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Monoclonal antibody therapy
of herpes simplex virus:
An opportunity to
decrease congenital and
perinatal infections

Iara M. Backes1,2, David A. Leib1* and Margaret E. Ackerman2*

1Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon,
NH, United States, 2Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
The fetal/neonatal period represents both a unique window of opportunity for

interventions as well as vulnerability to a number of viral infections. While

Herpesviruses such as herpes simplex virus (HSV) are highly prevalent and

typically of little consequence among healthy adults, they are among the most

consequential infections of early life. Despite treatment with antiviral drugs,

neonatal HSV (nHSV) infections can still result in significant mortality and

lifelong neurological morbidity. Fortunately, newborns in our pathogen-rich

world inherit some of the protection provided by the maternal immune system

in the form of transferred antibodies. Maternal seropositivity, resulting in

placental transfer of antibodies capable of neutralizing virus and eliciting the

diverse effector functions of the innate immune system are associated with

dramatically decreased risk of nHSV. Given this clear epidemiological evidence

of reduced risk of infection and its sequelae, we present what is known about

the ability of monoclonal antibody therapies to treat or prevent HSV infection

and explore how effective antibody-based interventions in conjunction with

antiviral therapy might reduce early life mortality and long-term morbidity.

KEYWORDS

IgG, herpes simplex virus (HSV) infection, monoclonal Ab, neonatal infection,
effector function
Introduction

TheWorld Health Organization estimates that around the world over 3.7 billion people

have oral herpes infections, and that approximately half a billion people experience genital

herpes (1).Herpes simplex virus (HSV) infects the host for their lifetimeby infectingneurons

of the peripheral nervous system or central nervous system (CNS), the virus can then

reactivate asymptomatically or cause cutaneous lesions (2). Whereas current antivirals
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(acyclovir and its derivatives) decrease the duration and severity of

symptoms for millions of adult individuals living with HSV,

infections in early life result in substantial morbidity and

mortality despite therapy (3–7), therefore adjunct therapy with

distinct mechanisms from those employed by small molecule

antivirals could provide additive or synergistic benefits. Human

and animal model data support that antibodies can provide robust

protection in the setting of primaryHSV infection. This reviewwill

describe the therapeutic prospects of antibody (Ab) mediated

protection in primary and recurrent HSV infections and the

pipeline to develop monoclonal antibody (mAb) therapy with a

focus on neo/perinatal HSV (nHSV) infection.
Maternal and neonatal HSV
infections

Incidence

Approximately 2 – 4% of women acquire HSV during

pregnancy (8). While both HSV serotypes can result in nHSV,

HSV-1 predominates in the Americas, Europe and the Western
Frontiers in Immunology 02
Pacific, and HSV-2 predominates in Africa, South East Asia, and

the Eastern Mediterranean (9). Maternal infection during

pregnancy is managed with anti-viral therapy and can resolve

without severe outcomes in both mother and child (10). Strong

epidemiological evidence as to the importance of antibodies in

preventing HSV infection comes from the dramatic influence of

maternal seropositivity on nHSV risk (Figure 1). Primarymaternal

infections acquired during late gestation present a significant risk

(25 - 50%) of transmitting HSV to neonates when compared to

women with recurring genital infections (< 3%) (11, 12). The basis

for this reduction is believed to be derived from the development

and transfer of protectivematernal IgGantibodies,which cannot be

achieved if infection takes place close to parturition. Thus, whereas

an effectiveHSV vaccine to prevent adult-to adult spread remains a

challenging goal (13, 14), accomplishment of nHSV protection,

with its defined and short period of risk, may be readily achievable.
Timing and outcomes

In utero infections are rare, representing 5% of nHSV

infections. The majority of nHSV infections, 85%, are acquired
FIGURE 1

Maternal seroconversion and nHSV infection risk. Graphic representing the potential risk of transmitting neonatal HSV when seroconversion is
not achieved or achieved too close to delivery. The majority of infants acquire disease from infected mothers during birth.
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during parturition, while the remaining 10% of infectious take

place post-partum via close contact. Most vertically transmitted

nHSV results from asymptomatic viral shedding of a pregnant

parent, as symptomatic maternal infections often result in birth

via cesarean section, which significantly reduces the risk of

transmission (8, 11, 15).

