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Maladies Parasitaires, Inserm, UMR_906, Marseille, France, 4Division of Clinical Immunology and Allergy,
University of São Paulo, School of Medicine, São Paulo, Brazil, 5Instituto Nacional de Ciência e Tecnologia,
INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil, 6Myocardiopathies and Aortic
Diseases Unit, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São
Paulo, Brazil, 7RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências
Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 8Division of
Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine,
São Paulo, Brazil, 9Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo,
School of Medicine, São Paulo, Brazil, 10Heart Institute (InCor), School of Medicine, University of São Paulo,
São Paulo, São Paulo, Brazil, 11Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro
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Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic

parasitic disease of Latin America, affecting 7 million people. Although most

patients are asymptomatic, 30% develop complications, including the often-

fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have

demonstrated some genetic deregulations associated with CCCs, the causes of

their deregulations remain poorly described. Based on bulk RNA-seq and

whole genome DNA methylation data, we investigated the genetic and

epigenetic deregulations present in the moderate and severe stages of CCC.

Analysis of heart tissue gene expression profile allowed us to identify 1407

differentially expressed transcripts (DEGs) specific from CCC patients. A tissue

DNA methylation analysis done on the same tissue has permitted the

identification of 92 regulatory Differentially Methylated Regions (DMR)

localized in the promoter of DEGs. An in-depth study of the transcription

factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS’s

DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and

EBF1 are the transcription factors whose binding motif appears to be affected

by DNA methylation in the largest number of genes. By combining both

transcriptomic and methylomic analysis on heart tissue, and methylomic

analysis on blood, 4 biological processes affected by severe CCC have been

identified, including immune response, ion transport, cardiacmuscle processes

and nervous system. An additional study on blood methylation of moderate

CCC samples put forward the importance of ion transport and nervous system

in the development of the disease.
KEYWORDS

dilated cardiomyopathy, Chagas disease, epigenetic, methylation, Th1 response,
transcription factors
Introduction

Chagas disease is a neglected disease caused by the

protozoan Trypanosoma cruzi. This parasite is endemic in 21

Latin America countries, where it affects around 7 million people

through an insect vector, Reduviidae. With migratory flows, this

disease can now be found in non-endemic countries (1). The

clinical course of the disease comprises an acute phase, mostly

asymptomatic, and a chronic phase, where 60% of the patients

remain asymptomatic. However, 40% develop symptomatic

disease, being 10% megaesophagus/megacolon, and 30%

Chagas disease cardiomyopathy (CCC) with varying degrees of

severity including refractory heart failure (1). This

cardiomyopathy is the main cause of deaths from Chagas

disease itself and is one of the most lethal cardiomyopathies

(2). Some drugs are effective on T. cruzi only during the acute

phase, but several side effects have been reported (3). The fact

that the biological processes leading to CCC are not yet well

understood has impaired the development of efficient

therapeutic strategies.
02
The CCC myocardium displays a diffuse myocarditis with

signs of inflammatory infiltrate and heart fiber damage,

including significant fibrosis. The inflammatory infiltrate of

CCC heart lesions is mainly composed of T cells displaying a

Th1-like cytokine profile (4). This exacerbated Th1 response is

characterized by a high expression of interferon-gamma (IFN-g),
tumor necrosis alpha (TNF-a) and TBX21 (T-bet) (5).

Moreover, our group has previously demonstrated that CCC

myocardium presents a unique gene expression profile, distinct

from the other dilated cardiomyopathies (5, 6).

Many studies have highlighted the importance of DNA

methylation in the regulation of gene expression in dilated

cardiomyopathy (7), in particular by the methylation/

demethylation of transcription factor binding site (TFBS)

located in genes regulatory regions (8). Development of severe

CCC is also dependent of epigenetic regulations such as DNA

methylation (9), but also involving miRNAs (6, 10) and

lncRNAs (11). To get a more complete picture of the

epigenomic landscape of CCC myocardium, we performed

gene expression analysis (RNA-seq) complemented with a
frontiersin.org
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methylation analysis (MethylationEPIC), covering 96% of gene

loci, including lncRNA.
Methods

Ethical considerations

The protocol was approved by the institutional review

boards of the University of São Paulo School of Medicine and

INSERM (French National Institute of Health and Medical

Research). Written informed consent was obtained from all

patients. All experimental methods comply with the

Helsinki Declaration.
Patients and myocardial tissue collection

Human left ventricular free wall heart tissue samples were

obtained from patients with end-stage heart failure CCC at the

time of heart transplantation (n=8). CCC patients underwent a

serological diagnosis of T. cruzi infection and standard

electrocardiography and echocardiography (12). Biopsies from

controls (n=6) were obtained from healthy hearts of organ

donors having no suitable recipient, and biopsies for dilated

cardiomyopathy (DCM) from end-stage patients (n=8)

