTVS) mode starting with the

111,178 compounds, and subsequently, compounds with the top

10% of HTVS score were measured by the SP (Standard

Precision) docking method. The third step was XP (Extra

Precision) for the calculation of the top 10% SP docking score

ranked compounds. OPLS-2005 force field was used during

ligand–protein docking analysis to estimate the binding affinity.
Statistical analysis

The R package “survival” was utilized to pick out the

significant hallmark gene sets, IRDEGs, and clinicopathological

factors for OS, together with the hazard ratios (HRs) and 95%

confidence intervals (CIs). Kaplan–Meier analysis with a log-rank

test was used to analyze the differences between two subgroups of

categorical variables for the OS, DFS, PFS, and DSS of HCC

patients. The best cutoff for Kaplan–Meier survival analysis was

determined by using the “survminer” package. Multivariate

analysis was used to identify independent prognostic indicators.

The package “timeROC” was used to depict the tROC curves to

assess the predictive ability of HGSIS for OS. The comparison of

survival rates between different risk groups was completed using

the Pearson Chi-square test. Wilcoxon test was used to compare

the distribution of continuous data for three or more groups and
frontiersin.org

https://tcia.at/home
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
http://www.rcsb.org/
https://www.playmolecule.com/
https://zinc15.docking.org
https://doi.org/10.3389/fimmu.2022.958161
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2022.958161
Kruskal–Wallis test was used to determine the statistical difference

of that for two groups. Correlations between two quantitative

variables were explored by Pearson’s correlation test. All the above

statistical analyses were conducted by the R software (version

3.6.1). Unless otherwise noted, p < 0.05 was considered

statistically significant.
Results

Hallmark-guided
recognition of HCC subtypes with
prognostic significance

Hallmark gene sets from MSigDB are coherently expressed

signatures representing well-defined biological states or processes;

thus, it is reasonable to identify specific hallmark-based HCC

subtypes with distinct prognoses. Motivated by this rationale, we

obtained 336 HCC patients’ mRNA expression matrix with

corresponding clinical information from the TCGA database,

followed by the computation of the enrichment scores for all 50

hallmark gene sets of each sample by GSVA. Next, we screened the

robust hallmark gene sets significantly correlated to the prognosis

of HCC patients with the “multi-split” strategy (Supplementary

Figure 1). As a result, 15 hallmark gene sets were consistently

significant 100 times in 100 subsamples, which were considered as

prognostic hallmark gene sets. Based on the 15 hallmark gene sets,

we performed the unsupervised clustering analysis for subtype

classification. Our results showed that the optimal number of

clusters was 2, which generated the greatest increase in the area

under the CDF curves, and it was further validated by the PAC

algorithm (Figures 2A–C and Supplementary Figure 2). Thus, we

further classified all HCC patients into two distinct subtypes

(Figures 2D, E). Notably, Kaplan–Meier analysis found that the

patients in subtype 2 had a shorter survival time than the patients

in subtype 1 (Figures 2F–I).
Construction of HGSIS

The significant difference in OS outcomes between the two

subtypes prompted us to pick out the DEGs between them.

Using the package “limma”, we detected 881 DEGs between

subtype 1 and subtype 2, which intersected with 1,811 immune-

related genes from the ImmPort database, and 67 overlapping

immune-related DEGs (IRDEGs) were identified (Figures 3A, B

and Supplementary Table 2). The expression heatmap of

IRDEGs in the two subtypes is shown in Figure 3C. GO

enrichment analysis revealed that the most significant terms

enriched by these IRDEGs were the biological process (BP) of

antimicrobial humoral response, cellular component (CC) of

collagen-containing extracellular matrix, and molecular function
Frontiers in Immunology 06
(MF) of receptor-ligand activity and signaling receptor activator

