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The role of cell-mediated
immunity against influenza
and its implications for
vaccine evaluation
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and Isabel Leroux-Roels1,2*
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Influenza vaccines remain the most effective tools to prevent flu and its

complications. Trivalent or quadrivalent inactivated influenza vaccines

primarily elicit antibodies towards haemagglutinin and neuraminidase. These

vaccines fail to induce high protective efficacy, in particular in older adults and

immunocompromised individuals and require annual updates to keep up with

evolving influenza strains (antigenic drift). Vaccine efficacy declines when there

is a mismatch between its content and circulating strains. Current correlates of

protection are merely based on serological parameters determined by

haemagglutination inhibition or single radial haemolysis assays. However,

there is ample evidence showing that these serological correlates of

protection can both over- or underestimate the protective efficacy of

influenza vaccines. Next-generation universal influenza vaccines that induce

cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell

responses) against conserved epitopes may overcome some of the

shortcomings of the current inactivated vaccines by eliciting broader

protection that lasts for several influenza seasons and potentially enhances

pandemic preparedness. Assessment of cellular immune responses in clinical

trials that evaluate the immunogenicity of these new generation vaccines is

thus of utmost importance. Moreover, studies are needed to examine whether

these cross-reactive cellular immune responses can be considered as new or

complementary correlates of protection in the evaluation of traditional and

next-generation influenza vaccines. An overview of the assays that can be

applied to measure cell-mediated immune responses to influenza with their

strengths and weaknesses is provided here.
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1 Introduction

Influenza viruses belong to the Orthomyxoviridae, a family

of enveloped negative-sense single-stranded RNA viruses with a

segmented genome. Three genera, influenza A, B and C, cause

human respiratory disease of which influenza A and B are

clinically most important. The influenza A viruses are further

classified into subtypes according to the antigenicity of their

major membrane glycoproteins, haemagglutinin (HA) and

neuraminidase (NA). Since 1977 influenza A/H1N1 and A/

H3N2 have been co-circulating and causing annual epidemics

of varying severity (1). Influenza B viruses are not categorized

into subtypes but are separated into two distinct genetic lineages

(B/Yamagata and B/Victoria). Influenza B viruses from both

lineages have co-circulated in most influenza seasons since the

1980s (2). The genomes of types A and B contain eight RNA

segments encoding for surface proteins (HA, NA and matrix

protein M2), RNA polymerase subunits (PA, PB1 and PB2),

matrix protein M1, viral nucleoprotein (NP), a nonstructural

protein (NS1) and a nuclear export protein (NEP) (Figure 1) (3).

HA is the major target of host antibody responses elicited by

natural infection or vaccinations that provide protection against

influenza infection in humans. However, the lack of
Frontiers in Immunology 02
proofreading activity of the RNA-dependent RNA polymerase

complex of influenza leads to point mutations in its genes. The

accumulation of small changes over time within the antibody-

binding sites of HA and NA results in viruses that are

antigenically different and causes the emergence of variant

viruses that can evade immune recognit ion. This

phenomenon, called antigenic drift, is the main reason why

people can catch the flu more than once. Antigenic drift is

observed in both influenza A and B viruses, as opposed to

another type of change that is called antigenic shift and is only

seen in influenza A viruses. Antigenic shift is an abrupt, major

change in the influenza A viruses that occurs through genetic

reassortment of gene segments between different influenza

viruses during co-infection of the same human or non-human

(e.g. porcine) host cell. This may lead to the introduction of a

new, potentially pandemic influenza A virus with a novel HA

(and NA) against which humans have limited or no pre-existing

immunity. The most recent “shift” occurred in the spring of

2009, when an H1N1 virus with a new combination of genes

emerged to infect people and quickly spread, causing

a pandemic.

Seasonal infections with influenza viruses affect people of all

ages but most strongly children and older adults. Associated
FIGURE 1

Schematic overview of the structure of an influenza virus particle. Both influenza A and influenza B viruses are enveloped negative-sense RNA
viruses with genomes comprising eight single-stranded RNA segments located inside the virion. The three largest RNA segments encode the
three subunits of the viral RNA-dependent RNA polymerases (PB1, PB2 and PA). The smaller RNA segments encode for haemagglutinin (HA),
which mediates viral entry in epithelial cells by binding to sialic acid-containing receptors, and nucleoprotein (NP) which binds to the viral
genome. The smaller RNA segments can encode for more than one protein. They mainly encode for neuraminidase (NA) which enables virus
release from the host cell, matrix protein M1 (M1) and matrix protein M2 (M2), the non-structural protein (NS1) and the nuclear export protein
(NEP). Figure created with BioRender.com.
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symptoms are generally mild and characterized by fever, sore

throat, runny nose, cough, headache, muscle pain and fatigue

but can also be more severe and in some cases lead to lethal

pneumonia. Annual epidemics of influenza can result in

approximately 1 billion infections leading to 3-5 million cases

of severe illness and 300,000 to 500,000 deaths globally (1).

Annual influenza vaccination is the most effective way to

prevent influenza infection and its complications. Many

countries have adopted recommendations for annual influenza

vaccination. Generally, these recommendations are primarily

aimed at older adults and persons at risk of complications of

influenza and less commonly at children, although vaccination

of children can help reduce the incidence of severe virus

infection in older adults as they are the main driver of

influenza epidemics (1). Since the 2005/2006 season, the

United States (US) has recommended influenza vaccination for

all persons aged ≥6 months (4).
2 Current vaccines and correlates
of protection

Until recently, annual vaccination was performed with

trivalent inactivated influenza vaccines (TIV) containing 15 μg

haemagglutinin (HA) of each of the three selected influenza

strains (A/H1N1, A/H3N2 and one B lineage) which are

administered intramuscularly. The influenza strains are

selected for inclusion in a seasonal vaccine on the basis of

predictions made from surveillance data acquired under the

coordination of the WHO (Global Influenza Surveillance and

Response System, GISRS). However, since there are two

influenza B lineages circulating (B/Yamagata and B/Victoria),

suboptimal vaccine protection can occur when the predominant

circulating influenza B virus strain is from the alternate lineage

to the B strain present in the vaccine (5, 6). The same is true

when a mismatch occurs in influenza A strains (7–9). The recent

introduction of inactivated quadrivalent influenza vaccines

(QIV) containing both B strains was expected to alleviate the

problem of mismatching between B lineages. A recent study

however demonstrated that the use of QIV is not associated with

an increased protection against any influenza B illness (10). In

addition, due to COVID-19 measures taken as of March 2020

(e.g. social distancing, wearing masks, travel restrictions), the

genetic diversity of influenza viruses has dramatically

diminished with no observed isolations of the B/Yamagata

lineage between April 2020 and August 2021. This could point

to the global extinction of this lineage and may have favorable

implications for future annual vaccine reformulations (e.g.

inclusion of an extra A/H3N2 strain to minimize the risk of

mismatch) (11). Inactivated vaccines can be manufactured by

producing the virus strains in either embryonated eggs or

eukaryotic cells or by applying recombinant DNA technologies

in which solely the HA antigen is expressed in an insect cell-line
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using a baculovirus expression system (1). These vaccines mainly

rely on the induction of HA-specific antibodies that prevent

entry of the virions in the respiratory epithelial cells. To a lesser

extent, NA specific antibodies are generated that interfere with

the release of nascent viruses (12). In recent years there is

growing evidence for antibody-dependent cellular cytotoxicity

(ADCC) contributing to vaccine-induced protection (13).

ADCC is a cell-mediated immune defense whereby specific

antibodies that bind to membrane-surface antigens expressed

on target cells also interact with Fc receptors on effector cells

(e.g. Natural Killer (NK) cells) and thus lead to lysis of the target

cell. Antibodies that elicit ADCC often target internal proteins of

the virus such as M1 and NP (antigens that are not present in

currently licensed vaccines) and are common in both healthy

and infected adults. These antibodies could thus offer cross-

reactive protection (14, 15). ADCC could be the main

mechanism in which antibodies against conserved (but

subdominant) epitopes work.