(Supplementary Table 1).
RNA extraction and sequencing

Total RNAs were extracted from heart tissue samples as

previously described (9). Ribosomal RNAs were depleted,

and samples were prepared for sequencing according to the

Illumina TruSeq RNA Preparation Kit and subjected to

pairwise sequencing (2x150bp) with an Illumina HiSeq

sequencer. This strategy allows to have information

on only the most abundant non-coding RNAs. The RNA-

seq data are available under the reference : (GEO

accession: GSE191081).
Quality control and alignment

Raw data quality was verified with FastQC (v0.11.5)

and reads were filtered removing the adaptors and low-

quality based using Trimmomatic (v0.39). Reads were

aligned in paired-end mode on GRCh37 (hg19) human

reference genome using STAR (v2.5.4b) , and gene

quantification was done with featureCounts (v2.0.0). All

bioinformatic analyses are available at https://github.com/

pbrochet/epiChagas.
Frontiers in Immunology 03
Differential expression analysis

Statistical analyses were performed using R (3.6.2). The

DESeq2 package (v1.26.0) was used for data normalization and

differential gene expression analyses (13), using shrinkage

function to correct log2 fold change (log2(FC)). Benjamini-

Hochberg method was applied to obtain False Discovery Rate

(FDR) for each analysis. Genes with an FDR ≤ 0.05 and an

absolute log2(FC) greater than 1.5 were considered as

differentially expressed (DEG).
Functional enrichment

Gene Ontology Biological Process annotations enrichment was

performed using ClueGO cytoscape plugin and KEGG pathway

analysis was done with and GAGE (v2.36.0) (14) and pathview R

package (v1.26.0). ncRNAs enrichment was realized with three

databases: LncRNA2Target, LncTarD and LncRNADisease.
Evaluation of cell types in heart tissue

RNAseq deconvolution was performed using ADAPTS R

package. Using data coming from heart tissue microarray and

PBMC single-cell RNA-seq datasets, signature matrices were

generated with ADAPTS. A Wilcoxon test (FDR<0.05) was

applied between healthy control and CCC.
Tissue DNA methylation analysis

DNAs, extracted from whole tissue, were bisulfite converted

and amplified with elongation of primers. Amplified DNAs were

fragmented and hybridized in EPIC beads according to the

protocol described by the manufacturer (Illumina, San Diego,

California). Analysis of DNA methylation data was performed

with the ChAMP package, using BMIQ for normalization and

ComBat for batch-effect correction. Only genomic positions

with an FDR<0.05 and a |Db|>0.2 were selected. A DMP

(Differentially Methylated Position) is associated with a gene

when the DMP is inside the gene body or in its promoter region

(from gene TSS to 1.5kb upstream). The methylation data are

available under the reference : (GEO accession: GSE191082).
Transcription factor binding site
characterization

An analysis of differentially methylated regions (DMR) was

done with the ChAMP package, using the DMRCate method,

with parameters lambda=400 and C=2. A DMR of interest was
frontiersin.org
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defined as a region containing at least 1 DMP located in TSS

([TSS - 1500bp; TSS]), 1st Exon or 5’UTR region of DEGs; and

having an FDR ≤ 0.05. In order to identify transcription factor

binding sites (TFBS) affected by a difference in methylation, the

ReMap database was used (15). A total of 84 cell lines were

selected (Supplementary Table 2), containing immune and

heart-related cells, and including 151 transcription factors

(TF). First, the transcription factors specifically associated with

DMRs were identified with the OLOGRAM tool (16, 17) in a

pairwise analysis, meaning we identify the individual TFs

enriched with the DMRs. Only those with an FDR ≤ 0.05 were

retained. In a second step, we studied the combinations of those

selected TFs that were observed in the DMR by using the n-wise

overlap option of OLOGRAM (option -more-bed-multiple-

overlap, n ≤ 4). Finally, the known TFBS profiles of identified

transcription factor were retrieved from JASPAR database. The

location of each TFBS in DMR sequence was identified using

FIMO tool.
Blood DNA collection and DNA
methylation analysis

Blood (5 to 15ml of blood) from 96 CCC patients (48moderate

CCC (Left ventricular ejection fraction>40%) and 48 severe CCC

(left ventricular ejection fraction<40%)) and 48 asymptomatic

Chagas disease controls was also collected in EDTA tubes

(Supplementary Table 1). Genomic DNA was isolated using

standard salted methods and the methylation analysis was done

using the same protocol as tissue DNAs.
Results

Headings disregulated genes associated
to severe CCC

Gene expression analysis was conducted on left ventricular

free wall myocardial tissue from 8 severe CCC patients and 6

healthy organ donors (see workflow: Figure 1). For each sample,

we got between 40 and 75 million sequencing reads. Sequences

were aligned to the human reference genome GRCh37/hg19.

The average mappable rate of the raw reads reached 90% (+/-

2%). No parasite RNA was detected. This is not surprising, since

in chronic and end stage patients, the parasite ARN is no longer

detected. Gene expression data were obtained from 43533

transcripts. A small fraction of these transcripts (1407/43533

(3.23%)) were considered as differentially expressed between

control and CCC (Supplementary Table 3), most part being up-

regulated (Supplementary Figure 1A). A specific enrichment

occurs in protein coding and non-coding genes, as miRNAs

(Supplementary Table 4). PCA and HCA (Hierarchical

Clustering Analysis) analysis confirmed that CCC myocardial
Frontiers in Immunology 04
gene expression patterns were substantially different from

controls (Figure 2A and Supplementary Figure 2A). The sex

and the age of the patients have no impact on this clustering

(Supplementary Figures 2B, C).
Severe CCC is characterized by a strong
inflammatory signature not present
in DCM

To understand the pathogenic processes driving CCC, a

comparative study was conducted between CCC patients and

DCM patients. Among the 3188 genes are differentially

expressed in DCM, mostly down-regulated (Supplementary

Figure 1B), only 290 (9%) DEGs are in common with CCCs.

(Supplementary Table 5). This further emphasizes that the

mechanisms involved in CCC and DCM are not similar.