CongenitalHSV infectionsmay result in skinvesicles or scarring,

eye involvement, microcephaly, and hydranencephaly that are

associated with severe neurological morbidity, and blindness.

Vertical transmission of HSV due to placental hematogenous

spread of infection, as well as amniotic infection, have both been

reported.Despite the lownumbers of congenital infections, detection

of HSV DNA in the placenta is more common than one would

expect. In a recent study, 37% of placentas (n = 160) assessed were

positive forHSV-1viralDNA,withprevious reports ranging from4–

28% (16), while HSV-2 DNA was detected in 9% of placentas (17).

Both studies also reported the presence of HSV DNA in neonatal

cord blood, however neither study had appropriate follow up to
Frontiers in Immunology 03
determine if clinically evident neonatal HSV infections took place

following the detection of HSV DNA (16, 17).

Intrapartum infections tend to be less severe than congenital

infections, but can also result in significant morbidity and

mortality, often presenting as skin, eye and mouth (SEM)

disease, CNS-associated infection, and disseminated viral

infection in visceral organs with or without CNS involvement

(Figure 2). SEM disease typically presents with pathognomonic

skin vesicles. If untreated, SEM disease can progress to more

severe CNS and disseminated disease. Since the implementation

of acyclovir (ACV) therapy and improvements in dosing

strategies, more and more cases initially presenting as SEM are

resolved before progression to more severe disease (7). However,

despite antiviral treatment with ACV, >50% of CNS-associated

disease survivors have neurological morbidity, and disseminated

disease results in ~40% mortality (7).

Additionally, ACV-resistant viruses are recalcitrant to therapy.

The documented mechanisms of ACV resistance involve defects in
FIGURE 2

Consequences of neonatal herpes simplex virus (nHSV). Graphic depicting the different presentations and their respective estimated occurrence in
the clinical setting. Outcomes of each disease presentation when treated with ACV are also displayed for each presentation to the right of color-
coded columns. Skin, eye and mouth (SEM) disease often shows characteristic lesions, some of which are highlighted with dotted lines.
Disseminated (DISS) can often affect lungs, liver, kidneys, and adrenals depicted as yellow overlays. Central nervous system (CNS) disease depicted
as a purple overlay over affected infant’s head. Infant’s image courtesy of K.L. Herrmann, Centers of Disease Control public image library.
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the virally-encoded thymidine kinase (TK) accounting for ~95% of

isolated mutants (18). Generally, TK mutations decrease the fitness

of the virus, hindering reactivation and replication (19), thus in the

immunocompetent host, TK mutant viruses are rarely isolated

(0.3%), and are often expediently cleared (20). For

immunocompromised individuals, who rely exclusively on the

therapeutic effect of ACV for viral clearance, ACV resistance is a

major challenge, and alternatives to ACV are not as readily tolerated

and have increased toxicity (18, 20). To date, ACV resistance has

not been documented in a neonatal case, but it remains a broader

public health issue, especially in bone marrow transplant recipients.

Thus, while antiviral therapy has undoubtedly reduced the

morbidity and mortality of devastating neonatal infections,

additional therapeutic interventions are urgently needed to save

and improve the quality of life of infected neonates (4, 12, 21).
Polyclonal Ab-based protection

Primary disease

The role of polyclonal Abs (pAbs) in protecting humans

from primary HSV infection is better defined than its role in

reactivated HSV disease. The most compelling evidence for Ab-

mediated protection in the setting of HSV disease is the

protection afforded to neonates via the placental transfer of

antibodies (8, 11, 21–23). Specifically, high titers of neutralizing

and antibody-dependent cellular cytotoxicity (ADCC) inducing

Abs in mothers and infants are associated with the absence of

disseminated nHSV (24).
Protection across serotypes

This protection, however, can be HSV serotype specific, as

HSV-1 seropositive mothers who acquired first time genital

HSV-2 infections close to parturition provided less protection

against nHSV. On the other hand, infants born to mothers who

were already seropositive for genital HSV-2 and acquired a new

genital HSV-1 infection were protected (8). It is not completely

understood if this is owed to the anatomical site of infection

(orolabial vs. genital) or to serotype-specific differences. It has

also been noted however, that people who are HSV-1

seropositive often experience a milder or asymptomatic course

of genital HSV-2 infection (25).

