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Introduction: The transcription factor Nuclear factor of activated T cells 5

(NFAT5), pivotal in immune regulation and function, can be induced by osmotic

stress and tonicity-independent signals.

Objective: We aimed to investigate and characterize two unrelated patients

with Epstein-Barr virus susceptibility and no known genetic etiology.

Methods: After informed consent, we reviewed the electronic charts, extracted

genomic DNA, performed whole-exome sequencing, filtered, and prioritized

their variants, and confirmed through Sanger sequencing, family segregation

analysis, and some functional assays, including lymphoproliferation,

cytotoxicity, and characterization of natural killer cells.

Results: We describe two cases of pediatric Mexican patients with rare

heterozygous missense variants in NFAT5 and EBV susceptibility, a school-

age girl with chronic-active infection of the liver and bowel, and a teenage boy

who died of hemophagocytic lymphohistiocytosis.
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Abbreviations: BMA, bone marrow aspirate; CAEBV, c

Barr virus; CD, cluster of differentiation; DNA, deoxy

Epstein-Barr virus; EBER, EBV early RNA; EBNA, Epst
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of activated T cells 5; NK, natural killer; PBM

mononuclear cell(s); PCR, polymerase chain reaction;
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Discussion: NFAT5 is an important regulator of the immune response. NFAT5

haploinsufficiency has been described as an immunodeficiency syndrome

affecting both innate and adaptive immunity. EBV susceptibility might be

another manifestation in the spectrum of this disease.
KEYWORDS

EBV, Epstein-Barr virus, NFAT5 nuclear factor of activated T cells 5, inborn errors of
immunity, primary immune deficiency diseases, whole-exome sequence (WES)
Introduction

Over 7,000 individually rare diseases affect around 8% of the

global population (1, 2). Often, rare diseases are congenital

(Mendelian and/or monogenic) and manifest early in life with

a range of signs and symptoms that may be traced to a single

defect in a cell, protein, or pathway (1). Inborn errors of

immunity (IEI) are a group of nearly 500 congenital rare

diseases with a predisposition to unusual infections with or

without hyper-inflammation, autoimmunity, atopy, and

malignancies (3).

Epstein-Barr virus (EBV) is an ancient gamma herpesvirus

that has co-evolved with mammals for as long as they exist (4).

In Homo sapiens, EBV is nearly ubiquitous and innocuous,

successful at establishing persistent latent infections despite a

wide array of immune system components that participate in the

defense against herpesviruses (4). A few patients with IEI,

experiments of Nature, are susceptible to chronic, severe, or

lethal EBV infections (e.g., fatal infectious mononucleosis,

chronic-active infection, lymphoma, and hemophagocytic

lymphohistiocytosis). In those patients, more than 30 genes

have been identified as causing isolated or combined

susceptibility to EBV (5, 6), due to genetic lesions affecting

pathways of cytotoxicity, apoptosis, MAPK, JAK-STAT, and

calcium signaling in lymphocytes (mainly CD8+ T cells, but also

Natural killer (NK), NKT, B cells, CD4+), and macrophages.

Nuclear factor of activated T cells 5 (NFAT5), also known as

Tonicity enhancer binding protein (TonEBP), is a transcriptional

regulator that belongs to the Rel family, which also includes other

NFATs (1 through 4) and NFkB. The similarities, however, are

mainly structural and limited to the DNA-binding domain.
hronic active Epstein-
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NFAT5 shares an N-terminal Rel-homology domain for DNA-

binding and nuclear localization, but lacks the interface (docking

sites) for the phosphatase calcineurin that is present in other

NFAT proteins, and can thus be activated independently of this

calcium/calcineurin signaling cascade (7, 8). It was initially

identified as a tonicity-responsive transcription factor, as it is

induced upon hyperosmotic stimulus. However, the expression of

NFAT5 mRNA in a wide variety of tissues, including but not

limited to hypertonic stress, suggested transcription regulation

activity besides that induced by osmotic stress (8, 9).

NFAT5/TonEBP can be induced by diverse signaling

pathways such as osmotic stress and tonicity-independent

(isotonic) receptor-mediated signals, such as toll-like receptor

(TLR)-activated macrophages and T-cell receptor (TCR)-

stimulated T lymphocytes, for distinct transcriptional

responses and regulation of immune and cell function (10–12).

NFAT5, thus, is also sensitive to ischemia, hypoxia, heat shock,

viral/mycobacterial infection, cytokines, and biomechanical

stretching, all of which result in activation, upregulation, and

nuclear accumulation (13).