In 2003, the first live-attenuated influenza virus vaccine

(LAIV) was licensed in the US as an intranasal spray. This

vaccine is produced by re-assortment of the selected influenza

virus strains with the cold-adapted A/Ann Arbor/6/1960 vaccine

strain, which replicates efficiently at 25°C in the nasal passages

but not at the higher temperatures deeper in the respiratory

tract. This LAIV seems to have the advantage to induce mucosal

IgA and more broadly protective immune responses in infants

and children compared to inactivated vaccines (1, 16). However,

pre-existing antibodies appear to have a negative impact on

LAIV effectiveness in adults (12).

For many years, the evaluation of vaccine immunogenicity

and licensure relied merely on the serological assessment of the

immune response using the haemagglutination inhibition (HI)

and the single radial haemolysis (SRH) assays. Every year,

vaccine manufacturers had to do a small clinical trial involving

around 100 participants including 50 subjects aged ≥60 years of

whom pre- and post-vaccination serum samples had to be

collected. The immunogenicity of the vaccine was then

assessed based on three criteria that are shown in Table 1 and

were defined by the Committee for Medicinal Products for

Human Use (CHMP). In order to be licensed, at least one of

these criteria had to be met for a seasonal influenza vaccine while

all criteria needed to be met for a pandemic vaccine (17).

The cut-off values of >1:40 in the HI assay, >25 mm² in the

SRH assay and a 4-fold increase of the HI antibody titers were

considered as correlates of protection, meaning that these

criteria are associated with a 50% risk reduction of infection or

developing symptoms. However, the challenge study on which

these criteria have been based dates back from 1972, was

performed in healthy adults and did thus not consider

populations at risk such as vulnerable children, older adults

and immunocompromised patients (18). Many studies

performed since then question the use of these serological

criteria (12, 19). Indeed, a study performed in children
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demonstrated that a cut-off of 1:110 would be more appropriate

to predict the 50% clinical protection rate (20). A meta-analysis

by de Jong et al. showed a strong variation in HI titers required

to obtain a 50% protection in adults (21). Studies in older adults

are unfortunately scarce but one study demonstrated that 60% of

infected older adults had titers ≥1/40 and 31% had titers ≥1/640.

This shows that the HI titer of ≥1/40 cannot be applied as a

correlate of protection in older adults (22). In addition, when a

mismatch occurs between the vaccine and circulating strains, HI

titers no longer correlate with protection (23). Therefore, other

correlates of protection are needed to better predict protection

rates. Recently, more and more studies point towards the use of

cellular correlates of protection to complement serological

parameters. Verschoor et al. analyzed IFN-g and IL-10

secretion by virus-challenged peripheral blood mononuclear

cells (PBMC) and observed that the fold increase of IFN-g was
significantly associated with protection (24). After oral

vaccination with an adenovirus-based vaccine, the abundance

of HA-specific plasmablasts and plasmablasts positive for

integrin a4b7, phosphorylated STAT5, or lacking expression

of CD62L at day 8 were significantly correlated with protection

from developing viral shedding following H1N1 virus challenge

(25). During the 2009 H1N1 pandemic, it was clear that persons

with higher frequencies of pre-existing T-cells to conserved CD8

epitopes developed less severe illness (26). A human challenge

study demonstrated that pre-existing CD4+ T-cells responding

to internal influenza proteins were associated with lower virus

shedding and less severe illness (27). Although vaccination is still

considered the best tool to prevent influenza infection, vaccine

effectiveness has become an issue of increasing confusion and

debate. Several systematic reviews questioned the benefits of

influenza vaccination for older adults (28–30). In addition, a

growing body of evidence suggests that protection conveyed by a

seasonal influenza vaccine may be reduced by vaccinations

administered in prior seasons. Hoskins et al. were the first to

report in 1979 that annual influenza vaccination conferred no

long-term advantage and could even be disadvantageous (31).

Over the past decade the Test Negative Design (TND), i.e. using

a control group that tests negative for the pathogen, has been

applied to evaluate vaccine effectiveness in many countries and a

meta-analysis of TND studies revealed a low vaccine

effectiveness for the A/H3N2 subtype (32). The Canadian

Sentinel Practitioner’s Surveillance Network explored the
Frontiers in Immunology 04
effects of prior vaccination on current season’s vaccine

effectiveness during epidemics in Canada between 2010-2011

and 2014-2015. The effects of repeat influenza vaccinations were

consistent with the antigen distance hypothesis (i.e. negative

interference from prior season’s vaccines on current vaccine)

and may have contributed to the low vaccine effectiveness across

recent A/H3N2 epidemics since 2010 in Canada (33).

Due to the growing controversy around the serological

CHMP criteria and vaccine effectiveness, the licensing

procedure of influenza vaccines has changed in Europe as of

February 2017 and serological data alone (with abolition of the

CHMP criteria) is no longer sufficient to conclude whether a

vaccine is protective in a target population (34, 35). It is clear

that for future next-generation influenza vaccines, both robust

humoral and cellular immune responses are needed to offer a

broader and longer-lasting protection against infection.

Assessment of the cellular immunity after vaccination will thus

become increasingly important in influenza vaccine trials as it

has already been demonstrated that influenza-specific CD8+ T-

cells can be an important correlate of protection against

infection (36). First attempts to define cellular correlates of

protection based on IFN-g Enzyme-Linked ImmunoSpot

(ELISpot) data have already been made but were unsuccessful

(37–39).
3 Cell-mediated immunity
after infection

A seroprevalence study of antibodies against influenza

viruses (A/H3N2, A/H1N1 and B) in children of 0 to 7 years

of age in the Netherlands showed that all children had acquired

antibodies to at least one influenza virus by the age of 6 years

while the highest attack rates were observed in children of 2 and

3 years (40). This shows that everybody is exposed to the

influenza virus rather sooner than later in life. The first

infection with an influenza virus induces an immune response

that involves the mobilization and cooperation of numerous

components of the immune system and leaves a long-lasting

serological as well as cellular immunological imprint (41, 42).

After infection, both innate and adaptive immune responses

are activated to combat and clear the virus (Figure 2). During the

early phase of infection, viral replication and clearance are
TABLE 1 CHMP criteria for the evaluation of influenza vaccines.

Adults (18-60 years) Older adults (>60 years)

Seroprotection1 >70% >60%

Seroconversion2 >40% >30%

GMT increase3 >2.5 >2
The seroprotection cut-off is defined as ≥1:40 in the HI assay and >25 mm² in the SRH assay (1).
Seroconversion is defined as at least a 4-fold increase in titer after vaccination (2).
Ratio of pre- and post-vaccination geometric mean titers (3).
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controlled by the innate immune system which forms a first-line

barrier in the mucosal surfaces. Viral RNA within the infected

cells is recognized by pattern recognition receptors (PRRs)

which leads to the secretion of type I interferons (IFNs), pro-

inflammatory cytokines, eicosanoids and several chemokines by

macrophages, pneumocytes and dendritic cells. Type I

interferons stimulate the expression of a variety of genes,

known as IFN-stimulated genes, which induce an antiviral

state. Pro-inflammatory cytokines and eicosanoids induce a

local and systemic inflammation which cause fever and

anorexia and the chemokines are involved in recruiting

additional cells of the immune system such as NK-cells,

neutrophils and monocytes. These NK-cells are responsible for

the destruction of infected cells while the neutrophils and

monocytes help in removal of these dead cells. Together with

the resident alveolar macrophages, phagocytic clearance of

virus-infected cells by recruited phagocytes is an important

mechanism for viral clearance. However, if the virus persists

and successfully establishes an infection, further support of the

adaptive immune system is necessary to clear the virus (43).
Frontiers in Immunology 05
The innate immune system is involved in shaping and