Further evidence of type specific infection was also observed

during the HerpeVac clinical trial for young women

(ClinicalTrials.gov Identifier: NCT00057330). This HSV-2

subunit vaccine targeting glycoprotein D (gD) protected

women from genital HSV-1 acquisition, though not from

HSV-2 (26). Together, clinical studies and observations all

support the notion that Abs offer protection from primary

infection, and highlight gaps in our knowledge regarding HSV

serotype specific differences in protection.
Frontiers in Immunology 04
Recurring or reactivated disease

While passively transferred Abs clearly provide significant

protection in early life, it is also clear that the presence of HSV-

specific antibodies do not prevent HSV reactivation in

seropositive individuals. Individuals with reactivating HSV

disease have been noted to have high binding and neutralizing

Ab titers, likely due to repeated antigen exposure (27, 28).

Serological and functional analysis of seropositive symptomatic

and asymptomatic individuals have proposed that Ab specificity

(29) or that naturally occurring Fcg Receptor and Ab

polymorphisms (30) may contribute to viral control. Larger

follow up studies are necessary to better understand the

clinical impact of these observations and to determine how

they may relate to nHSV associated with recurrent/

reactivated disease.
In animal models

Preclinical evidence for Ab-mediated protection during

primary infection is extensive and has allowed rigorous and

well-controlled evaluation of the role of antibodies in affording

protection. In agreement with the clinical studies, pre-existing

maternal infections (31), or vaccination with live-attenuated (32,

33), and trivalent-subunit (34) vaccines show protection from

nHSV disease. Additionally, these studies have established in

both animal models and humans that maternally derived HSV-

specific Abs can access the nervous system (35), and can

decrease neurological behavioral associated with neonatal HSV

infection in animal models (32, 36).

Furthermore, administration of purified HSV-specific IgG to

pregnant dams is also protective (32). Together, these findings

demonstrate that neonatal protection is mediated via passive

vaccination, specifically through Ab transfer. Similar evidence is

available in the context of adult infection, in a guinea pig model

of passive vaccination with HSV-antiserum 24 hours post-

infection had significant reduction in vaginal lesions, as well as

disease reactivation and latent genome copy numbers (37). Abs

that depress the spread of infection within the nervous system

via passive immunization have protected the mouse eye, and

skin, and have also restricted the number of affected sensory

ganglia (38–40).
Towards therapeutic application
of mAbs

Lessons from the past

The reliable isolation of monoclonal antibodies (mAbs) from

hybridomas (41) has expanded the experimental tool box to

better understand and more reliably dissect the role of Abs and
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their functional properties in HSV infection (Table 1).

Antibodies recognizing diverse viral glycoproteins and their

various subdomains have been isolated and screened in vitro

for neutralization, complement-dependent cytotoxicity (CDC)

or ADCC activity and in vivo for preventing infection. While

these activities tend to be considered in isolation, they can be

synergistic, as demonstrated by the ability of complement to

enhance neutralization and ADCC (57, 58). Several important

observations relating to protective mAb properties arose from

these studies: 1) Different glycoprotein targets could confer

protection, however, not all epitopes within or antibodies

recognizing the same glycoprotein protected equally. 2)

Protection was highly specific, as single point mutant viruses

could abolish mAb efficacy. 3) Protection could be derived from

neutralization, though most studies reported superior protection

via ADCC mechanisms. 4) mAbs displayed variability in their

protective capacity depending on when and how they and viral

challenges were administered.

Neutralization continues to be a benchmark for therapeutic

efficacy in the setting of diverse viral infections. In the past this

therapeutic strategy has proven fruitful, as Palivizumab, a

respiratory syncytial virus (RSV)-neutralizing mAb, has been a

highly successful intervention in neonates in RSV infection in

high risk infants (56, 59). Prophylactically administered

Palivizumab (MEDI-493) reduced hospitalization due to RSV

disease by 55% when compared to placebo (60). Both direct and

indirect antiviral activities can be readily achieved by a single

mAb. For several decades, however, the importance of

neutralization-independent, Fc-mediated functions have been

noted in humans as well as in animal models. A recent review

(61) highlighted the protective effect of FcgR-mediated effector

functions in protection from adult HSV. Here we will focus on

remaining questions regarding the role of Ab Fc in neonates and

neonatal models of infection.