In 2015, one patient with early onset sinopulmonary infections

and autoimmune enterocolonopathy was found to have a de novo

heterozygous large genomic deletion in locus 16q22.1 that included

NFAT5 and 7 other genes (14). Here, we describe two pediatric

patients from Mexico with Epstein-Barr virus (EBV) susceptibility

and suspected NFAT5 haploinsufficiency.
Methods

Cross-sectional descriptive study: case series and literature

review. We evaluated two pediatric patients with increased

susceptibility to EBV and no known diagnosis.
Whole-exome sequencing
and bioinformatics

Genomic DNA was obtained from whole blood by the

salting-out method. Whole-exome sequencing (WES) was
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performed with an Illumina HiSeq platform (Admera Health,

New Jersey), aiming for a 90% coverage of the IDT Xgen library,

human genome version 38 (hg38, December 2013), minimum

average read depth 50x; processed and analyzed at the National

Institute of Pediatrics ID Lab using Galaxy on the cloud (v21.09)

(15), Ensembl Variant Effect Predictor, release 104 (16), and

Integrative Genome Viewer (IGV) browser (v2.4, Broad

Institute) (17).

To retain the variants with the highest genotyping quality, we

filtered out those without a minimum MAPQ quality score of 25

and a minimum depth of 10x reads. An average of 10,800 non-

intronic non-synonymous variants were called for each patient.

The strategy to filter and prioritize germline variants as potentially

causative was to include only those variants with a gnomAD

exomes minor allele frequency (MAF) of less than 0.001 or “not

defined” and, among them, to select those variants with moderate-

to-high impact, filtering by variant type (consequence matching

“stop”, “frame”, or “splice”), or by pathogenicity prediction

(CADD Phred, SIFT, PolyPhen2). Interesting variants were

further annotated on Variant Effect Predictor (16) and VarSome

(18), as well as visualized using IGV (17).
Immunological workup and family
segregation analysis

In patient 1, we performed flow cytometry for lymphocyte

subsets , and carboxyfluorescein succinimidyl ester

lymphoproliferation assay as part of her immunological

workup. Cell phenotyping was performed in whole-blood

samples with anticoagulant (Acid Citrate/Dextrose BD

Vacutainer). Lymphocyte populations were stained with the

following mixtures of monoclonal antibodies (mAbs): anti-

CD45-FITC/anti-CD14-PE, anti-CD3-FITC/anti-CD19-PE/

anti-CD45-PerCP, anti-CD4-FITC/anti-CD8-PE/anti-CD3-

PerCP, anti-CD3-FITC/anti-CD16+56/anti-CD45-PerCP. To

detect naïve (CD45RA+) and memory (CD45RO+) T cells, the

following antibodies were used: anti-CD45RO-PE/anti-

CD45RA-FITC/anti-CD3-PerCP/anti-CD4-APC. To identify B

cell subsets, we then stained with a mixture of anti-CD19-APC/

anti-IgD-FITC/anti-CD27-PE, anti-CD19-APC/anti-CD38-

FITC/anti-CD24-PE, and anti-CD19-APC/anti-CD38-FITC/

anti-CD21-PE. Finally, we detected T regulatory cells (Treg) in

T cells with anti-CD4-APC/anti-CD127-FITC/anti-CD25-PE.

All antibodies were purchased from BD Biosciences, San

Diego, CA, USA. Samples were incubated for 30 minutes at

room temperature in the dark. After incubation, erythrocytes

were lysed by adding FACS lysing solution (BD Biosciences) for

10 minutes. Cells were washed with PBS and fixed in PBS

containing 1% formalin.

Sanger sequencing of the exons involved was performed

for confirmation and family segregation analysis, as

well as cytotoxicity and NK cell maturation assays, at
Frontiers in Immunology 03
the Molecular Immunology laboratory. Primers for

NFAT5 were: cactgcagATGCTTCTTCAGC (forward) and

CTGAGCAGAGCTGCAGTATG (reverse).
NK cell degranulation assays

NK cell degranulation assays were performed as previously

described. Briefly, peripheral blood mononuclear cells (PBMCs,

1x106/ml) were incubated with K562 cells (2x106/ml) in a total

volume of 200 ml in a 96-well plate. After 4 hours of incubation

at 37°C, cells were recovered and stained using the following

antibodies: anti-CD3 FITC, anti-CD56 APC, and anti-CD107

PE (Biolegend, clone H4A3). GolgiStop was not included in

these assays.