regulating the induction of T-cell responses in the respiratory

tract after infection. Antigen-presenting cells such as alveolar

macrophages and dendritic cells, which reside just below the

airway epithelial surface, capture the influenza antigens and

subsequently migrate to draining lymph nodes to present

antigen to naïve and memory T- and B-lymphocytes. These

lymphocytes then undergo a stepwise process of activation,

proliferation and differentiation (44, 45). After activation in

the lymph nodes, CD4+ and CD8+ T-cells change the

expression of homing receptors and migrate via several

mechanisms to the site of infection. Here, CD8+ T-cells or

cytotoxic T-lymphocytes (CTL) contribute to viral clearance

by direct lysis of the infected cells via perforins and granzymes

or expression of tumor necrosis factor (TNF) ligands (e.g. Fas

ligand) of which the receptors (e.g. Fas) are expressed on

infected cells. Both mechanisms result in apoptosis of the

infected cells after which the cell debris is cleared by

phagocytes such as macrophages and neutrophils (46). These

CD8+ T-cells, which often target more conserved epitopes of
A B

DC

FIGURE 2

Schematic overview of the immune response after influenza infection. (A) Overview of the innate immune response which forms a first-line
barrier in the mucosal surfaces. Viral RNA recognition by several pattern recognition receptors (PRR) like toll-like receptors (TLR), Nod-like
receptors (NLR) and RIG-I-like receptors (RLR) leads to the secretion of type I interferons (IFNs) and pro-inflammatory cytokines such as IL-1b,
TNF-a and IL-6. Antigen presenting cells (APCs) capture the antigens and migrate via the afferent lymph vessels to draining lymph nodes where
they present the antigens to T-and B-lymphocytes. (B) Overview of the adaptive immune response in peripheral lymphoid tissue. T-and B-
lymphocytes undergo a stepwise process of activation, proliferation and differentiation. Influenza infections typically induce a Th1-biased
immune response. After activation, CD4+ and CD8+ T-cells migrate to the site of infection while long-lived plasma cells migrate to the bone
marrow. (C) Overview of the adaptive immune response in the respiratory tract. Here, CD8+ T-cells or cytotoxic T-lymphocytes (CTLs)
contribute to viral clearance by direct lysis of the infected cells via perforins and granzymes or via a Fas-dependent processes. (D) The
respiratory tract once the infection is cleared, 90% to 95% of the influenza-specific T-cells undergo apoptosis and the remaining cells are
destined to become long-lived tissue-resident memory T-cells (Trm). Figure created with BioRender.com.
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internal proteins, offer a broader protection against different

distinct influenza strains (47). The main viral antigens that

induce a CD8+ response are the internal NP and PA proteins

(48). CD4+ T-cells on the other hand mainly act indirectly by

producing various cytokines which support B-cells and are

crucial for CD8+ T-cells to acquire their killing capacity.

However, a small subset of CD4+ T-cells has also direct

cytolytic capacities via granzyme B and perforin dependent

mechanisms and represents an important antiviral effector of

cell-mediated immunity against influenza infection (27, 49).

Different non-cytolytic subsets of CD4+ T-cells exist (Th1,

Th2, Th17, follicular T-helper cells (Tfh) and regulatory T-

cells (Treg)) which are all characterized by their unique cytokine

patterns and functions. Influenza virus infection induces all

CD4+ T-cell responses but there is a bias towards a Th1

response. The main function of Th1 cells is to enhance the

pro-inflammatory cellular immunity while Th2 cells promote

anti-inflammatory immune responses. Polyfunctional T-cells, T-

cells with multiple functions such as degranulation of cytotoxic

proteins and simultaneous production of multiple cytokines, are

functionally superior over single-cytokine producing cells and

are important in control of infection (50). In pregnant women, it

was demonstrated that the proportion of polyfunctional CD4+

T-cells was inversely correlated with disease severity (51).

For the induction of a robust antibody response, the Tfh are

critical. These cells are responsible for the formation and

function of germinal centers in which the B-cells mature (45,

52). The neutralizing antibodies produced by these B-cells,

which mainly target the (globular head of) HA and NA

proteins of the virus, are critical for preventing serious

symptoms and even death after infection. Despite the fact that

yearly re-emerging viral strains can escape this humoral

immunity by point mutations in the receptor binding region,

pre-existing non-neutralizing antibodies can play a role in

preventing serious disease and/or reduce mortality by

activating antibody dependent cytotoxicity, cellular

phagocytosis or complement system activation (53). Influenza-

specific B-cell responses can also include less frequent responses

against highly conserved epitopes of HA (stalk region), NA or

M2e which are able to convey a broader cross-protection against

different strains. Finally, B-cells produce cytokines which

regulate the general immune response and can act as antigen

presenting cells (APCs) to T-cells (46).

In general, natural infections induce a more diverse and

broader protection compared to the vaccine-induced immune

response. Recently, Miyauchi et al. demonstrated that after

natural infection, IL-4 derived from follicular T-helper cells

plays an essential role in the expansion of rare B-cells from

the germinal center which is critical for generating broadly-

protective antibodies (54). Natural infections are also able to

induce cross-reactive NA antibodies while vaccination is less

able to do so (55).
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After clearance of the primary infection in the lungs, 90% to

95% of the influenza-specific T-cells undergo apoptosis and the

remaining cells are destined to become long-lived memory T-

cells. These cells are characterized by a high proliferative

potential, a multipotent state, long-term survival and the

capacity of self-renewal in the absence of the antigen. Upon

re-infection, these cells undergo a rapid clonal expansion and

differentiate to secondary effector T-cells in order to control the

infection faster (45). Memory T-cells can be divided in three

groups based on their location. A first group patrols the

secondary lymphoid organs, the second circulates between the

blood and non-lymphoid tissues while the third group resides in

the lungs and the cells are called tissue-resident CD8+ T-cells

(45). Recently, it has been demonstrated that lung-resident

memory CD8+ T-cells are polyfunctional (antiviral/cytotoxic

activity and chemokine/GM-CSF production) and have diverse

T-cell receptor profiles indicating that they can immediately

detect and combat different viral influenza strains via different

mechanisms (56, 57). Lung resident T-cells however do not

maintain long and wane over time due to an imbalance between

apoptosis and lung recruitment of memory T-cells from the

circulation (58). Measurement of these lung resident CD8+ T-

cells in clinical trials is difficult as these can only be collected

using invasive broncho-alveolar lavage or tissue biopsy. Different

studies demonstrate the importance of memory T-cells in

protection against re-infection of seasonal influenza (26, 27,

59, 60). A recent challenge study performed by Paterson et al.

demonstrated that the number of influenza-specific memory

CD8+ T-cells in circulation is inversely correlated with viral load

(61). Both CD4+ and CD8+ T-cells induced during several

influenza seasons also offer cross-protection against newly

emerging pandemic strains as demonstrated during the 2009

pH1N1 pandemic (26, 62–64). Indeed, peripheral blood

mononuclear cells (PBMCs) isolated from adults who have

previously been infected are responsive to most influenza A

virus proteins and primarily directed against the more conserved

internal proteins such as NP and M1 (65, 66). This indicates that

these PBMCs may convey broad cross-reactivity towards several

influenza strains.
4 Cell-mediated immunity
after vaccination

Since most people encounter the influenza virus and its

antigenic components at very young age upon a first natural

infection, the administration of an influenza vaccine at adult age

and even during childhood rarely induces a primary immune

response (40).

Classic inactivated split or subunit vaccines are administered

intramuscularly and mainly generate a humoral immune

response against the HA proteins of the strains incorporated
frontiersin.org

https://doi.org/10.3389/fimmu.2022.959379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Janssens et al. 10.3389/fimmu.2022.959379
in the vaccine. To a lesser extent, also NA-specific and non-

neutralizing antibodies against more conserved epitopes such as

the HA-stalk and NP region are generated (67). The magnitude

of the vaccine-elicited IgG antibody response is determined by

pre-existing immunity due to natural infection and/or previous

vaccinations via follicular CD4+ T-cell responses, meaning that

higher post-vaccination antibody responses are obtained in

persons with pre-existing immunity at baseline (68). Follicular

T-helper cells are an important mediator of the vaccine-induced

humoral immunity as the increase of IgG antibodies is directly

correlated with the expansion of Tfh in the circulation after

vaccination (69). Also after intranasal administration of a LAIV,

follicular T-helper cells are activated and proliferate in the

nasopharynx-associated lymphoid tissue (NALT), a process

that is essential for the induction of the anti-HA antibody

response in the nasal mucosa (70). The activation and

expansion of follicular CD4+ T-helper cells is thus crucial and

directly associated with the antibody response after vaccination

with either an intramuscular inactivated vaccine or an intranasal

LAIV. In addition, LAIV vaccines also induce B-cell responses in

the tonsils which correlate with the concentrations of systemic

antibodies (38).