A functional analysis of the DEGs identified both in CCCs or

DCMs was conducted (Figure 3 and Supplementary Table 6).

Some biological processes are shared by both diseases, like

smooth muscle, ERK1/ERK2 cascade and ion transport.

Interestingly, calcium ions are particularly affected in CCC,

not in DCM. Regarding CCCs, DEGs are almost exclusively

specific to the immune response (innate or adaptive). Most of

enriched terms are related to T lymphocytes. More specifically,

the T CD8+ and T CD4+ are associated to CCC, as well as Th1

response. Besides T cells, other immune cells seem to act in the

pathogenic process of CCC, such as B cells, macrophages or NK

cells. The regulation of interleukin production is also affected,

included IL-1, IL-4, IL-6, IL-10 and IL-12. The chemokine

CXCL9 was the most highly expressed among the cytokines

(FC=78), followed by CCL19, IFN-gamma, CCL4, CXCL10,

CCL17, CCL22, CXCL11, IL-26, LTA, IL-16 and IL-18.

Together, these results provide an overview of the pathogenic

process associated with CCCs, which is mostly related to the

immune response. Furthermore, calcium ion transport seems to

be particularly important in CCCs, compared to DCMs.
Several non-coding RNA are specific to
severe CCC

Non-coding RNAs are among the elements that can lead to

genetic dysregulation. As gene expression analysis was

performed by sequencing of total RNAs, we got information

on non-coding RNAs (lincRNA, miRNA, snRNA, snoRNA,

3’overlapping ncRNA). Among the 3777 non-coding elements

detected in our samples, 179, including 19 miRNAs and 145

lncRNAs; were differentially expressed. Those ncRNAs

(Supplementary Figure 3A) were enough to classify samples

according to their phenotype, demonstrating the importance of

these non-coding elements in chronic Chagas cardiomyopathy.

Only 6 had a known target (lncRNA-targeted gene: MIAT-miR-
frontiersin.org
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133a, RP11-276H19.1-GAS1, XIST-WNT1, MIR155HG-miR-

155, LINC00707-ELAVL1 and KB-1732A1.1-E2F1). A similar

analysis was performed on the ncRNAs associated to DCM

(Supplementary Table 7 and Supplementary Figure 3B). 143/179

ncRNAs are specific to CCC (Supplementary Figure 3C).
Frontiers in Immunology 05
DNA methylation directly affect the
expression of some DEGs

Given the importance of methylation in the regulation of

genetic response (18), we also performed several DNA
FIGURE 1

Workflow overview. Heart tissue RNAseq (orange) analysis was performed using classical steps: quality control, alignment, gene expression
quantification and normalization. Then, three different analyses were done: deconvolution analysis, differentially expressed genes functional
enrichment and non-coding RNAs characterization. Heart tissue (blue) and blood (green) methylation analysis followed the same first steps:
quality control, normalization, batch effect correction, differential methylation position (DMP) test and DMPs associated genes functional
enrichment. In tissue samples, a transcription factor binding site (TFBS) enrichment was carried out on differentially methylated regions (DMRs).
BA

FIGURE 2

Analysis of samples clustering based on differentially expressed genes or differentially methylated CpG sites. Control samples identifiers are
written in blue whereas case samples identifiers are written in red. (A) Hierarchical Clustering Analysis (HCA) performed on 6 control and 8 case
samples, based on expression of 1409 differentially expressed genes. (B) Hierarchical Clustering Analysis (HCA) performed on the same samples
as in A), based on methylation level of 16883 differentially methylated position.
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methylation analyze in controls and CCC patients. Tissue sample

DNA methylation analysis was conducted on the same samples as

gene expression. Only 16883 CpGs (2.34%) were differentially

methylated (FDR<0.05 and |D?|>0.2) (Supplementary Table 8)

and were associated to 5814 genes. PCA and HCA analysis

confirmed the impact of those DMP on CCC (Figure 2B and

Supplementary Figure 2D). The sex and the age of the patients

seems to have no impact on this clustering (Supplementary

Figures 2E, F).

Among the 16883 identified DMPs, 996 DMPs are

associated to 390 DEGs. Interestingly, the upstream region of

those DEGs (from TSS-1500 to TSS, 1st exon and 5’UTR) are

significantly enriched in down-methylated DMPs (FDR ≤ 0.05).

Moreover, these down-methylated DMPs are, in 86% of the

cases, associated with over-expressed DEGs. We retained these

regions called “regulatory region” for further analysis.
Identification of transcription factors
potentially involved in severe CCC

Based on the 409 DMPs associated with DEG regulatory

regions, we were able to define 92 regulatory DMRs

(Supplementary Table 9). These DMRs span on average 245bp

and are in the promoter regions of 89 DEGs. Three analyses were

performed with OLOGRAM to determine whether the enrichment

in TF is significantly different of which would be expected by

chance. Two analyses were performed: (A) with the promoters of

the DEGs and (B) with the DMRs alone. For both analyses,
Frontiers in Immunology 06
enrichment was compared with all genomic promoters.

(Figure 4A). The log2(FC)s of each TF in analysis (A) and (B) are

significantly correlated (Spearman p-value ≤ 0.05), but the r2 is low

(0.49) (Figure 4B) suggesting a different signal carried by the DMRs

compared to all the promoters including the DMRs. Moreover, the

log2(FC)s obtained in analysis B are significantly higher than the

ones obtained in analysis A (Wilcoxon p-value=4.23E-07)

(Figure 4C). These two analyses clearly show that there is a

stronger enrichment of TFs in DMRs than in the promoter set.