Cells were acquired on FACSCanto II (BD bioscience) and

analyzed with FlowJo 7.6.5 software (Tree Star, Ashland, OR).

Gates were set to exclude CD3+ lymphocytes. Thereafter, the

percentage of cells positive for CD107a was obtained after gating

in CD3-CD56+ lymphocytes. The basal percentages for CD107a

were obtained from PBMCs incubated alone. Degranulation was

represented as CD107a, which is the difference between the

percentage of NK cells expressing surface CD107a after K562

stimulation, and the percentage of NK cells expressing surface

CD107a after incubation with medium alone.
Analysis of NK cells subsets

NK cells were recovered and stained using antibodies: anti-

CD3 FITC, anti-CD56 APC, and anti-CD107 PE (Biolegend,

clone H4A3). The samples were acquired in a FACSCanto II

cytometer (BD bioscience). NK cells were defined as CD3-

CD20-CD14-CD56+ cells. The final analysis of the expression

for each NK cell marker was performed using FlowJo 7.6.5

software (Tree Star, Ashland, OR) and Infinicyt 2.0.4.
Structural analysis in silico

To interrogate the structural and functional consequences of

the variants found, we used AlphaFold (https://alphafold.ebi.ac.

uk) to predict the three-dimensional protein structure, and

UCSF Chimera (https://www.cgl.ucsf.edu/chimera/) to

visualize the structures and domains (19, 20).
Results

Case 1

A 7-year-old female with two healthy younger siblings from

non-consanguineous parents. At age 5, she began with recurrent
frontiersin.org
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episodes of hepatitis, presenting with high-grade fever, abdominal

pain, nausea, vomiting, diarrhea, and weight loss, associated with

increased transaminases and bilirubin. Serology was negative for

hepatitis viruses (HBV, HCV, HAV, and HEV). During the

second episode, she was found to have IgG antibodies (IgM-

negative) to antiviral capsid antigen (VCA), Epstein-Barr nuclear

antigen (EBNA), and early antigen. Quantification of EBV DNA

by polymerase chain reaction (PCR) in plasma was persistently

positive over several months (328,107 copies/ml), and she was

diagnosed with chronic active EBV (CAEBV) infection.
Frontiers in Immunology 04
The abdominal ultrasound was normal. Cryptosporidium

and clostridium were ruled out. A hepatic biopsy showed active

diffuse inflammation with lymphocytes, plasmacytes,

neutrophils, and eosinophils expanding into the portal space

and producing centrilobular necrosis; EBV early RNA (EBER)

was positive, predominantly in CD3+CD8+ T cells (Figure 1).

Colonoscopy revealed pancolitis with ulcers (Figure 2), and

histopathology showed chronic active enterocolitis associated

with EBV, with T-cell predominant EBER; quantification of

EBV DNA in the gastrointestinal tract was above 7’000,000
FIGURE 1

Histopathology specimens from patient 1. (A) Liver biopsy showing active diffuse lymphocytic inflammation. (B) Epstein-Barr encoding region
(EBER) in situ hybridization in inflammatory lymphocytic infiltrate. (C) Colon biopsy showing intense lymphocytic and polymorphic inflammatory
infiltrate at the lamina propria and neutrophilic crypt micro-abscesses. (D) EBER positive in inflammatory lymphocytic infiltrate in the lamina
propria and crypta. (E) Ileum biopsy showing moderate lymphocytic and polymorphic inflammatory infiltrate at the lamina propria and
neutrophilic crypt microabscesses. (F) EBER positive in inflammatory lymphocytic infiltrate in the lamina propria.
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copies per mL. EBV-associated hepatitis and enteropathy

were diagnosed.

Blood counts were normal, with 1,500 peripheral

lymphocytes, and 400 monocytes. Serum IgM was marginally

low: IgG 1,070mg/dl (normal range 633-1572), IgM 45 (56–

352), IgA 126mg/dl (45–236). Lymphocyte subsets by flow

cytometry found low T cells: CD3+ 434 cells (1200-2600),

CD4+ 294 (650-1500), CD8+ 98 (370-1100); with normal B

and NK cells: CD20+ 406 (270-860), CD16/56+ 420 cells (100-

480). Further immunological workup revealed an impaired

lymphoproliferation of phytohemagglutinin (PHA)-

stimulated CD3+ T cells, (Figure 3A). Moreover, the patient

lymphocyte subsets were shown to have decreased central

(CD45RA- CCR7+) and effector (CD45RA- CCR7-) memory

CD8+ T-cells, with expanded senescent CD4+ CD57+ T-cells

(Figures 3B, C). NK cell function was normal based on

degranulation assays (Figure 4A). In contrast, the expression

of various cell surface markers was abnormal in NK cells from
Frontiers in Immunology 05
the patient as compared to healthy control, suggesting

impaired NK cell differentiation (Figure 4B). All these

assays were performed while the patient was receiving

immunomodulatory treatment. Flow cytometry for B cell

subsets and Tregs found decreased plasmablasts, memory B

cells, and low Tregs (Figure 5).