activity (Figure 3D). For the KEGG analysis, IRDEGs mostly

participated in the pathway of cytokine–cytokine receptor

interaction (Figure 3E). Subsequently, we inputted the IRDEGs

into UniCox regression analysis and found 28 significant

prognostic IRDEGs with a p-value lower than 0.05

(Supplementary Table 3). Next, we conducted LASSO Cox

regression with the 28 genes and acquired seven robust genes

(TMPRSS6, SPP1, S100A9, EPO, BIRC5, PLXNA1, and CDK4)

that were significantly correlated with the OS of HCC patients,

and the selection of the tuning parameter in the LASSO model is

shown in Figure 3F. The seven genes were subsequently

incorporated into an HGSIS model for predicting the

prognosis of HCC. Figures 3G, H showed the UniCox and

MultiCox results of the selected seven genes with the

corresponding hazard ratio (HR) and statistical significance.
Evaluation and validation of HGSIS

Based on the median risk score of HGSIS, HCC patients

from different datasets were classified as high- or low-risk

groups (Figure 4A). According to the corresponding

prognostic data, the high-risk groups of the TCGA training

set, TCGA validation set, whole TCGA cohort, and ICGC-

LIRI-JP cohort all had higher mortality (Figure 4B). Kaplan–

Meier analysis showed that high-risk patients had exceedingly

lower OS rates relative to low-risk patients in different datasets

(Figure 4C). Additionally, the time-dependent receiver

operating characteristic (tROC) curve analysis was applied to

evaluate the accuracy of the HGSIS model. As shown in

Figure 4D, the area under the ROC curve (AUC) was 0.797,

0.710, and 0.721 in 1-year, 3-year, and 5-year survival,

respectively, for the TCGA training set. Interestingly, the

AUC values for all the three validation datasets were even

higher than the training set, suggesting that HGSIS had

excellent performance in predicting the OS of HCC. In

comparison with other published immune-related signatures

and widely used biomarkers of cancer immunotherapy, HGSIS

achieved higher predictive accuracy (Figure 4E). Moreover, to

explore the potential relationship between HGSIS and multiple

clinicopathological traits, correlation analysis was conducted

and it revealed that HCC subtype, tumor grade, stage, and

mRNAsi were significantly correlated with HGSIS (Figure 4F

and Supplementary Figure 3). Stratification analysis for

clinicopathological traits demonstrated the extra predictive

value of HGSIS (Supplementary Figure 4). Additionally, we

examined the potential of HGSIS in predicting the DFS, PFS,

and DSS of HCC patients, and it revealed similar results to that

of OS analysis (Supplementary Figure 5). Taken together, all

these data presented above convincingly indicated the strong

prognostic-prediction capability of HGSIS.
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Establishment of the
HGSIS-integrated nomogram

Accurate and individualized prediction of the postoperative

mortality risk of HCC patients has been a tough challenge in

clinical decision-making. In this case, we considered
Frontiers in Immunology 07
constructing a novel nomogram combining HGSIS and

multiple clinicopathological traits to provide an accurate and

quantitative prognosis-predictive tool for HCC patients.

Univariate and multivariate Cox analyses on HCC prognosis

with HGSIS and clinicopathological factors were at first carried

out using the whole TCGA cohort. As shown in Figure 5A, the
B C

D E

F

G H I

A

FIGURE 2

Identification of hallmark-based HCC subtypes. (A) The corresponding relative change in area under the cumulative distribution function
(C, D, F) curves and the optimal number of cluster(k) was 2. (B) Consensus clustering CDF for k = 2 to 9. (C) Heatmap of sample clustering at
consensus k = 2. (D) Heatmap showing the GSVA score of 15 hallmark gene sets, tumor burden, stage, grade BMI, race, gender, and age in two
subtypes of HCC. (E) PCA plot visualizing the two HCC subtypes with 15 hallmark gene sets. (F–I) Kaplan–Meier survival plots of subtype 1 and
subtype 2 for OS, DFS, PFS, and DSS. OS, overall survival. DFS, disease-free survival. PFS, progression-free survival. DSS, disease-specific survival.
PCA, principal component analysis. GSVA, Gene set variation analysis.
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HGSIS risk model, stage, and tumor burden were significantly