To confirm these results, a third analysis (C) was performed with

the DMRs compared to the promoters of the DEGs containing these

DMRs. The obtained distribution of the log2(FC) with this analysis

showed two distinct peaks, one around 0 and another around 1.7

(Figure 4C), confirming that some TFs are specifically enriched in

DMRs. A total of 30 TFs were found significantly associated to the

DMRs in the analyses B and C. We also considered as a Cis-

Regulatory Module (CRMs) the regions where at least 2 TFs bind to

the genome according to ReMap. After data filtering and

considering combinations of up to 4 TFs, we have identified 16

regions significantly associated with our DMRs, involving a total of

12 transcription factors (Supplementary Table 10). The top-

regulators are BRD4, EED, BCLAF1, TBX21, RUNX3 and RUNX1.
Immune, heart-relative or neurological
processes affected by TFBS methylation

The 30 TF previously identified are involved in several

biological process, such as somatic recombination of
FIGURE 3

Gene Ontology Biological Process affected in severe CCC and/or DCM. Bubble chart of Gene Ontology Biological Process according to percent of
severe CCC differentially expressed genes (DEG) and percent of total DEG (severe CCC + DCM) involved in each GO term. The size of each dot is
associated to the enrichment of each GO term [-log10(FDR)] and its color to disease specificity (from green for DCM to red for severe CCC).
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immunoglobulin gene segments, regulation of cardiac muscle

tissue growth or peripheral nervous system neuron development

(Supplementary Table 11). Among the genes involved in the

Th1/IFN-g response, 19 genes are potentially targeted by 28 of

the 30 TF previously identified, illustrating the important

differential methylation of immune response-related genes in

the pathogenic process associated with CCC. Seven TFs

(BCLAF1, BRD4, CBFB, EED, PAX5, RUNX3 and TBX21)

target at least 11/19 genes (Figure 5). A few of them are

targeted by specific TFs (for example IFN-g is targeted

RUNX3+TBX21). Similar data were obtained for heart-relative

or neurological process (Supplementary Figure 4).
5 TFBS identified in RUNX3 regulatory
region

Of the 30 TFs of interest, 20 have at least one known motif in

the Jaspar database, providing a total of 45 distinct motifs. After

filtering predicted TFBS in our DMR overlapping at least one

DMP, 423 TFBS have been identified, for all the 20 TFs

(Supplementary Table 12). Interestingly, TBX21, RUNX3 and
Frontiers in Immunology 07
EBF1 are the TFs whose binding motif appears to be affected by

DNA methylation in the largest number of genes. Because these

TFs are involved in many complexes, regulation of their binding

may affect the binding of all TFs in the complexes.

Among the 25 genes with a low number of TFs binding in

their promoter region (n ≤ 3), and thus being affected by specific

TFs, 7 are targeted by TBX21 and 4 by RUNX3, showing again

the importance of these TFs in CCC. Considering that RUNX3, a

key regulator in CCCs, also has a DMR in its promoter region,

further analysis was performed on this TF. On this 831 bp DMR,

5 TFBSs are present (Figure 6). This DMR is targeted by at least 6

of the following 7 TFs: RUNX3, PAX5, YY1, SP1, MAX, EBF1

and IRF4. SP1 and PAX5 seem to be the most affine with these

sequences. PAX5 is always found associated to IRF4, suggesting

an interaction between those 2 TFs.
Immune cell type infiltration occurs in
CCC heart tissue

Given the infiltration of immune cells in CCC myocardium,

we characterized and quantified the proportions of these cell
B

C

A

FIGURE 4

Analysis of the relation between TFBS (Transcription Factor Binding Site). (A) Schematic illustration of the three approaches used in this analysis.
Differentially methylated region (DMR) is highlighted in blue, gene regulatory region in green, and transcription factor (TF) in orange. Analysis 1:
TFBS enrichment in regulatory region containing at least one DMR, compared to all genome regulatory region. For each gene, a regulatory
region is defined as the region from TSS-1500 to first exon. Analysis 2: TFBS enrichment in DMR compared to all genome regulatory region.
Analysis 3: TFBS enrichment in DMR compared to regulatory region containing at least one DMR. (B) Scatter plot of the log2(FC) obtained with
the analysis 1 and 2 and Spearman correlation of these values. The fold change is computed according to the observed S value compared to
obtained S value, S corresponding to the number of overlapping bases between TFBS and query region. (C) Distribution of the log2(FC) obtained
with the 3 approaches.
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types in our samples. First of all, immune cell signatures (19)

showed in general a higher proportion of immune cells in CCCs

compared to controls (Supplementary Figure 5A), such as

activated NKs, and more interestingly T CD8, T Cell memory

and T follicular helper, with a reduced proportion of M2

macrophages. Secondly, a human heart tissue (left ventricle)

cell signature (20) showed that the CCCs had fewer

cardiomyocytes and smooth muscle than the controls

(Supplementary Figure 5B). Moreover, CCC myocardium had

a higher proportion of macrophages, in line with the immune
Frontiers in Immunology 08
cell infiltration in the cardiac tissues on CCC patients

(Supplementary Table 13).
Methylation sites in blood are associated
to moderate or severe CCC