For several decades it was unclear whether inactivated

influenza vaccines are able to generate robust antigen-specific

T-cell responses. In 2006, a study demonstrated that after

vaccination with a TIV, influenza-specific IFN-g+ CD4+ and

CD8+ T-cells were significantly increased in children aged 6

months to 4 years, but not in children of 5 to 9 years old nor in

adults (71). This is probably due to the fact that older children

and adults have already been exposed to the virus and/or vaccine

(s) before and that post-vaccination fold changes of cellular

immunity are inversely correlated with pre-vaccination levels or

in other words, the higher the baseline level of pre-existing T-

cells the lower the fold increase in IFN-g+ T-cells after

vaccination. Unlike TIV, LAIV vaccine was still able to induce

significant increases in the 5 to 9 year old group, but not in adults

(71). These results were confirmed by other studies that showed

comparable low T-cell responses in TIV and LAIV vaccinated

adults, but a significant induction of these responses in younger

children receiving LAIV as demonstrated by IFN-g-ELISpot and
flow-cytometry based Intracellular Cytokine Staining assays (see

further) (72, 73). The fact that LAIV is less effective in adults

may be explained by the fact that older adults have higher pre-

existing immunity acquired via previous natural infections and/

or vaccinations which hampers infection by and replication of

LAIV in the nasal cavity. Compared to inactivated vaccines,

LAIV mimics more a natural infection and is able to generate

broader T-cell responses and has thus the potential to generate a

broader protection in younger children (38). In addition, LAIVs

are also able to generate cross-reactive tonsillar CD8+ T-cell

responses which recognize conserved epitopes from a broad

range of seasonal and pandemic strains (74).
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In general, vaccination offers a less strong immunization

compared to natural infection. Indeed, fewer CD4+ memory T-

cells or long-lived antibody-producing B-cells are generated after

vaccination compared to natural infection and it is suggested

that very high antigen levels are needed for vaccine-induced

CD4+ effector T-cells to become memory T-cells (75). In 2020, a

study concluded that infection elicits a stronger (polyfunctional)

CD4+ response compared to vaccination in organ transplant

recipients and thereby likely offers a better protection against

reinfection (76). CD8+ T-cell development is determined by

numerous factors such as the abundance, duration and tissue

distribution of viral antigens and the form in which these

antigens are presented to the APCs. All of these factors

generating a strong CD8+ T-cell response are more favorable

during natural infection (77). The composition of antigens to be

ingested by APCs is also a key factor in the breadth of T-helper

and B-cell responses. The antigen structure of native viruses is

more complex compared to those present in vaccines which

again leads to broadening of the immune response via epitope

spreading (77). New strategies are thus necessary for the

development of novel influenza vaccines which elicit stronger

cross-reactive T-cell responses that mimic or even exceed the

cellular immunity elicited by a natural infection.
5 Methods to assess cell-mediated
immunity

A wide variety of techniques has been developed to analyze

the magnitude and functional characteristics of the cellular

immune response after infection or vaccination (Table 2).

Traditional techniques are based on the detection of cytokine

responses, phenotyping of T-cells, proliferation and cytotoxic

activity of T-cells while more recent techniques are based on

differential gene expression and activation of signal transduction

pathways in activated immune cells. Here we discuss some

assays which are used to study the immunogenicity of

influenza vaccines or can be applied for the evaluation of new

or improved vaccines. It is to be expected that one or more of

these techniques will contribute to establish future cellular

immune correlates of protection.

5.1. Cytokine-based assays

5.1.1. Detection and quantification of cytokines
produced by activated immune cells in vitro

Cytokines are among the most commonly measured

indicators of infection- or vaccine-induced immune responses.

Enzyme-linked immunosorbent assay (ELISA) techniques,

commonly used for the quantification of antibody

concentrations and as such for the assessment of humoral

immune responses, can also be applied for measurement of
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TABLE 2 Assays to evaluate cell-mediated immune responses.

Class Assay Cell type(s) Cell
Enumeration

(Y/N)

Cell
Phenotyping

(Y/N)

Description Read-out

Cytokine-based ELISA T-, NK- and
NKT-cells

N N Detection of one cytokine secreted in supernatant by
activated cells

Colorimetric

Cytometric
bead array/
Luminex

T-, NK- and
NKT-cells

N N Detection of multiple cytokines secreted in supernatant by
activated cells

Flow
cytometry

IFN-g
ELISpot

T-, NK- and
NKT-cells

Y N Detection of one cytokine (usually IFN-g) which is secreted
by activated cells

Colorimetric

Fluorospot T-, NK- and
NKT-cells

Y N Detection of multiple cytokines secreted by activated cells Fluorescence

Flow
Cytometry-
based

ICS Depending on
markers

Y Y Detection of multiple cytokines intracellular in activated cells Flow
Cytometry

Cytokine
secretion
assay

T-, NK- and
NKT-cells

Y Y Detection of one cytokine (usually IFN-g) which is secreted
by activated cells with simultaneous characterization of
secreting cell (CD4, CD8, NK)

Flow
Cytometry

Tetramers CD8+ T-cells Y Y Detection of activated antigen-specific CD8+ T-cells via MHC
I tetramers

Flow
Cytometry

CD4+ T-cells Y Y Detection of activated antigen-specific CD4+ T-cells via MHC
II tetramers

AIM CD4+ T-cells Y Y Detection of activated antigen-specific CD4+ T-cells via
activation markers

Flow
Cytometry

Proliferation 3H-
thymidine

All dividing
cells

N N Detection of proliferation by incorporation radioactivity Scintillation
counter

BrdU All dividing
cells

Y Y Detection of proliferation by incorporation fluorescent signal Colorimetric/
Flow
Cytometry

EdU All dividing
cells

Y Y Detection of proliferation by incorporation fluorescent signal Flow
Cytometry

CFSE All dividing
cells

Y Y Detection of proliferation by decreasing fluorescent signal Flow
Cytometry

Alamar blue All dividing
cells

N N Reduction of substrate by mitochondria to a red colored
product

Colorimetric

Cytotoxicity 51Cr release Cytotoxic
CD8+ T-cells
and NK-cells

N N Detection of radioactivity released by target cells in
supernatant

Scintillation
counter

LDH Cytotoxic
CD8+ T-cells
and NK-cells

N N Detection of LDH released by target cells in supernatant Colorimetric

Calcein-AM Cytotoxic
CD8+ T-cells
and NK-cells

N N Detection of calcein released by target cells in supernatant Fluorometry

CD107a Cytotoxic
CD8+ T-cells
and NK-cells

Y Y Detection of CD107a Flow
cytometry

Perforins/
Granzyme B

Cytotoxic
CD8+ T-cells
and NK-cells

Y Y Detection of perforins and granzyme B Flow
cytometry

Transcriptomics Gene
expression
scRNA-seq

PBMC N Y Differential expression between activated and resting cells Microarray
RNA
sequencing

Other JAK-STAT
pathway

PBMC N N Increased activity of JAK-STAT pathway in activated cells Microarray

B-cell
ELISpot

B-cells Y Y Detection of antibodies secreted by activated cells Colorimetric
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other proteins such as cytokines. Cytokine production by

activated immune cells can be quantified in a variety of

biological samples such as serum, plasma, bronchoalveolar

lavage fluids and cell or tissue culture supernatants. ELISA

methods are sensitive, precise and accurate. However, the

technique is less often used for the assessment of cellular

immunity in clinical studies as it is not able to determine the

numbers and type of cells which are producing the cytokines

(78). Standard ELISA kits measure only one cytokine at a time

and require a relatively high sample volume. These

shortcomings can be surmounted by using multiplex

immunoassays which allow simultaneous quantification of

multiple cytokines and/or chemokines. Examples of these are

the BD® cytometric bead array, Meso Scale Discovery®,

AlphaPlex® or Luminex®. These assays are based on different

beads which are coated with specific capture antibodies on which

the different analytes in the sample bind. Fluorescently

conjugated detection antibodies are then added to the mixture

after which flow cytometric analysis occurs (79).