high-risk factors for HCC in both univariate and multivariate

Cox analysis, indicating that HGSIS was an independent

prognostic indicator [HR (95% CI) = 2.478 (1.619−3.793), p <

0.001]. By integrating the three parameters, we constructed a

prognostic nomogram to predict the 1-, 3-, and 5-year survival

in HCC patients (Figure 5B). Calibration curves of the

nomogram for the predicted and observed 3- and 5-year OS
Frontiers in Immunology 08
are shown in Figure 5C, suggesting the good consistency of the

nomogram. Meanwhile, comparing with stage, tumor burden,

and the combination of both, the HGSIS-integrated nomogram

had the highest C-index, representing its best predictive

accuracy (Figure 5D). In 3- and 5-year OS prediction for HCC

patients, the nomogram showed the highest net benefit over

most of the risk thresholds (Figures 5E, F). Furthermore, we

divided HCC patients into high- and low-risk groups based on
B C
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A

FIGURE 3

DEG analysis in the two HCC subtypes and the construction of HGSIS. (A) Volcano plot of 881 DEGs between the two HCC subtypes. (B)
Venn plot showing 67 immune-related DEGs. (C) Heatmap of the IRDEGs in the two subtypes. (D, E) GO and KEGG enrichment analysis for
the 67 IRDEGs. (F) Selection of the tuning parameter (lambda) in the LASSO model by 10-fold cross-validation. (G, H) Hazard ratio with 95%
CI of the seven genes in the HGSIS signature computed by UniCox and MultiCox, respectively. HCC, hepatocellular carcinoma. GO, gene
oncology; KEGG, Kyoto Encyclopedia of Genes and Genomes. HGSIS, hallmark-guided subtypes-based immunologic signature. IRDEGs,
immune-related DEGs.
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the median score of the HGSIS-integrated nomogram, and

remarkably elevated OS, DFS, PFS, and DSS rates were

observed in the low-risk group (Figure 5G). All these findings

indicate that the HGSIS-integrated nomogram can serve as a

powerful and valuable tool for individualized OS survival

prediction in HCC patients.
Frontiers in Immunology 09
Genomic characteristics and regulatory
mechanisms of the
HGSIS-defined subgroups in HCC

We further analyzed the underlying molecular mechanisms

of HGSIS on the landscape of somatic mutation and hallmark
B
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A

F

FIGURE 4

Prognostic value of HGSIS for OS in HCC patients. (A) Risk score distribution, survival status, and the expression of seven HGSIS signature genes
for patients in the low- and high-risk groups from four datasets (TCGA training set, TCGA validation set, whole TCGA cohort, and ICGC-LIRI-JP
cohort). (B) Risk score and mortality rates of patients in the low- and high-risk groups from four datasets. (C) Kaplan–Meier survival plots of the
low- and high-risk groups from four datasets for OS. (D) tROC curves of HGSIS in the four datasets. (E) The comparison of AUC values for the
3-year and 5-year survival between HGSIS and other published signatures or common immunotherapeutic biomarkers. (F) Correlation analysis
between HGSIS and multiple clinicopathological traits. **** means p < 0.0001.
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pathway enrichment. We firstly examined the 20 genes with the

highest mutation frequency in the low- and high-risk groups and

the oncoplots showed that the most mutated genes were TP53

(43%) and CTNNB1 (27%) in the two different risk groups,

respectively. Meanwhile, four genes (TP53, TTN, CTNNB1, and

MUC16) simultaneously had high mutation frequencies in both

two groups (Figures 6A, B). The summary of the mutation
Frontiers in Immunology 10
information is shown in Supplementary Figure 6. Fisher’s exact

test was applied to extract the distinct mutation status between

two groups and the forest plot showed that TP53 mutated more

frequently while HERC2 mutation occurred less in the high-risk

group significantly (Figure 6C). Moreover, considering that

TP53 was the most notable mutated gene, a lollipop chart was

established to reveal the detailed mutation sites of TP53, and
B C D
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G