The age-dependent susceptibility of neonates to HSV

motivates further understanding of Ab-protective mechanisms

of action in this specific population. Earlier studies demonstrated

that co-infusion of neonatal mice with human IgG, interferon,

and immune cells could protect these mice from lethal challenge

(62), therefore it was of interest to determine if Abs to specific

epitopes and with defined ADCC and neutralizing activities

could also protect neonatal mice. While pAbs reactive with gD

or gB peptides protected against low-dose viral challenge model,

adult mouse macrophages, which are strong mediators of

ADCC, were also required to protect against high dose

challenge. Similar results were observed for mAbs specific for

gB, gC, and gD, which were shown to be protective when co-

administered with macrophages and when they had high ADCC

activity (44). Therefore, these studies demonstrated that both

neutralization and ADCC activity were associated with

protection, in agreement with clinical studies in which high

neutralizing or ADCC-inducing Ab titers were independently
Frontiers in Immunology 05
associated with the absence of disseminated disease in

neonates (24).

Thus, while these studies supported the notion that ADCC

mediated by macrophages is a protective mechanism of action

against HSV infection in mice, they also suggested that neonatal

immune cells may not be sufficient to elicit a protective response

in the setting of a high dose challenge. In the clinic, however,

neonates born to mothers with high neutralizing or ADCC

antibody titers are protected from disseminated viral disease,

suggesting that neonatal immune cells are functionally capable

of protecting neonates, or high neutralizing titers can

compensate for low ADCC function, which is typically

mediated by NK cells in humans, or vice versa. Alternatively,

these mothers may shed less virus as a result of their own

immunological response. An additional caveat is that the mAbs

used in previous animal studies were not sufficiently efficacious

to prevent disease in newborn mice. While these remain open

questions, recent work suggests that diverse mAbs can protect

from infection and sequelae in the neonatal mouse model (63),

suggesting that clinical administration of systemic or local

biologics could emulate and/or improve upon the observed

mate rna l Ab-based pro t ec t ion s een in na tura l l y

infected mothers.
mAbs in clinical trials to treat
HSV disease

Given the significant number of individuals affected by

recurrent/reactivating HSV, a number of human mAbs tested

for efficacy in preventing HSV disease in small animal models

are transitioning from bench to bedside (Table 2), and may

present new options in the prevention and treatment of nHSV

infection. Therapeutic mAbs that recognize conserved epitopes

required for viral entry may present a particular advantage as

these targets are decoupled from the most common mechanisms

of small molecule antiviral resistance, and can act at an earlier

point in the infection and replication continuum.

2c
2c targets gB and was isolated from mice immunized with

HSV-1 strain 342 hv (45). This mAb binds a discontinuous

epitope in domain I of gB (71) necessary for infectivity (72) and

is able to neutralize virus with or without complement, and can

carry out ADCC. In 1991, Eis-Hubinger et al. described the

efficacy of mAb 2c in preventing viral shedding at mucous

membranes after intravaginal challenge, and protection from

subsequent viral spread to neural tissues and death in C57B6

mice (45). This mAb was later humanized and assessed for

efficacy in preventing disease with drug resistant HSV-1 in

NOD/SCID mice (70). Humanized 2c (h2c) is able to prevent

mortality following intravaginal challenge with a multidrug
frontiersin.org
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TABLE 1 Summary of studies investigating the role of antibodies in herpes simplex virus infection. .

mAbs Ag. Subtype Functions Findings References

13aC5 gC IgG1 CDC 0% survival of adult mice challenged via f.p with HSV-2 (42)