5.1.2. Detection and quantification of cytokine-
producing immune cells activated in vitro

The ELISpot assay has the advantage over the

aforementioned cytokine ELISAs that it determines the

number of cells producing a given cytokine, with IFN-g being

the most frequently analyzed cytokine in influenza research. The

technique was first developed to enumerate antibody-producing

B-cells and was later adapted to quantify cellular immune

responses using IFN-g as marker protein. It is very sensitive

and has been accepted as one of the most validated assays in

human clinical research (80). An advantage is that antigen-

specific cells can be expressed as a fraction of the total number of

plated cells. PBMCs are incubated on a capture antibody coated

plate and then stimulated with an antigen of interest (e.g.

influenza NP, presented as a pool of overlapping peptides or

other). In the presence of this stimulus, antigen-specific T-cells

start producing cytokines (e.g. IFN-g) which binds to the capture
antibodies. In addition, bystander cells (T-cells, NK-cells, NKT-

cells), which lack specificity for the antigen but are activated in a

cytokine-dependent manner, may also start producing cytokines

and are detected by the assay. After incubation (usually 16-20h),

cells are washed away and the bound cytokine (cytokine of

interest) is visualized via a conjugated secondary detection

antibody and a colorimetric reaction (e.g. alkaline-phosphatase

(AP)- 5-bromo-4-chloro-3’-indolyphosphate p-toluidine (BCIP)

or horse-radish peroxidase (HRP)-tetramethylbenzidine (TMB)

systems) (78, 79). The technique is widely used in both pre-

clinical and clinical influenza research. ELISpot assays have been

developed for the detection of cellular immune responses after

influenza infection in both ferrets and mice (81, 82). The

technique was able to demonstrate for the first time cellular

immune responses after influenza vaccination in kidney

transplant patients (83) and showed that atopic dermatitis
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patients elicit lower influenza-specific baseline T-cell responses

(84). Alternatively, other cytokines or proteins can also be

detected using ELISpot. For example, an assay targeted

towards Granzyme B can be used for the quantification of

cytotoxic T-cell responses. Salk et al. demonstrated that

influenza-specific Granzyme B responses are increased after

vaccination (85). For the detection of memory T-cells, a classic

cytokine ELISpot can be used by extending the incubation

period of the cells (10-14 days) (86).

A disadvantage of the classic ELISpot assay is that only one

cytokine at a time can be analyzed. This can be overcome by the

Fluorospot assay which uses multiple cytokine-specific capture

antibodies and different secondary antibodies with various

fluorophores. This technique allows for the detection of so-

called double-cytokine positive cells and is increasingly being

used in influenza research (61, 87–90). Another limitation is that

the ELISpot assay does not reveal the phenotype of the cytokine-

secreting cell while it has been demonstrated that cytokine

production is not limited to T-lymphocytes but occurs via

several cell types of the immune system (e.g. NK-cells) (91).

These l imitat ions can be overcome by using flow

cytometric assays.
5.2. Flow cytometry-based assays

Flow cytometry allows for the characterization of the

functional heterogeneity of T-cell responses as it provides

information on both the phenotype and the cytokine

production of the of the responding T-cells.

Intracellular Cytokine Staining (ICS) enables the detection

and quantification of antigen-specific, low frequency, cytokine-

secreting cells on a single-cell basis. As in ELISpot, the frequency

of activated cells can be expressed as a fraction of the total

population. PBMCs are stimulated with a specific antigen and a

co-stimulus in the presence of a Golgi inhibitor (e.g. Brefeldin A

or monensin) to prevent the secretion of translated cytokines so

they remain intracellular in the cytoplasm. After staining of

extracellular targets (e.g. CD3, CD4, CD8), the cells are fixed and

permeabilized in order to permit intracellular staining of

different cytokines with anti-cytokine antibodies which are

conjugated to different fluorophores. Depending on the

cytokine-specific antibody panels used, different T-cell subsets

(Th1, Th2, Th17,…) can be identified (79). Due to its versatility,

ICS is becoming the predominant method to assess cellular

immune responses in influenza research. The complexity of the

procedure, high reagent and equipment costs and the expertise

needed for correct data acquisition and interpretation, are just a

few disadvantages that limit a widespread use of this technique

(78). Another approach is the cytokine secretion assay in which

the secreted cytokine is retained on the surface of the secreting

cell with the help of bispecific antibodies. One antigen binding

site interacts with a cell surface molecule (e.g. CD45) while the
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other binds to the cytokine secreted by that cell. This cytokine is

then revealed by a specific detection antibody and flow

cytometric analysis (92). This assay has the advantage that it

measures the actual secreted cytokines while ICS may also

measure cytokines which would not necessarily be secreted

and thus are of lesser biological importance.

The tetramer assay is a very specific and sensitive method to

detect antigen-specific CD4+ and CD8+ T-cells. It shows less

intra-assay variation, better precision and linearity compared to

the ICS and ELISpot assays. It is based on tetramers of synthetic

biotinylated MHC Class I (for CD8) and Class II (for CD4)

molecules which are conjugated to fluorescently labeled

streptavidin molecules. These complexes are loaded with

antigen-specific peptides which then bind to the CD4+ or

CD8+ T-cells of interest via the T-cell receptor. This approach

increases the avidity for epitope specific interactions and has

already extensively been used in influenza research (79, 93, 94).

Detection of CD4+ T-cells is more complicated seen the higher

diversity of MHC II allelic variants, but it is not impossible. Ye et

al. were able to detect influenza-specific CD4+ T-cells in healthy

volunteers (95). This approach has also been used to

demonstrate the expansion of specific CD4+ T-cell responses

after influenza vaccination (96, 97). In general, the tetramer

assay is more suitable for pre-clinical research due to the

extensive genetic polymorphisms of the HLA molecules in

humans (78).

Alternatively, activation induced surface markers (AIM) can

be used for the detection of activated antigen specific immune

cells with minimal bystander activation effects. A variety of these

assays have been developed for the detection of antigen specific

CD4+ T-cells. Examples of CD4 activation markers are CD40L,

CD69, OX40, CD25, PD-L1 and 4-1BB (98).
5.3. Proliferation-based assays

As discussed earlier, during an adaptive immune response

activated B and T-cells start to proliferate, a reaction that can be

detected and quantified via different assays. Most in vitro assays

make use of the incorporation of a marker molecule in the

newly-formed DNA of dividing cells. These marker molecules

can be either radio-active compounds or fluorophores that are

measured by a scintillation counter or flow cytometer,

respectively. The very first proliferation assay was the 3H-

thymidine assay in which this radio-active nucleoside is

incorporated in the DNA of dividing cells which results in an

increasing radio-active signal measured with a scintillation

counter. Results are typically reported as a stimulation index

in which the counts measured in stimulated cells are divided by

those measured in unstimulated control culture. This technique

was extensively used in the 80’s and 90’s but was progressively

replaced by non-radioactive alternatives such as the 5-bromo-2’-

deoxyuridine (BrdU) assay. This assay is based on the antibody-
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mediated detection of BrdU which is incorporated in the DNA

of dividing cells. These antibodies can be either conjugated to a

fluorophore and measured by flow cytometry or conjugated to

an enzyme (i.e. AP or HRP) and measured by a colorimetric

reaction (99). A disadvantage of this alternative is that

incorporation of this chemically modified thymidine analog

can induce errors in the dividing cells and hence influence

biological functions such as proliferation (100). An earlier

alternative is the Alamar blue assay in which the blue dye is

reduced to a red colored product by mitochondrial active cells

which is measured by an ELISA reader (101). A more recent

method is based on the incorporation of EdU (5-ethanyl-2’-

deoxyuridine) into DNA and the visualization of a fluorescent

azide after a copper(I) mediated reaction via fluorescence

microscopy or flow cytometry. The main advantage of this

technique is that it is compatible with other fluorescent

markers and thus allows for identification of the dividing cells

while all other assays are not able to distinguish between the

different dividing cells (102). A last assay described here is the

CFSE assay. In this method, long-lived intracellular proteins are

covalently labelled with carboxyfluorescein succinimidyl ester

(CFSE) before the cells are stimulated. After each cell division,

the fluorescent signal is equally divided over both daughter cells

that will generate a signal with half the intensity of the mother

cell. Each cell division can be assessed by measuring the

corresponding decrease in cell fluorescence via flow cytometry.