A

FIGURE 5

Nomogram construction and assessment. (A) Univariate and multivariate Cox regression analyses of HGSIS and other clinicopathological traits
for OS in HCC patients. (B) Nomogram built by HGSIS, stage, and tumor burden to predict 1-,3- and 5-year OS in HCC patients. (C) Calibration
plot of the nomogram. (D) C-index values of the nomogram and clinicopathological traits. (E, F) Comparison of net benefits of each model for
3-year (E) and 5-year (F) OS. (G) Kaplan–Meier survival analysis of the integrated nomogram for OS, DFS, PFS, and DSS in HCC patients.
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FIGURE 6

Underlying molecular mechanisms of HGSIS. (A, B) Oncoprint analysis of the high-risk (A) and low-risk groups (B). (C) Forest plot showing genes
mutated differentially in patients of the low- and high-risk groups. (D) Lollipop plot of mutation sites of TP53. (E) Interaction effect of 25
mutated genes in the low- and high-risk groups. (F) Distinct hallmark pathways between the two HGSIS risk groups. (G) Correlation analysis
between 11 oncogenic hallmark pathways and HGSIS-based risk score, respectively. * means p < 0.05; *** means p < 0.001.
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more missense mutation was observed in the high-risk group

(Figure 6D). The co-occurrences and mutual exclusions of the

top 25 mutated genes in two risk groups were also shown in

Figure 6E. To unravel the underlying transcriptomic

mechanisms of HGSIS, we calculated the GSVA scores of 50

hallmark pathways in the low- and high-risk groups,

respectively, to identify the key hallmark pathways associated

with HGSIS, the integral landscape of which is shown in

Supplementary Figure 7. Of the 50 hallmark pathways, 28

were found to be of significant difference between two risk

groups, of which 17 hallmark pathways were upregulated

while 11 hallmark pathways were downregulated in the high-

risk group (Figure 6F). Notably, all the 11 oncogenic hallmark

pathways that were upregulated in the HGSIS high-risk group

were positively correlated to the HGSIS model-based risk score

significantly (Figure 6G), indicating the tight linkage between

HGSIS and those well-known oncogenic pathways.
HGSIS was associated
with the immune status in the HCC
tumor microenvironment

To further examine the potential clinical value of HGSIS,

we outlined the immune cells’ infiltration profile of the whole

TCGA cohort by ssGSEA, a reliable and popular algorithm

computing the relative proportion of 28 types of immune cells

and two types of stromal cells in TME. As Figure 7A shows, the

HGSIS risk group was significantly correlated with most

infiltrating immune cell types including activated CD4 T cell,

central memory CD8 T cell, regulatory T cell, effector memory

CD4 T cell, immature B cell, T follicular helper cell, type 2 T

helper cell, central memory CD4 T cell, macrophage, natural

killer T cell, eosinophil, mast cell, activated dendritic cell,

immature dendritic cell, MDSC, and plasmacytoid dendritic

cell. Moreover, we performed correlation analysis on HGSIS

risk score and TME cells, and as the result shows, 19 cell types

were isolated in association with HGSIS (Figure 7B).

Additionally, UniCox analysis found that nine types of TME

cells were significantly associated with the prognosis of HCC

(Supplementary Table 4). Combining the results of differential

analysis, correlation analysis, and survival analysis of the 30

TME cell types, we plotted the Venn diagram exhibiting the

four overlapping cell types (natural killer T cell, eosinophil,

endothelial cells, and immature dendritic cell) (Figure 7C).