We also studied the DNA methylation in the blood of

asymptomatic, moderate and severe CCC by hypothesizing

that the blood data reflect the phenotype. We found 12624
FIGURE 5

Predicted regulatory interaction in IFNy-Th1 pathway. Network composed by 19 genes involved in IFNy-Th1 pathway, and the top 7 TF
predicted as targeting those 19 genes, according to OLOGRAM based on ReMap database. TF are written in blue in diamond, and genes in black
in rectangle. Shapes borders are colored according to the fold change, from green to red.
FIGURE 6

TFBS affected by methylation in RUNX3 regulatory region. Schematic representation of all TFBS found in RUNX3 regulatory region, using FIMO
and Jaspar database. For each TFBS region, all the transcription factor predicted as affected by a differentiation of methylation in this region are
rank by FIMO pvalue (***pvalue ≤ 0.001, **pvalue ≤ 0.01, *pvalue ≤ 0.05). The top-rank TF binding profile is shown, as well as the differentially
methylated position in the TFBS.
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DMPs between asymptomatic and severe CCC blood samples

(FDR ≤ 0.05) (Supplementary Table 14). Despite the small

variation in the level of DNA methylation detected in the

blood (Db), the methylation of these 12624 DMPs was

enough to separate controls from cases, either via PCA

(Figure 7A) or HCA (Supplementary Figure 6A) .

Association was found in 6436 genes with at least one

DMP, but only 139 genes are in common between the three

analyses (RNA-seq in tissue and DNA methylation in tissue

and blood).

6735 CpGs were found as DMPs between moderate and

severe CCC (FDR<0.05) (Supplementary Table 15). They were
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enough to discriminate samples according to the stage of the

disease on a PCA (Figure 7B) or HCA (Supplementary

Figure 6B). Only 470 DMPs were also identified as DMP in

controls vs severe CCC blood methylation analysis, and 1750

genes out of 3911 (44.75%) are shared by both blood

methylat ion analysis (non-significant enrichment) .

Interestingly, looking at the DNA methylation level of all

DMPs found in blood (merge of the two previous analysis,

n=18889) allowed us to distinguish the three groups of

individuals, according to their phenotype (Figure 7C),

revealing a gradient of methylation from controls to severe

CCC through moderate CCC.
B

C

A

FIGURE 7

Analysis of samples distribution in the space of differentially methylated CpG sites for asymptomatic, moderate CCC and severe CCC samples.
(A) Scatterplot of the two principal components of a PCA executed in the space of the 12624 CpG positions differentially methylated (DMP)
between 48 asymptomatic blood samples and 90 CCC blood samples. (B) Scatterplot of the two principal components of a PCA executed in
the space of the 6735 DMPs between 47 moderate CCC blood samples and 43 severe CCC blood samples. (C) Scatterplot of the two principal
components of a PCA executed in the space of the 18889 CpG positions (union of the two previous sets) for the three groups of samples.
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Nervous system related processes are
strongly affected in moderate CCC

The general pattern detected on heart tissues and on

blood are different and seemed to be tissue/fluid specific

(Figure 8A). However, we conducted a Gene ontology

ana ly s i s o f the top 1000 genes o f each ana ly s i s

(Supplementary Table 16). 3 major biological processes are

a ffec ted in our ana lyses : immune sys tem, sys tem

development and ion transport (Figure 8B). They are

shared by all three analyses, showing that although few

genes are found in common, they are involved in common

biological functions. Therefore, it seemed reasonable to

analyze the methylation differences between moderate and

severe CCC to understand the development of the disease

(Supplementary Table 17). Unlike to the results found

between controls and severe CCC, here genes are mostly

involved in neurogenesis, cardiovascular system development

or actin filament organization. These genes are associated

with the immune response, notably in adaptive immune

response and also with ion-related processes.
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Discussion

This study focused on the study of epigenetic regulation in

Chagas disease, and its impact on the development of the

disease. Based on RNAseq and methylation data, 1409

differentially expressed genes (DEGs) were identified, among

which 89 have differentially methylated regions (DMRs) in their

regulatory region. 30 transcription factors were identified as

potentially affected by these methylation differences, suggesting

their involvement in genetic deregulation. Furthermore, similar

biological processes are affected by differences in methylation in

cardiac tissue or blood. Therefore, the pathogenic process in

patients with moderate CCC could be studied.

In a previous analysis, combining microarray and

methylation data, we showed that patients with CCC had

significant differences in gene expression and DNA

methylation compared to healthy controls (9). DEGs with

DMPs were predominantly associated with the immune

response, but also with several biological processes such as

arrhythmia, muscle contraction, fibrosis and mitochondrial

function. Here, we have set up a more advanced analysis,
B

A

FIGURE 8

Comparison of differentially expressed genes, genes affected by methylation in tissue dataset and genes affected by methylation in blood dataset.
(A) Venn diagram of top 1000 genes differentially expressed or methylated in previous tissue RNA-seq, tissue DNA methylation and blood DNA
methylation analysis between control/asymptomatic and severe CCC samples. (B) Graph of the Gene ontology Biological Processes analysis of
dysregulated element between control/asymptomatic and severe CCC. Nodes represents biological processes terms and are divided in 3 colors,
according to the proportion of genes from RNA-seq (red), tissue methylation (blue) or blood methylation (green) analysis. Edges in the graph link
GO terms having gene in common. 3 principal terms are highlighted in this synthesis. More precisely, several groups of gene ontology are enriched,
involved in biological process related to: 1) lymphocyte activation; 2) Regulation of immune-system process; 3) Cytokine production; 4) Interferon
gamma production; 5) Regulation of interleukin production; 6) Defense response; 7) System development; 8) Anatomical structure morphogenesis;
9) Metal ion transport; 10) Cation homeostasis.
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allowing us to have an in-depth analysis of genomic

dysregulation. To do so, we were interested in both DNA

methylation in order to identify transcription factors involved

in the pathogenic process and in non-coding RNAs. Indeed,

non-coding RNA, notably lncRNA and miRNA, are known to be

involved in many of cardiovascular diseases (21, 22). The

presented results extend the list of miRNAs associated to

CCC, and not differentially expressed in DCM (10, 21, 23–27).