Like the EdU assay, the CFSE method is also compatible with

other fluorochromes and enables identification of the dividing

cells (103). In addition, this method can also be applied to study

in vivo activation and proliferation of T-cells that have been

CFSE-labeled ex vivo and re-introduced into a living (non-

human) host (104). All these fluorescent-based assays have a

lower sensitivity compared to the 3H-thymidine assay which is

however, for evident reasons, no longer the preferred

method (105).
5.4. Cytotoxicity-based assays

Functional cytotoxic assays quantify the ability of CD8+

cytotoxic T-cells and NK-cells to lyse virus infected cells, a

function of the immune system which is important for viral

clearance. A wide variety of cytotoxic assays exists and can be

classified in different categories such as dye exclusion methods

(e.g. Trypan blue), fluorescent DNA binding dye assays (e.g.

propidium iodide), metabolic activity assays (e.g. MTT assay)

and markers that leak out of dying/dead cells in the supernatant

(e.g. 51Cr, lactate dehydrogenase (LDH)) (106, 107). In both the
51Cr and LDH release assays, cytotoxicity is measured in cultures

wherein, depending on the cell types examined, different ratios

of effector to target cells are used. The difference between both

assays is that LDH is naturally present in the cells while 51Cr has

to be loaded into the target cells before these are confronted with
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the effector cells. Non-radioactive alternatives for 51Cr are the

Calcein-AM or fluorolysometric-CTL assays which measure the

release of fluorescent compounds in the supernatant (108).

While 51Cr is bound to proteins in the cytoplasm, Calcein-AM

is taken up by live cells where the AM group is detached via

cytoplasmic esterase activity to generate the fluorescent calcein

that is retained in the live cell and released after necrosis/

apoptosis of this cell (107). In addition, a number of flow

cytometric approaches can be used for the detection of

apoptosis in the target cells (Annexin V staining or caspase

activation) (109). In general, these assays measure the

elimination of target cells but are unable to directly measure

the number of cytotoxic effector cells (78).

This is overcome by flow cytometric analysis using CD107a

staining which allows for the detection of activated cytotoxic

CD8+ T-cells and NK cells. CD107a is a lysosomal-associated

membrane protein (LAMP-1) which is present on the lipid

bilayer of lytic granules. Therefore, membrane expression of

this protein is a marker for cytotoxic degranulation of cells and it

has been demonstrated that this expression (as measured by flow

cytometry) is directly correlated to increased cytotoxicity (as

measured by a fluorolysometric assay) (110, 111). This method is

increasingly being used in influenza infection and vaccine

research (112–115). Other methods are the detection of

perforins and granzyme B by flow cytometry (but also by

ELISA or ELISpot) which are also indirect markers for

cytotoxicity (85, 116, 117).
5.5. Transcriptomics

Amore recent approach to studypathogen-orvaccine-induced

responses is the measurement of differential gene expression

patterns between activated and non-activated immune cells

which can be investigated by microarray or more recent next

generation sequencing technologies (118). Measuring the effects

of vaccination on gene expression can be used to assess both the

safety and immunogenicity of investigational vaccines (119, 120).

Several studies demonstrate that gene expression is altered after

natural influenza infection or vaccination. The inter-individual

variability observed after natural infection or vaccination can be

explained by inter-individual differences in gene expression in

airway epithelial cells and immune cells (121). Alcorn et al.

showed that these gene expression changes are transient in time

with different differentially expressed genes at three and seven days

after vaccination compared to pre-vaccination expression profiles

(122). Another study demonstrated that these expression changes

are sex-specific which can explain the sex-dependent differences in

immune responses after vaccination. Based on gene expression

data, it is suggested that women generate a stronger early immune

response within 24 hours after vaccination while men are able to

maintain a longer response (123). In addition, the difference in

immune responses betweenLAIVand inactivated vaccines canalso
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be explained at the level of gene expression (124). de Armas et al.

even suggested to use transcriptional data as a correlate of vaccine

response in HIV-infected children (125). A recent study

demonstrates that influenza vaccines are also able to

epigenetically remodel cells of the innate immune system

(monocytes and dendritic cells) which is associated with a higher

expression of antiviral genes (126).

One of the disadvantages of this bulk sequencing is that the

behavior of all cells is averaged within the population and that

antigen-specific responses are ‘diluted’ by non-affected cells. A

limitation which is not present in single-cell approaches. Single-

cell RNA sequencing (scRNA-Seq) is able to characterize gene

expression on single-cell level and shows great promise in

vaccinology by better understanding host-pathogen interactions

(127). One of the first studies using scRNA-Seq in influenza-

vaccine research was performed in 2019 where Neu et al.

demonstrated that vaccine-negative plasmablasts were

transcriptionally distinct from antigen-induced plasmablasts (128).

Another approach to identify cellular immune responses after

vaccination is the analysis of signal transduction pathways. A

recently developed mRNA-based method uses JAK-STAT signal

pathway activity to quantitatively measure cellular immune

responses using microarray data. In this assay, a higher pathway

activity is associated with a stronger adaptive immune response.

This assay can be used for the analysis of whole blood samples or

isolated PBMCs. Activity of the JAK-STAT1/2 pathway is elevated

in whole blood samples of influenza infected patients. However,

after vaccination with a TIV, no increases in activity are observed

which can be explained by the fact that TIV do not elicit a strong

cellular immune response (129). Alternatively, phosphorylation-

based signaling pathways can also be analyzed using phospho flow-

cytometry inwhich phospho-specific antibodies target epitope sites

that are phosphorylated upon activation. Combined with

phenotypic antibodies, this technique allows for the analysis of

intracellular phosphorylation events on single-cell level in a mixed

cell population (130, 131).

Besides transcriptomics, other biological systems such as

metabolomics, proteomics, lipidomics and glycomics can be

employed to investigate influenza vaccine responses (132).
5.6. B-cell assays

B-cell activity can be indirectly detected via measurement of

antibody titers, but also by using ELISpot which uses plates that

are coated with the antigen of interest (e.g. HA, NA, NP) on

which the antibodies produced by the B-cells bind. This

approach is often used for detection of memory B-cells and/or

plasmablasts (133). Using this technique, Zhan et al.

demonstrated that patients with common variable immune

deficiency (CVID) showed impaired (memory) B-cell

responses after vaccination which matches with the impaired

antibody titers observed (134). In addition, flow-cytometry can
frontiersin.org

https://doi.org/10.3389/fimmu.2022.959379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Janssens et al. 10.3389/fimmu.2022.959379
also be used for the detection of circulating influenza-specific B-

cells using recombinant HA as stimulating antigen. The

advantage of this technique is that it allows for the

identification of B-cell subsets such as follicular, germinal

center, plasmablasts and memory B-cells by using multiple

markers (135).
5.7. Standardization of assays

It is clear that using these methods may contribute to the

establishment of cellular immune correlates of protection in

influenza vaccine trials. However, the diversity of these assays, the

large degree of variation in their execution and the way data are

analyzed and reported, remain a considerable challenge for

comparing cellular immunogenicity data of influenza vaccines

between different trials. The lack of standardized protocols and

identification of positive cut-off values leads to a high

interlaboratory variability. For example in the IFN-g ELISpot

assay, parameters that are variable among laboratories are:

incubation times, seeding density, concentration of antigen,

antigen type (whole protein, virion or peptide pools), use of fresh

or cryopreserved PBMCs and differences in equipment and

reagents. As a result, even baseline ELISpot responses vary greatly

between different studies. Therefore, it can be more informative to

use fold changes (pre-vaccination vs post-vaccination) rather than

absolute ELISpot data to define correlates of protection using the

IFN-g ELISpot assay. These data then need to be generated in the

context of human challenge studies or studies where natural

influenza infections are monitored (79). Similar discrepancies

exist when using the ICS assay with also a great technical

variability between laboratories. The limited number of human

influenza challenge studies and the non-existence of large-scale

prospective population studies further explain why no cellular

correlates of protection have yet been defined.