Figure 7D exhibits the Kaplan–Meier curves indicating the

significant implications of the four cell types for the OS of HCC

patients. Meanwhile, with great anticipation, we found that the

expression of the vast majority of immune checkpoints in HCC

patients was significantly correlated with HGSIS, suggesting

that HGSIS had the potential to predict the immune

checkpoints’ expression level broadly in HCC (Figure 7E).
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Evaluation of HGSIS in predicting therapy
response potential

The significant correlation between HGSIS and multiple

immune checkpoints was of great interest to us, especially as

immune checkpoint therapy held promise for the clinical

treatment of cancer nowadays. We first explored the

relationship between HGSIS and immunophenoscore (IPS) in

HCC patients. IPS was well-known to be capable of predicting

immune checkpoint therapy response, based on the evaluation

of the pivotal immune-related gene expression. As shown in

Figure 8A, the IPS score was significantly elevated in the low-risk

group, representing higher sensitivity to immunotherapy.

Although the scores of IPS-CTLA4 and PD1/PD-L1/PD-L2

blocker, IPS-CTLA4 blocker, and IPS-PD1/PD-L1/PD-L2

blocker were not statistically associated with HGSIS, the low-

risk group tended to have increased scores than the high-risk

group. We further measured the TIDE scores in HCC patients of

the TCGA training set, the TCGA validation set, the whole

TCGA cohort, and the ICGC-LIRI-JP dataset, and the low-risk

groups all had significantly lower TIDE scores than the high-risk

groups, suggesting that the patients in the low-risk groups were

predicted to have better responses to immunotherapy

(Figure 8B). In addition, we used the “pRRophetic” algorithm

to estimate the IC50 values of 138 drugs for not only

immunotherapy but also chemotherapy and targeted therapy

for HCC patients (Figure 8C). Interestingly, we found that high-

risk patients might be sensitive to more drugs than low-risk

patients (Figure 8C and Supplementary Figure 8).
KIF2C is a key target of HGSIS

To identify the key targets relating to HGSIS, we utilized the

limma package to screen the DEGs between the high- and low-

risk groups of the whole TCGA cohort. Consequently, 85 genes

were significantly downregulated while another 85 genes were

upregulated in the high-risk group (Supplementary Table 5).With

the strict criterion of a combined score of >0.7, we constructed a

PPI network of 95 nodes and 212 edges (Supplementary Figure 9).

Furthermore, the MCODE app identified five clusters (default

parameters) of the network. As shown in Figure 9A, KIF2C, HP,

PKM, MMP9, and CYP2C8 were recognized as the “seed” nodes

of these clusters (red ovals represent “seed” nodes, and blue ovals

represent “clustered” nodes). Interestingly, four clusters were

highly connected by driver oncogenes of HCC or immunologic

genes such as CXCL8, UBE2C, and MMP9. Notably, we observed

the most conspicuous cluster that consisted of several hub genes of

HCC (CCNB1, CDC20, TOP2A, and UBE2C) (23, 24). Thus, the

“seed” node of this cluster, KIF2C, was considered as the key

target of HGSIS, and its crucial role in the discovery of putative

drugs is worth looking into.
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FIGURE 7

Overview of HGSIS-related immune infiltration. (A) Violin plot presenting the relative composition of multiple cell types in the low- and high-risk
groups. (B) Correlation analysis of immune infiltration and HGSIS risk score. (C) Venn diagram revealing the four intersected cell types among
differential analysis (yellow), correlation analysis (blue), and survival analysis (red). (D) Kaplan–Meier survival analysis of the four TME cell types.
(E) Expression levels of common immune checkpoints in two HGSIS risk groups. TME, tumor microenvironment. * means p < 0.05; ** means
p < 0.01; *** means p < 0.001; **** means p < 0.0001; ns, no significance.
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Candidate small
molecule prediction

Molecular docking is an effective computational method

that provides insights into molecular interactions between

candidate drugs and proteins. In the present study, we

further predicted possible small molecules that may bind to

the key target of HGSIS, KIF2C, via in silicomolecular docking.