17aA2 gC IgG2a ADCC
CDC

70% survival of adult mice challenged via f.p with HSV-2

17bA3 gD ADCC
CDC

75% survival of adult mice challenged via f.p with HSV-2

17bC2 gE IgG2a ADCC 35% survival of adult mice challenged via f.p with HSV-2

18aA5 gC IgG1 ADCC 55% survival of adult mice challenged via f.p with HSV-2

20aD4 gB IgG1 ADCC
CDC

75% survival of adult mice challenged via f.p with HSV-2

HC1 gC IgG2a NT,
ADCC

Protected adult mice from neurological illness and death w/HSV-1 challenge, but not HSV-2 via f.p
challenge (1)
86% survival of 1 wk old neonatal mice challenged with HSV i.p. (2)

(1, 43)
(2, 44)

HD1 gD IgG2a NT,
ADCC

Protected adult mice from neurological illness and death after f.p. HSV-1 and HSV-2 challenge (1)
57% survival of 1 wk old neonatal mice challenged with HSV i.p. (2)

IIIE8 gC IgG2a No NT adult mice challenged with HSV-1 intravaginally reduced mortality,
skin lesions and ganglionic infections

(45)

HSV
863

gD IgG1 NT HSV-1 protective 24 hrs post infection, HSV-2 protective 48 hrs post infection (2) (1, 15)
(2, 46)

HS1 gB IgG2a NT,
ADCC

Prevents death in adult athymic nude mice challenged intracutaneously with HSV-1, and adult
BALB/C mice from HSV-2 i.p
challenge (1)
Prevents death in adult athymic nude mice challenged i.p with HSV-1 model of before and after viral
challenge up to ~4 days post infection (2)

(1, 47)
(2, 48)

H336-1 gB NR No NT, No
ADCC

0% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

(44)

H157-1 gB NR No ADCC

H1399-
6

gB NR No ADCC

H1359-
1

gB NR No ADCC

H126-5 gB NR NT,
ADCC

3S gB NR NT,
low ADCC

12.5% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

H1396-
7

gB NR NT,
ADCC

57% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

(44)

4S gD NR NT,
ADCC

75% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

19S gC NR Low NT,
ADCC

86% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

H1394-
1

gB NR ADCC 100% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

H1385-
12

gB NR ADCC 100% surv. of 1 wk old neonatal mice when co-administered with adult immune
cells in i.p HSV-1 challenge

B5 gB IgG3 CDNT Highest dose results in 60% survival of adult mice challenged i.c. with HSV-1 (1) (49)

C11 gC IgG2a CDNT Dose dependent survival of adult mice challenged .c. with HSV-1 (1)

C13 gC IgG2a CDNT High-dose survival of adult mice challenged i.c. with HSV-1 (1)

C14 gC IgG2b CDNT

D3 gD IgG2a CDNT of
HSV 1 & 2

C15 gC IgG2a low CDNT Dose dependent survival of adult mice challenged .c. with HSV-1 (1)

C16 gC IgG2a low CDNT

(Continued)
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resistant HSV-1 clinical strain (70, 71), and also protected mice

from developing herpetic stromal keratitis in a corneal

scarification model (70, 73). The h2c mAb may present an

important therapeutic option for immunocompromised

patients who are at high risk if infected with resistant strains.

Clinical trials in Germany and the United States are currently

underway with this mAb under the biological identifier

HDIT101. A topical preparation of h2c will be tested for

efficacy in preventing orolabial lesions in participants infected

with HSV-1 (NCT04539483), while prevention of anogenital
Frontiers in Immunology 07
lesions due to HSV-2 infections will also be assessed via

intravenous infusion (NCT04165122).

HSV8
HSV8 is a glycoprotein D-specific human IgG1 mAb isolated

from an Ab library via phage display, with the capability of

neutralizing HSV-1 and HSV-2 (74). Topical application of

HSV8 prevented genital HSV disease, and systemic delivery

prevented death in athymic nude mice challenged via the

cornea or flank model (68, 75). When added to human
TABLE 1 Continued

mAbs Ag. Subtype Functions Findings References

B6 gB IgG2b CDNT, ADCC High-dose survival in adult mice from i.c. challenge with HSV-1 (1)
11% of mice sustained zosteriform spread after HSV-1 challenge, protective (2)

(1, 49)
(50)
(2)

D2 gD IgG3 med CDNT,
med ADCC

High-dose survival in adult mice from i.c. challenge with HSV-1 (1)
63% of mice sustained zosteriform spread after HSV-1 challenge, not protective (2)