Among the 19 miRNAs identified in this study, 3 have already

been associated with severe CCC: miR-223, miR-208 and miR-

151 (6). The involvement of the long non-coding RNA MIAT,

previously associated to CCC (11), has also been confirmed. It

acts as a sponge of miRNA-133 in breast cancer, dysregulated in

CCC (10), and down-regulated in patients with heart

failure (28).

Three distinct biological process were associated to CCC,

either we look at gene dysregulation or methylation, in heart

tissue or blood: immune response, ion transport and nervous

system. Although ion transport and nervous system were also

partially associated to DCM, immune response remains specific

to CCC. Moreover, the genes affected in those pathways were not

the same between these diseases, illustrating a specific response

in CCC. For example, several genes associated to ion transport,

and more precisely with potassium voltage-gated ion channel,

like KCNA2, KCNA5, KCNAB2, KCNB2, KCNC2, KCNG3 and

KCNN4, were found to be differentially expressed and/or

methylated in CCC, and not in DCM. Of interest, while

KCNB2, KCNC2 and KCNG3 are mainly expressed in

neurons, KCNA5 is expressed in heart muscle and dendritic

cells, while KCNA2, KCNAB2 are expressed in neurons and

immune cells, indicating that potassium channels of neuronal,

cardiomyocyte and inflammatory cells are modulated in CCC

heart tissue. Dysregulation of potassium channel genes were

reported in heart of 36 T.cruzi infected mice (21) and 25 severe

CCC heart (9). Dampening of calcium and potassium ion

channels in mouse heart tissue led to a reduced Ca2+ release

and prolongation of action potential (29). TNF-a may amplify

this dysfunction by inducing nitric oxide synthase (NOS2) and

oxidant species, which promotes electrophysiological changes in

rat ventricular myocyte (30). KCNN4 (KCa3.1), differentially

expressed in CCC (not in DCM) and containing DMP in its

promoter, acts as a regulator of membrane potential in T cells.

After antigen recognition by the T cell repertoire, the Ca2+

enters in the cytosol and sequentially activate KCa3.1 and Kv1.3

(KCNA3), causing membrane depolarization (31). This calcium,

present in cytosol, will activate the NFAT protein, which

regulate genes involving in T cell activation (32). Moreover,

high levels of Kv1.3 were found in multiple autoimmune

diseases, such as multiple sclerosis or diabetes (33–35). In our

data, these two potassium channels are up-regulated, and

KCa3.1 seems to be targeted by RUNX3. The potential

biomarker for heart disease Galectin-3 (Gal-3), upregulating
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the expression and activity of KCa3.1 channel in inflammatory

cells and fibroblasts. Upregulated KCa3.1 facilitates

inflammatory cell infiltration into the myocardium and

fibroblast differentiation into activated form. Recently, it was

shown that mice treated with TRAM-34, a KCa3.1 channel-

specific inhibitor, either for 1- or 2-month period effectively

reduced collagen deposition (36). Moreover, Gang et al. had

shown that KCa3.1 inhibition by TRAM-34 therapy attenuated

the increased inflammatory cell infiltration. Rezende de Castro et

al. (37) studied gene expression profiling in acutely T.cruzi

infected mice (15-day post-infection) and have found enriched

pathways related to immunity and Th1 T cell immunity, cardiac

conduction including potassium channels, protein synthesis and

mitochondrial genes. Even though acute infection by T.cruzi

(where parasites are very numerous in the myocardium) is not a

perfect match for CCC, where parasites are scarce or absent from

heart tissue, modulation of inflammatory cell and potassium

channel gene expression profiles are similar in both situations.

On the other hand, our study underlined that several genes

associated with moderate or severe CCC are involved in the

nervous system. This enrichment is even stronger in moderate

CCCs. Actually, the loss of neuron cells is a well-known

phenomenon in digestive forms of Chagas disease (38, 39). In

human hearts with dilated cardiomyopathy, the number of

neuron cells is significantly reduced compared to controls.

This neuronal depopulation is even more important in CCC

(40), and during the acute phase in the mouse model (41).

Similarly, a study showed that acute phase T.cruzi infected dogs

displayed a rarefaction of the noradrenergic and acetylcholine

nerve terminals accompanied by myocarditis, and the ventricles

sympathetic denervation was present when the inflammatory

process was moderate to intense (42). Moreover, in the rat

model, moderate myocarditis lasting for two weeks caused

complete denervation (43). A more recent study demonstrated

that knockdown of acetylcholine in mice increased the Th1

response and clearance of T.cruzi parasitism in blood and tissue,

but worsens the cardiac lesions and inflammatory infiltration

(44). In the continuity of these observations, the increase in the

amount of acetylcholine was associated with reduction of heart

weight, inflammatory infiltration, and the fibrosis area,

suggesting a reversing of cardiac hypertrophy (44). Moreover,

macrophages, Th1, CD4 and B cells express adrenergic receptors

(45–47). Their stimulation induces an increase of cAMP, which

inhibits NF-kB activation, leading to the suppression of type 1

pro-inflammatory cytokines and promoting the production of

type 2 anti-inflammatory cytokines, such as IL10. This cytokine

inhibits the antigen presenting capacity of macrophages and

dendritic cells, and thus the differentiation of CD4 T cells to Th1

(48). Finally, circulating antibodies binding acetylcholine and

norepinephrine receptors have been found in Chagas patient

serum, suggesting an autoimmune response (49), and correlated

with the previous study, inducing the lack of neurotransmitters,
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and then the over production of Th1 cells. In our data, the genes