As shown in Figure 9B, 24 small compounds were successfully

filtered out from a public library that contains a large number

of small molecules from the ZINC 15 database, which includes

10 commercially available molecules that were considered as

potential affinity ligands of KIF2C protein (Supplementary

Table 6). The 3D interaction diagrams of the 10 docking
Frontiers in Immunology 14
models showing the detailed binding energy are displayed in

Figure 9C and Supplementary Figure 10. The interaction

diagram of lactoyl-ph4 at the binding pocket of KIF2C

suggested the formation of hydrogen bonds with key residues

GLN-475, VAL-547, and ASP-550. Similarly, dihydrobiopterin

also relied on hydrogen bonds between the active site and

several amino acid residues to remain its high affinity

with KIF2C.
Discussions

Like most malignancies (54–57), the classification of

distinct subtypes of HCC has been widely recognized in
B

C

A

FIGURE 8

The potential role of HGSIS in predicting therapeutic sensitivity. (A) The correlation between HGSIS and IPS based on the whole TCGA cohort.
(B) Distribution of TIDE scores in the TCGA training set, TCGA validation set, whole TCGA cohort, and ICGC-LIRI-JP dataset. (C) Estimation of
138 drugs’ normalized IC50 values. **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.
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clinical practice (58–60). To date, with the increasing

knowledge of the HCC TME, the exploration of the intra-

tumoral immune ecosystem has been extensively involved in

the study of HCC heterogeneity (61–63). Therefore, the new

classification of biologically meaningful HCC subtypes gained

widespread interest from either researchers or pathologists,

contributing to the development of clinically useful biomarkers

or signatures to predict the prognosis of HCC more precisely

and individually.

In this study, we firstly employed GSVA to compute the

GSVA scores of 50 hallmark gene sets that represent predefined

specific gene signatures with biological significance. Robust

prognostic hallmark gene sets were comprehensively identified

and used to pick out distinct HCC subtypes via consensus

clustering. Based on the hallmark-guided subtypes, we

successfully developed and validated a prognostic gene
Frontiers in Immunology 15
signature of HCC, i.e., HGSIS. Multivariate analysis confirmed

that HGSIS was an independent factor for the prediction of HCC

patients’ OS survival, and the established nomogram showed

increased accuracy and great potential in clinical practice.

As an advanced computational method, GSVA is one of the

best and most up-to-date algorithms throwing light on the

discovery of subtle pathway activity changes in a given

population by condensing gene expression profiles into

pathways. Herein, we defined two distinct HCC subtypes with

15 prognostic hallmark gene sets, most of which were

metabolism-related and immune-related. For example,

glycolysis gene sets included genes encoding proteins involved

in glycolysis and gluconeogenesis, defined as biological processes

responsible for the regulation of proliferation, immune evasion,

invasion, metastasis, angiogenesis, and drug resistance in HCC

(64). The PI3K/AKT/mTOR pathway was linked to drug
B
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FIGURE 9

Key target identification and candidate small molecule prediction. (A) Five clusters identified by the MCODE app of Cytoscape 3.8.2. Red ovals
represent “seed” nodes and blue ovals represent “clustered” nodes. (B) The docking score (XP and SP score) of the top 24 small compounds that
bind to KIF2C with the lowest total energy score. (C) Structures and docking models of the top four small compounds (lactoyl-ph4,
dihydrobiopterin, 7-biopterin, and mizoribine) and the active site of KIF2C.
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resistance and the occurrence of HCC in a recent clinical study