Initiatives such as FLUCOP aim at developing standardized

methods to assess cellular immunity. These may eventually reduce

the interlaboratory variation and hereby facilitate the discovery of

cellular correlates of protection and the development of cross-

protectiveuniversal influenza vaccines.Oneof themain goals of the

project was the development of standardized protocols for PBMC

preparation and cryopreservation, IFN-g ELISpot, ICS and data

analysis and reporting (136). Similar initiatives exist for the

standardization of serological assays such as the HI, SRH and

microneutralization assays (i.e. FLUCOP and CONSISE) (137).
6 Cell-mediated immunity in (next-
generation) influenza vaccine trials

As of February 2017, the European Medicines Agency’s

(EMA) commit tee for human medic ines (CHMP)
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implemented new guidelines for market authorization of novel

influenza vaccines (34). Measurement of cell-mediated

immunity (CMI) is strongly encouraged, especially in older

adults whom as mentioned above, conventional correlates of

protection do not really apply (138). CMI assessment should

therefore be performed for every new influenza vaccine in

clinical development as this is essential to obtain a clear

understanding of the immune response in the population of

interest (35).

Several novel or improved influenza vaccines are currently

under investigation, such as vaccines formulated with potent

adjuvants, vaccines targeting more conserved viral proteins,

viral-vectored vaccines and mRNA based vaccines (139).

Better influenza vaccines are much needed to improve the

overall protective efficacy, in particular in older adults by

overcoming immunosenescence and to offer a broader and

more durable protection in all age groups.

This chapter provides an overview of a selection of clinical

trials in which the cellular immunogenicity of novel or improved

influenza vaccines has been examined.
6.1. Cell-mediated immunity induced by
adjuvanted influenza vaccines

Adjuvants are vaccine components that enhance the

magnitude, breadth and durability of the immune response

(140). Adjuvantation of influenza vaccines has been applied to

increase the immunogenicity of trivalent (and later quadrivalent)

influenza vaccines in older adults to restore their weaker immune

responses as a consequence of immunosenescence. The first and

most widely used adjuvants are aluminium salts, but it has been

demonstrated that these adjuvants are not effective when

combined with influenza antigens (141). The first novel type of

adjuvant authorized for widespread use in influenza vaccines were

oil-in-water (o/w) emulsions (142). These achieve a superior

immune response post-vaccination by releasing specific

cytokines like IL-5 and IL-8 at the site of injection which

increase antigen uptake by APCs and induce a mixed Th1/Th2-

oriented immune response (143). Three o/w emulsions that have

already been investigated for use in commercial influenza vaccines

are AS03 (GlaxoSmithKline; GSK), MF59 (Novartis), and AF03

(Sanofi Pasteur). AS03 was been marketed for use in a pandemic

H1N1 vaccine in 2009 (Pandemrix®). MF59 is approved for use in

seasonal flu vaccines (Fluad®) while AF03 was only evaluated in

clinical studies of influenza vaccine candidates (144). Interestingly,

several studies demonstrate the generation of higher antibody

titers and a larger expansion of vaccine-specific CD4+ T-cells after

vaccination with an MF59 adjuvanted TIV compared to a non-

adjuvanted TIV, in young children, adults and older adults (145–

148). A recent study demonstrated that a high antigen dose and

MF59 adjuvantation also resulted in increased polyfunctional
frontiersin.org

https://doi.org/10.3389/fimmu.2022.959379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Janssens et al. 10.3389/fimmu.2022.959379
CD4+ and CD8+ T-cell responses in older adults compared to a

standard dose of the seasonal inactivated vaccine (149). Other

studies in both children and adults showed that CD4+ T-cell and

B-cell responses were stronger in the AS03-adjuvanted group

compared to the non-adjuvanted group (150–153). These studies

demonstrate the superiority of adjuvanted over non-adjuvanted

vaccines in both humoral and cellular responses, thus allowing for

antigen sparing and a broader cross-reactive protection (145–148,

154). During the flu season 2008-2009, a large randomized phase

3 trial was done in adults aged 65 and older to compare the

protective efficacy of AS03-adjuvanted versus non-adjuvanted

TIV. The study showed that an AS03-adjuvanted TIV is not

superior to a non-adjuvanted TIV for the prevention of all types of

influenza in older adults. However, the data suggested that the

benefit of influenza vaccination in elderly people might vary

depending on influenza subtypes. In a post-hoc analysis, the

highest increase in protection (12%) of the adjuvanted TIV was

observed against influenza A H3N2. CMI was not explored in this

study (155). Other more recent studies have meanwhile

demonstrated that adjuvanted QIV could offer a reduction in

costs for society by reducing hospital admissions and deaths

compared to a high dose QIV (156, 157).

Since the marketing of these first o/w adjuvants, many more

substances are being considered as potential adjuvants for

influenza vaccines that could induce strong humoral but also

cell-mediated immunity. However, none of these have been

licensed yet and most of them are still in the preclinical

stage (158).

Another promising adjuvant is Matrix-M, a saponin-based

adjuvant patented by Novavax (159, 160). Matrix-M has a potent

and well-tolerated effect by stimulating the entry of APCs into

the injection site and enhancing antigen presentation in local

lymph nodes. It has recently been licensed in a recombinant

nanoparticle vaccine against SARS-CoV-2 (Nuvaxovid™). In a

pivotal phase III trial (NCT04120194) in older adults (≥65

years), a recombinant quadrivalent nanoparticle influenza

vaccine with Matrix-M, called NanoFlu™, has been shown to

induce non-inferior immunogenicity in terms of HAI response

and a significant greater induction of cellular immunity in

comparison with a classic quadrivalent vaccine (Fluzone

quadrivalent) seven days after vaccination as measured by ICS

(IL-2, CD40L, IFN-g and TNFa). The fraction of both single

positive as well as poly-positive CD4+ T-cells was higher in the

adjuvanted vaccine group (160). FDA has granted Fast Track

designation for NanoFlu™ in older adults.
6.2. Cell-mediated immunity induced by
vaccines targeting conserved
influenza proteins

As discussed above, the effectiveness of currently licensed

influenza vaccines largely depends on a good match between the
Frontiers in Immunology 13
vaccine strains and the circulating strains. When a mismatch

occurs, the vaccine’s ability to protect against antigenically

different circulating strains is reduced. To circumvent this

major shortcoming, novel vaccines are being developed that

target more conserved influenza proteins, or conserved epitopes

thereof, rather than the highly variable globular head of HA.

This approach aims to induce a broader immune response, not

only antibody-mediated but also cellular, with a higher potential

to convey cross-protection against drift variants and ideally also

shifted strains with pandemic potential (161–163). One of those

well-conserved proteins that displays very limited antigenic

variation is the influenza nucleoprotein (NP) (164). Recently,

several human observational studies and pre-clinical studies

reported that CD4+ and/or CD8+ T-cells specific to NP

epitopes could provide additional protection (26, 27, 165, 166).