related to acetylcholine production, or acetylcholine transporter

are not differentially methylated or expressed in tissue samples

according to fold change cut-off but present an FDR<0.05. In

blood methylation samples, ACHE (acetylcholine production),

and CHRNA3, CHRNA4 and CHRNA7 (acetylcholine

receptors) genes have differentially methylated positions in the

promoter or body. While CHRNA4 is mainly expressed in

neurons, ACHE is found in neurons and cardiac/skeletal

muscle, CHRNA7 is mainly expressed in neurons, cardiac/

skeletal muscle and immune cells, and CHRNA3 is found in

neurons, and thymus.

Both potassium voltage-gated ion channel and nervous

system identified in the current and previous studies seem to

be linked to immune response, and more precisely T-cell related

process. Moreover, in our data, the immune response was

strongly stimulated, especially the activation of T cells even in

the absence of the parasite. This inflammatory infiltrate was

already reported elsewhere (50) and is mainly composed of Th1

lymphocytes, macrophages, and NK-cells. In this work, we

performed a deconvolution analysis on our heart tissue

collection, and we confirmed the content of this infiltrate. Our

group, among others, had already shown that the T-cell

infiltrating heart tissue strongly produced IFN-g and TNF-a
(4). In parallel, lower quantities of IL-2, IL-4, IL-6 and IL-10

were detected in CCC heart tissue (51). Our results are

consistent with current knowledge of the pathology, with high

expression of genes involved in IFN-g and cytokine production.

According to Gene Ontology Biological Process enrichment,

genes affected in CCC are also involved in interleukin

production, including IL-2, IL-4 and IL-6. IFN-g, which has

been described simultaneously as a pathogen resistance and a

disease tolerance gene is also acting as an upstream regulator

(52). Indeed, IFN-g stimulates the inflammatory response

indirectly via the NF-kB pathway and activate the production

of ROS and NOS, which, in an excessive quantity, have also

deleterious effect on mitochondria and cardiomyocytes (5).

Interestingly, IFN-g, with IFN-b and TNF-a (53), induced

expression of miR-155 (53). In our data, MIR155HG, coding

for this miRNA, is up-regulated. miR-155 is also up-regulated in

viral myocarditis; where it is expressed by infiltrating immune

cells, and seems to be involved in TNF-a, IFN-g and IL-6

production, as well as immune cell infiltration (54). The lack

of this microRNA seems to decrease IFN-g and TNF-a in the

acute stage of Chagas cardiomyopathy in mice heart tissue (21).

Moreover, we found a DMR in IFN-g promoter region, targeted

TBX21. According to Ologram, RUNX3 could also fix this DMR,

but its TFBS wasn’t found in this DMR, as described in JASPAR

database. Those two transcriptions factors are involved in Th1

differentiation, as well as GATA3 (55, 56). According to our

analysis, the micro-RNA miR-142, associated to Th1

differentiation (57) in neuronal autoimmune disease,
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potentially targets RUNX3 and TBX21. In Chagas disease,

TBX21 and IFN-g expression are correlated with the left

ventricular dilation, and the ratio between TBX21 and GATA3

expression is significantly higher in CCC than in non-

inflammatory cardiomyopathy (58), which were also

confirmed in our data in both control to CCC or DCM

comparisons. Moreover, RUNX3 overexpression has been

associated to the methylation of its promoter in CCC (9), as

well as in our current analysis. In total, RUNX3 and TBX21

targets 29 genes, including 14 in common (AIM2, ARHGAP30,

BATF, C16orf54, CCR5, CYTIP, DENND2D, DOK2, FGR,

MIR142, PTPN22, TRAF1, TRAF3IP3 and WDFY4).

Moreover, RUNX3 is targeted by 7 transcription factors: EBF1,

IRF4, MAX, PAX5, RUNX3, SP1 and YY1.

We also found that XIST is one of the tops up-regulated

lncRNA in Chagas disease. It is associated with the WNT1 gene,

belonging to the Wnt family, but because of the wide sex

dispersion in our dataset, we cannot conclude the direct

involvement of this lncRNA in CCC. In our data, WNT1, as

well as WNT10A and WNT10B are up-regulated in severe CCC.

The Wnt pathway is involved in the differentiation of Th2 cells

(59) and its inhibition in acute Chagas disease stage decrease the

Th2 response (60) and increase inflammatory response,

controlling the parasite (61). Studies have demonstrated that

Wnt activation is related to pathological stages including

inflammation, angiogenesis, and fibrosis and aberrant

expression is associated with cardiovascular diseases (61, 62).