(65). Based on the hallmark-guided subtypes of HCC, we

focused on the immune-related genes expressed differently

between two subtypes, and 67 IRDEGs were extracted from

881 DEGs. HGSIS construction was carried out with UniCox

and LASSO Cox analysis on 67 IRDEGs, leading to a seven-gene

prognostic signature (TMPRSS6, SPP1, S100A9, EPO, BIRC5,

PLXNA1, and CDK4). TMPRSS6 was reported to express much

lower in HCC cell lines when compared to normal liver samples,

which was consistent with our HGSIS model, presenting a

protective role of TMPRSS6 in HCC (66). Ma et al. found that

SPP1 expression was tightly linked to the TME reprogramming

and tumor progression in response to therapy by single-cell

transcriptomic analysis (67). S100A9, PLXNA1, and EPO were

also reported as candidates for HCC prognostic signatures,

implying their subtle effects on the disease progression of

HCC patients (68–70). Moreover, BIRC5 was also found to be

highly expressed in liver cancer (71). CDK4 was a well-

recognized oncogene, and it was encouraging that Palbociclib,

a CDK4 inhibitor, showed significant benefit in preclinical

models of HCC (72). In summary, HGSIS was a model that

fitted well with HCC. After being validated internally and

externally, HGSIS showed outstanding prediction accuracy for

HCC patients, and the HGSIS high-risk group obviously

presented a worse prognosis.

A growing number of prognostic gene classifiers have been

developed to evaluate the mortality risks of HCC patients,

most of which were based on limited gene sets or DEGs

between tumor and adjacent normal samples. For instance,

Liu et al. discovered a six-gene signature presenting a strong

ability for differentiating HCC tumors and normal tissues

(73). Li et al. constructed an lncRNA signature for

estimating OS of HCC patients (74). However, few previous

studies combined multi-gene sets to recognize HCC subtypes

with distinct survival outcomes, and here, we, for the first

t ime , adopted the hal lmark-guided subtype-based

identification of immunologic gene signatures to predict the

OS of HCC patients. Importantly, the comparison of AUC

values between HGSIS and other reported signatures or

immunotherapeutic targets demonstrated the reliability of

our novel strategy in building a prognostic classifier. Thus,

our study provided a novel perspective for the first time, that

hallmark-gene set-based cancer subtypes could make a firm

basis for clinical classifiers construction. Another strength of

the present study was the integrative and combined strategy

that included GSVA, unsupervised clustering, UniCox, and

LASSO-Cox, which was more effective and reliable than that

where only one or two algorithms were applied. Thirdly,

unlike most studies that did not assess the feasibility of

prognostic signatures for drug prediction, we employed PPI

construction, key genes identification, and molecular docking

to select the most probable small compounds from a large
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number of potential drugs, some of which had been reported

to have an anti-cancer effect in several cancers. Furthermore, it

cannot be denied that, at all levels from molecular alterations

to histopathologic diversity, more comprehensive research

would provide better references for understanding the

mechanisms of drug resistance or treatment inefficiencies in

HCC patients (75).

Tumor mutational burden (TMB) has been confirmed to be

related to the immunotherapy effectiveness and prognosis in

various malignancies; however, its underlying mechanism in

HCC remained unclear (76). Therefore, we used maftools to

evaluate the mutation status in HGSIS low- and high-risk

groups. TP53 showed the highest mutation frequency (43%) in

the high-risk group while CTNNB1 mutated most frequently in

the low-risk group. Consistent with previous reports, TP53 and

CTNNB1 are the most common genetic alterations in HCC (77,

78). Interestingly, by exome sequencing analysis, a remarkable

study found that alcohol-related HCC was significantly

associated with CTNNB1 mutation, and TP53 mutation

frequently occurred in HBV-related HCC (79). Logically, more

alcoholics might be classified into the low-risk group and more

patients infected with HBV might be related to the high-risk

group. Several well-recognized oncogenic signaling pathways

were transcriptionally activated in the high-risk group

including the most researched TP53 pathway, MYC pathway,

Wnt/b-Catenin pathway, PI3K/AKT/mTOR pathway, and

Notch pathway (64, 80–82). Thus, HGSIS was capable of

separating groups of different mutation statuses in HCC.