B4 gB IgG3 CDNT, low
ADCC

High-dose survival in adult mice from i.c. challenge with HSV-1 (1)
76% of mice sustained zosteriform spread after HSV-1 challenge, not protective (2)

B3 gB IgG3 low HSV-1
CDNT, ADCC

High-dose survival in adult mice from i.c. challenge with HSV-1 (1)
77% of mice sustained zosteriform spread after HSV-1 challenge, not protective (2)

C3 gC IgG2a CDNT, high
ADCC

Whole IgG protected against zosteriform spread, Fab fragments did not. Dose dependent survival in
adult mice from i.c. challenge with HSV-1 (1)
17% of mice sustained zosteriform spread after HSV-1 challenge, protective (2)

C4 gC IgG2a CDNT, high
ADCC

Whole IgG protected against zosteriform spread, Fab fragments did not. Protected adult mice from
IC challenge with (1)
21% of mice sustained zosteriform spread after HSV-1 challenge, protective (2)

(1, 49)
(2, 50)

B8 gB IgG2a CDNT, low
ADCC

100% of mice sustained zosteriform spread after HSV-1 challenge, not protective (2) (50)

C8 gC IgG2a CDNT, high
ADCC

43% of mice sustained zosteriform spread after HSV-1 challenge, somewhat protective (2)

D7 gD IgG2a CDNT, high
ADCC

7% of mice sustained zosteriform spread after HSV-1 challenge, protective (2)

D8 gD IgG2a CDNT, high
ADCC

10% of mice sustained zosteriform spread after HSV-1 challenge, protective (2)

H7E gE IgG1 low NT, ADCC Protected adult mice from ocular challenge with HSV-1 at 24 hr pi (51)

F3AB gB IgG1 low NT Protected adult mice from ocular challenge with HSV-1 at 24 hr pi

G8C gC IgG2B NT, CDNT,
ADCC, ADCL

Protected adult mice from ocular challenge with HSV-1 at 4 & 24 hr pi

D8AB gB IgG2B low NT, ADCC Protected adult mice from ocular challenge with HSV-1 at 4 & 24 hr pi

1S gD IgG2a med NT Protected adult mice from ocular challenge with HSV-1 at 4 & 24 hr pi

AP7 gD IgG2a CDNT Protected adult mice from zosteriform spread (52)

LP11 gH IgG2a NT

LP2 gD IgG2a NT

LP3 gD IgG2a no NT Did not protect adult mice from zosteriform spread

8D2 gD IgG2a NT
HSV 1 & 2

Protects adult mice from stromal keratitis induced by corneal challenge with HSV-1 (1)
Protects CD4 or CD8 T-cell depleted adult mice from keratitis and encephalitis when
administered 24 hrs pi following corneal challenge with HSV-1 (2)

(1, 53)
(2, 54)

CH42 gD IgG1 (AAA
mutation)

no NT, ADCC Reduced mortality in adult mice when challenged with HSV-1 via the cornea, and
reduced viral DNA in peripheral nervous system
Reduced mortality in i.n. HSV-1 and HSV-2* challenge of neonatal mice
*CH43 not tested in HSV-2 challenge.

(1, 55)
(2, 56)

CH43 gD IgG1 (AAA
mutation)

no NT, ADCC
fr
CDNT, complement-dependent neutralization; NT, neutralization; f.p, foot pad; i.p, intraperitoneal; i.c, intracranial; i.n, intranasal; pi, post-infection.
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cervicovaginal mucus, HSV8 is able to trap HSV, limiting viral

movement, presenting an exciting additional effector property to

be explored in the setting of sexually transmitted infections (76).

In human clinical trials, this mAb has been assessed for local

delivery via the MB66 vaginal film, in which HSV8 is co-

delivered with a broadly neutralizing HIV-specific antibody.

The film was well tolerated and allowed for local biologically

functional concentrations of mAbs as tested in vitro (69). In

addition, this mAb protects two-day old mice from HSV-1 and

HSV-2 induced mortality (63).