OVX-836, a recombinant influenza vaccine developed by Osivax

(Lyon, France), contains seven copies of the target antigen (NP)

fused to the patented heptameric oligomerization domain

(oligoDOM®) (167). Oligomerization of antigens has been

proven to induce improved humoral and cellular immune

responses in animals (168, 169). In a phase I dose-finding

study, several formulations of OVX-836 were investigated for

cellular immunity. All dose levels were able to induce cellular

immune responses on day 7 post-vaccination, as demonstrated

by IFN-g ELISpot (167). A phase II study evaluating the

immunogenicity, safety and reactogenicity of different dose

levels of OVX-836 compared to the QIV Influvac Tetra™

confirmed these ELISpot results and showed an increase of

CD4+ polyfunctional T-cells in a dose-dependent manner (170).

A second novel influenza vaccine candidate is the Flu-V

recombinant vaccine, developed by PepTcell (SEEK, London,

UK). It contains four synthetic polypeptides that cover regions

from the conserved NP, matrix proteins M1 and M2 of both

human and animal influenza A and B strains and is administered

with a potent Montanide ISA-51 water-in-oil emulsion adjuvant

(171). In the Phase I trial, PBMCs from participants that

received the study vaccine demonstrated a 2-fold increase in

IFN-g production three weeks after vaccination as measured by

ELISA (172). This was confirmed in the subsequent Phase II

study. Administration of a single dose of adjuvanted Flu-V

resulted in a strong Th1-skewed cellular immune response, as

measured by both ELISA and ICS (173).

A third vaccine candidate directed against conserved

influenza epitopes was the Multimeric-001 (M-001) vaccine

developed by BiondVax Pharmaceutical Ltd. (Israel). M-001 is

a synthetic recombinant protein specifically designed to activate

both cellular and humoral immunity. It contains 3 repetitions of

9 B- and T-cell epitopes from the HA, M1, and NP viral proteins

from both influenza A and B strains. In the initial phase I trial,

the M-001 vaccine was shown to induce cellular responses as

demonstrated by the 3H-thymidine lymphoproliferation assay

and secretion of IL-2 and IFN-g by ELISA upon stimulation of

PBMC with M-001, different influenza virus strains or T-helper
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epitope peptides derived from the NP and HA proteins (174).

The phase II trial results demonstrated that M-001 was able to

trigger a significant increase in polyfunctional CD4+ T-cells

(ICS) when it was used as a primer for subsequent QIV

vaccination (unpublished results) (175). However, a pivotal

phase III study later that year demonstrated no significant

difference between vaccine and placebo groups in the

reduction of flu illness and severity and therefore failed to

meet both the primary and secondary efficacy endpoints

(unpublished results) (176).
6.3. Cell-mediated immunity induced by
viral vector-based influenza vaccines

Since the 1990s, viral vector-based vaccines have been

investigated in a wide range of diseases including bacterial and

viral infections, and even some cancers (177, 178). Initially, these

vaccines showed great promise in murine models but had

difficulty reproducing these results in larger animal studies

(179, 180). A Modified Vaccinia Ankara (MVA) vectored

vaccine (MVA-NP+M1) encoding for the full-length NP and

M1 antigens from a H3N2-strain virus has been developed by

Vaccitech, a University of Oxford spin-off. MVA has been

known to generate strong T-cell responses to several antigens,

including malaria, tuberculosis, and HIV. In a phase I trial,

Berthoud et al. showed that the MVA-NP+M1 vaccine induced

T-cell responses within 1 to 3 weeks after administration as

measured by IFN-g ELISpot and ICS (181). In adults aged 50 to

59 years, increased T-cell responses remained significant until

one year after vaccination. In subjects aged 70 years and older,

induced T-cell responses only remained significant until 3 weeks

post-vaccination, which could indicate a lower efficacy in this

age group. Both CD4+ and CD8+ T-cells were increased with also

an expansion of pre-existing CD8+ T-cells (182).

A phase IIb study was conducted where participants received

the MVA-NP+M1 vaccine after seasonal QIV vaccination.

Comparable levels of CD4+ and CD8+ T-cells were seen as in

the earlier phase I trials, but the vaccine regimen was unable to

decrease total viral shedding, symptom score, or the incidence of

influenza-like illness after infection (183). The authors

hypothesized that these unexpected results might be caused by

the fact that intramuscular vaccination only increases peripheral

T-cells without increasing the resident-memory T-cells residing

in both the upper and lower respiratory tract which are

important for the local mucosal immune response (183, 184).

Next, a heterologous vaccination regimen of the MVA-NP+M1

in combination with a chimpanzee adenovirus ChAdOx1 NP

and M1 (ChAdOx1 NP+M1) was investigated in a following

phase I study. This adapted scheme also showed promising

results with significant increases in T-cell responses after

vaccination and showed slightly higher IFN-g ELISpot
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responses compared to the single MVA-NP+M1 dose

regimen (185).

Besides the MVA vector, adenoviruses are another

potential vector for influenza vaccines (186). As these viruses

belong to the same family as some naturally occurring

respiratory viruses, they can, when administered intranasally,

mimic natural infection (e.g. penetrate nasal mucosa) in a very

similar way as influenza viruses (187). These vectors are known

to have an excellent safety profile and induce a balanced

humoral and cell-mediated immune response when used as a

vaccine platform (186). Altimmune Inc. has recently developed

a novel influenza vaccine for intranasal administration named

NasoVAX (188). By incorporating a HA gene into a

replication-deficient adenovirus, this adenoviral vector can

transduce the HA gene into cells of the nasal mucosa, leading

to local expression of the encoded HA protein and presentation

to resident CD8+ T-cells through the HLA class I antigen

processing machinery (187, 188). The proof of concept was

confirmed in a phase I trial where (humoral) immune

responses were weak but measurable (189). In a subsequent

phase II trial, the intranasal NasoVAX vaccine was able to

induce a dose-dependent and significant T-cell response as

measured by IFN-g ELISpot eight days after vaccination.

However, it remains unclear whether NasoVAX can induce

resident memory T-cells in the respiratory tract as this was not

within the scope of the trial (188).
7 Conclusion

It is clear that current licensed influenza vaccines do not

always offer the protection needed to prevent illness after

influenza infection. Antigenic drift of the virus necessitates

repetitive yearly vaccinations to stay protected and even then,

vaccine efficacy is far from satisfactory and largely dependent on

the match between the vaccine strains and circulating strains.

Adjuvanted or next generation universal influenza vaccines

that target more conserved epitopes and elicit broader cross-

reactive T-cell responses could overcome these shortcomings of

the current vaccines. In future trials, assessment of induced

cellular immune responses will thus become increasingly

important. However, due to the large variability in both the

technical aspects of the assays and representation of the data, it

remains challenging to identify cellular correlates of protection

for influenza vaccines.

The FLUCOP project was initiated to support the

development of new influenza vaccines by tackling the issue of

assay diversity via the harmonization of the most widely used

assays to measure humoral and cellular immune responses

elicited by influenza vaccines and developing and evaluating

the usefulness of new analytical methods.
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Krammer F, et al. Reactogenicity, safety, and immunogenicity of chimeric
haemagglutinin influenza split-virion vaccines, adjuvanted with AS01 or AS03 or
non-adjuvanted: a phase 1–2 randomised controlled trial. Lancet Infect Dis (2022).
doi: 10.1016/S1473-3099(22)00024-X

151. Kim JH, Drame M, Puthanakit T, Chiu NC, Supparatpinyo K, Huang LM,
et al. Immunogenicity and safety of AS03-adjuvanted H5N1 influenza vaccine in
children 6-35 months of age: Results from a phase 2, randomized, observer-blind,
multicenter, dose-ranging study. Pediatr Infect Dis J (2021) 40(9):e333–e9. doi:
10.1097/INF.0000000000003247

152. Moris P, van der Most R, Leroux-Roels I, Clement F, Dramé M, Hanon E,
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