Given that tumor-infiltrating immune cells constituting the

major component of TME are associated with the prognosis and

immunotherapy efficacy of HCC (83), ssGSEA algorithm was

used to estimate the relative proportion of TME cell types in the

HGSIS low- and high-risk groups. The relative abundance of 17

TME cell types differed significantly between the two subgroups.

A large body of studies has illustrated that regulatory T cells

(Tregs) played an immunosuppressive role in TME and were

associated with a poor prognosis of HCC (84–86).

Unsurprisingly, our study found that more Tregs infiltrated in

TME of patients from the high-risk group. In the past decade,

immunotherapy, especially ICIs, has become a highlight

research direction for the treatment of broad-spectrum

malignancies. Moreover, as HCC usually arises in the context

of virus-related chronic inflammation, immunotherapy is likely

to be an ideal therapeutic option for HCC. In our study,

differential analysis revealed relatively higher levels of immune

checkpoint expression in the HGSIS high-risk group, indicating

that patients in the high-risk group were accompanied by a

worse anti-TIME. For the results of IPS and TIDE analysis, we

found that the low-risk group had higher IPS scores while having

a lower TIDE score, and higher IPS and lower TIDE

corresponded to a better prognosis. On the other hand, we

estimated the sensitivity of 138 drugs included in
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immunotherapy, chemotherapy, and targeted therapy and found

that the high-risk group was sensitive to more drugs. Taken

together, the HGSIS model could potentially serve as a reference

for individualized immunotherapy design.

To screen small molecules used as potential drugs to

reverse the high risk of HCC patients, we analyzed the DEGs

between the two HGSIS risk groups, which were utilized to

build an interactive PPI network. From the network, KIF2C

was identified to be the key node that connected to several hub

oncogenes of HCC. Notably, KIF2C has been revealed as a

prognostic biomarker in endometrial cancer and correlated

with the infiltration level of CD8+ T cells (87). In HCC, Wei

et al. disclosed that KIF2C is associated with a poor prognosis

of HCC and interacts with TBC1D7 to enhance the mTORC1

signal transduction (88). In the present study, using the

structure-based approach, we identified 10 purchasable small

compounds that may bind well to KIF2C from a large number

of small compounds. Among them, mizoribine is a novel and

effective immunosuppressant that inhibits the activity of HCV

RNA replication, and it is also a selective inhibitor of inosine-

5’-monophosphate dehydrogenase (IMPDH) that has been

clinically used throughout Asia. Importantly, mizoribine

exhibits far superior antitumor activity compared with

several FDA-approved IMPDH inhibitors, and mizoribine

treatment shows a more durable antitumor response than

the mTOR inhibitor rapamycin (89) . In addit ion,

mitoxantrone, a firmly established inhibitor of type II

topoisomerase and protein kinase C (PKC), is reported to

exert its anti-cancer effect in lymphomas, leukemias, and

breast, colorectal, and prostate cancers (90–97). Although

more preclinical investigations need to be completed to

validate their anti-cancer activities, the selected small

molecules hold great potential in the future application of

clinical treatment of HCC.

The study’s limitations should be noted. First, real-world

evidence from large clinical cohorts is required to test the utility

and significance of HGSIS for further clinical practice. Second,

more in vitro and in vivo experiments were needed to unveil the

molecular underpinnings in terms of HGSIS, as well as the

effectiveness of the putative drugs for treating HCC.
Conclusion

In conclusion, two hallmark-guided subtypes of HCC were

extensively identified. Based on the HCC subtypes, an

immunological prognostic signature, HGSIS, was developed

and validated, which was associated with tumor immune

phenotypes, distinct genomic landscapes, and therapeutic

responses. Combining HGSIS, PPI network construction, and

structure-based in silico docking, we also predicted candidate

small drugs that may bind to the key target of HGSIS, which act
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as potential drugs for HCC. Therefore, our study provides a

novel perspective to recognizing cancer subtypes with clinical

implications, which serves as an entry point for the construction

of better risk classifiers to design personalized treatment to

prolong patients’ survival.
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