UB-621/E317
E317 is a gD-specific human IgG1 mAb isolated from a

single chain variable fragment (scFv) library via phage display

that can neutralize HSV-1 and HVS-2 (66). The crystal structure

of the E317 Fab binding gD has been solved, and this mAb is able

to disrupt gD interactions with both Nectin and HVEM

receptors (64). Systemic administration of E317 can protect

adult SCID mice from lethal viral infection with HSV-1 when

administered before (100% survival) or after infection (75%

survival) (66). The clinical grade product of this antibody, UB-

621, is currently in clinical trials for prevention of orolabial and

genital disease (NCT02346760, NCT03595995, NCT04714060,

NCT04979975). UB-621 has shown to be protective fromHSV-1

and HSV-2 induced mortality in a neonatal mouse model of

infection (63).
Limitations

Barriers to the development and use of mAbs are cost,

storage requirements, and route of administration of the drug.

While convenient subcutaneous mAb administration is

becoming more common, and consumer prices for mAbs vary

widely depending on application (77), distribution in resource-
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limited settings is likely to be highly challenging. Additionally,

the timely identification of infected neonates or at-risk

pregnancies poses challenges to successful practical

deployment based on limited maternal testing. Delays in

initiating ACV therapy increase the risk of in-hospital death

(78), therefore it is likely that early and/or prophylactic mAb

administration would have the best therapeutic outcomes. It is

estimated that 3849 women need to be screened in order to

prevent one nHSV case that results in severe morbidity or

mortality. While screening was effective in reducing the rate of

HSV transmission, and also reduced the number of cesarean

deliveries, the associated costs were significant (79). We remain

optimistic that decreased costs in emerging testing platforms

could, in the future, decrease the barriers to implementation of

maternal HSV screening.
Conclusions

The significant mortality and morbidity observed in nHSV

infection despite small molecule antiviral therapy demonstrates

a critical clinical need for new interventions. Whereas long-term

prevention of recurrent reactivation or initial infection in adult

populations remains a challenge to modern vaccine

development efforts, rich preclinical and epidemiological

evidence supports the potential value of antibodies in

prevention and treatment of nHSV infection. With prevention

of RSV infection via palivizumab serving as a model of effective

early life antibody therapy and several HSV-specific mAbs in

clinical development for adult populations, the evidence

reviewed here provides a strong scientific rationale to assess

mAbs in human clinical trials for nHSV. Two out of three HSV-

specific mAbs in human clinical trials have been tested and

shown protection in a neonatal mouse of model of HSV-1 and

HSV-2 infection, further bolstering the promise of this
TABLE 2 HSV-specific mAbs in clinical trials.

E317/
UB-
621

E317 is the original clone of the drug product UB -621.
Reduced mortality in i.p. HSV-1 challenge of adult mice.
Phase 1 clinical trial for s.c. administration proving safe and well tolerated in healthy volunteers.
Reduced mortality in i.n. HSV-1 and HSV-2 challenge of neonatal mice.
Phase 2 clinical trials for the treatment of recurring genital HSV approved in the US and China (NCT02346760, NCT03595995,
NCT04714060, NCT04979975)

(64)
(65)

WO2010087813A1
(56)
(66)

US8431118B2
(67)

HSV8 Reduced mortality in i.p. HSV-1 challenge of adult mice.
Reduced mortality in i.n. HSV-1 and HSV-2 challenge of neonatal mice.
Completed phase 1 trial: Vaginal antibody safety trial: Safety study of monoclonal antibodies to reduce he vaginal transmission of HSV and
HIV (NCT02579083)

(68)
(56)
(69)

2C Humanized murine mAb, eventually humanized. Protection from viral shedding and mortality in intravaginal and ocular challenge in a
mouse model challenged with acyclovir resistant HSV-1.
Biological identifier HDIT101 for clinical trials.
A topical preparation of h2c will be tested for efficacy in preventing orolabial lesions in participants infected with HSV-1 (NCT04539483),
while prevention of anogenital lesions due to HSV-2 infections will also be assessed via intravenous infusion (NCT04165122).

(45, 70)
i.p., intraperitoneal; s.c., subcutaneous; i.n., intranasal.
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approach. Trials for rare diseases, such as nHSV, represent a

considerable but worthwhile effort, especially to reduce not just

the mortality, but the significant morbidity associated with this

devastating neonatal infection.
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