Indeed, Analysis of the expression ofWnt proteins indicated that

Wnt-2, Wnt-4, Wnt-10b, and Wnt-11 were significantly

upregulated 5 days after myocardial infarction (63). Studies

confirmed the interactions between the Wnt pathway and

TGF-b signalling (64–66). TGF-b receptor overexpression has

already been observed in acute phase of CCC (67). It has several

role in CCC development, including parasitic invasion,

inflammation, immune response, heart fibrosis and heart

conduction (68). Our results had also shown the potential

implication of NOTCH1 (downregulated and targeting DEGs

with DMRs in their regulatory regions) in the genetic

dysregulation in severe CCC. Activation of Notch signalling

limits the range of cardiac damage by the improving of

angiogenesis (69–71), cardiac regeneration and cardio

protection (72), and reducing fibrosis (73), apoptosis (74), and

oxidative stress (75).

Few studies have linked Notch signaling to immune

response and parasitic infections. Tu et al. has shown that in

Trichuris muris infection, a deficiency of Notch signaling in T

cells led to a failure in initiating the Th2 response (76). It

suggests that Notch signaling influences the Th2 profile and

alters immune responses against parasites. Similarly, during

Leishmania major infection, the Th1 response was induced in

deficient mice, which presented high levels of IFN-ɣ that led to

infection control (76). So, we can raise the hypothesis that a
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down expression of NOTCH1 in CCC patients promote the Th1

response associated to severe cardiomyopathy. To support this

hypothesis, Guzmán-Rivera et al. had treated Chagas infected

mice with simvastatin (77). Simvastatin activates the Notch 1

pathway in the hearts of T.cruzi infected mice and decreases the

cellular infiltrate, inflammatory cytokines and prevents the

increase in collagen deposition in cardiac tissue.

All the results obtained in our study converge towards a

combined involvement of processes related to the immune

response, ion transport, cardiac contraction and the nervous

system. In particular, the nervous system appears to be strongly

impacted between moderate and severe CCC, and the

potassium-related process specific to CCC compared to DCM.

Gene expression analysis alone has revealed some non-coding

elements but has not provided so much new information about

the disease. The inclusion of methylation put forward less

obvious biological processes. Thus, most of the identified

genes (differentially expressed and/or methylated) are generally

involved in several of these processes, highlighting links between

them. More precisely, all the previously described biological

process seems to be linked to the immune response, and notably

to the Th1 response, including IFN-g and RUNX3. These results,
combined with those obtained in previous analyses of CCC (9,

78), confirm the importance of DNA methylation in the

development of CCC.
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Analysis of samples distribution in the space of differentially expressed genes
or differentially methylated CpG sites between control and severe CCC. Age

and sex impact on gene expression or on methylation. (A) Scatterplot of the
two first principal component of a PCA of 6 Control and 8 Case samples

executed in the space of the 1409 differentially expressed genes between the
two conditions. (B) Scatterplot of the two first principal component of a PCA

of 6 Control and 8 Case samples executed in the space of the 1409

differentially expressed genes between the two conditions colored by sex
(blue: male, pink: female). (C) Scatterplot of the two first principal component

of a PCA of 6 Control and 8 Case samples executed in the space of the 1409
differentially expressed genes between the two conditions colored by age

(from grey to blue). (D) Scatterplot of the two first principal component of a
PCA of 6 Control and 8 Case samples executed in the space of the 16883

differentiallymethylatedCpG sites between the two conditions. (E) Scatterplot
of the two first principal component of a PCAof 6Control and8Case samples
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Scatterplot of the two first principal component of a PCA of 6 Control and 8

Case samples executed in the space of the 16883 differentially methylated
CpG sites between the two conditions colored by age (from grey to blue).

SUPPLEMENTARY FIGURE 3

ncRNA analysis in severe CCC and DCM. Control samples identifiers are

written in blue, severe CCC samples identifiers in red and DCM samples in
green. (A) Hierarchical Clustering Analysis (HCA) performed on 6 control

and 8 severe CCC samples, based on expression of 179 differentially
expressed ncRNAs. (B) Hierarchical Clustering Analysis (HCA) performed

on 6 control and 8 DCM samples, based on expression of 327 differentially

expressed ncRNAs. (C) Venn diagram of shared differentially expressed
ncRNAs between severe CCC and DCM.

SUPPLEMENTARY FIGURE 4

Predicted regulatory interaction in cardiac muscular or nervous system
process. Network composed by 6 transcription factors (TF) involved in

cardiac muscular and/or nervous system process, and their 68 targeted

genes, predicted by OLOGRAM according to ReMap database. TF are
written in blue in diamond, and genes in black in rectangle. Shapes

borders are colored according to the fold change, from green to red.

SUPPLEMENTARY FIGURE 5

Estimation of cell proportion in control and severe CCC heart tissue.
Deconvolution of the RNA-seq bulk gene expressions of 6 control and 8

severe CCC samples to infer the proportion of cells in the samples. The *
represent cell types whose proportion is significantly different (Wilcoxon test,

FDR <0.05) between controls and cases. (A) Deconvolution using cell type
signature with 22 immunological cell types (LM22 signature matrix). (B)
Deconvolution using cell type signature with 5 left ventricle related cell types.

SUPPLEMENTARY FIGURE 6

Analysis of samples clustering based on differentially methylated CpG sites
in blood samples. Asymptomatic samples identifiers are written in blue,

moderate CCC in orange and severe CCC in red. (A) Hierarchical
Clustering Analysis (HCA) performed on 48 asymptomatic and 90

severe CCC samples, based on expression of 12624 differentially

methylated position. (B) Hierarchical Clustering Analysis (HCA)
performed on 47 moderate CCC and 43 severe CCC samples, based on

methylation level of 6735 differentially methylated position.
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