Whole exome sequencing (WES) identified a novel

(gnomAD allele count 0), heterozygous (MAB 0.51, DP 74x)

missense variant in exon 4 (between the transcription activating

TAD1 and auxiliary export AED domains) of NFAT5

(c.335C>T, p.Ser112Phe or p.Ser94Phe), likely pathogenic

(SIFT 0, PolyPhen2 0.986, CADD Phred 25.8), at a position

highly conserved across species (GERP++ RS 5.67) (Figure 6).

MutPred Top5 features predict a loss of glycosylation (p=0.007)

and loss of phosphorylation at S94 (p=0.019), with a gain of a

sheet (p=0.047). Family segregation analysis through Sanger

sequencing confirmed the variant to be de novo, as both

parents had wild-type alleles.
A B

DC

FIGURE 2

Endoscopic features. (A) Ascending colon with edema, erythema, and multiple fibrin-covered ulcers, different sizes between 1 and 5 mm,
friability; (B) Transverse colon with multiple fibrin-covered ulcers of 3 mm, patchy obliteration of vascular pattern; (C) Descending colon
presence of deeper ulcers, with mild raise edge; (D) Rectum superficial small ulcers <5mm.
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She received treatment with ursodeoxycholic acid, cholestyramine,

mesalazine, high-dose intravenous immunoglobulin, enteral

immunoglobulin, rituximab, corticosteroids, azathioprine, and

cyclosporine, with little improvement; she was later started on

tocilizumab with clinical and EBV viral load improvement. The
Frontiers in Immunology 06
patient underwent allogeneic hematopoietic stem cell transplantation

(HSCT) from her haploidentical father, after cyclophosphamide Treg

depletion and reduced intensity conditioning with anti-thymocyte

globulin, fludarabine, and busulfan. She initially had control of the

EBV infection (Undetectable, down from 10,232cp/ml pre-HSCT).
B CA

FIGURE 3

(A) CD3+ T-cells lymphoproliferation, resting and after phytohemagglutinin (PHA) stimulus. This test was performed before the HSCT. The
patient shows an impaired lymphoproliferation of PHA-stimulated CD3+ T cells. (B) CD4+ and CD8+ cells subsets, naive (CD45RA+ and
CCR7+), central memory (TCM, CD45RA- and CCR7+), effector memory (TEM, CD45RA-and CCR7-), and CD45RA+ effector memory cells
(TEMRA, CD45RA+ and CCR7-). The patient has decreased TCM TEM CD8+ T-cells and expansion of TEMRA CD4+ T-cells. (C) CD57+
expression in CD4+ and CD8+ T-cells. Patient has increased senescent CD4+ CD57+ T-cells.
A

B

FIGURE 4

Flow cytometry from patient 1 shows (A) Diminished degranulation in Natural Killer (NK) cells from the patient (P) as compared to healthy
control (HC). (B) Abnormal cell surface marker expressions in NK subsets cells from the patient as compared to healthy control, suggesting
impaired NK cell differentiation.
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She received 4 donor lymphocyte infusions, despite which she evolved

to secondary graft failure by day +220. She is currently 8 months post-

transplant with mixed micro-chimerism (2.74%) and EBV viral load

reactivation (1,531cp/ml), without clinical signs of disease. A timeline of

this patient’s evolution and treatment can be found in Supplementary

Materials as Figure S1.
CASE 2

A previously healthy 16-year-old male presented with

hemophagocytic lymphohistiocytosis (HLH) associated with
Frontiers in Immunology 07
EBV infection. He had two healthy sisters, with no family

history of consanguinity. At ages 3 and 6 years, he suffered

fissured clavicle, rotula, and forearm fractures associated with

traumatism. He also had allergies to penicillin, fava beans, and

some fruits. At age 15, he developed a urinary tract infection.

He started at age 16 with fever, cytopenias, elevated

triglycerides, and documented hemophagocytosis, for which he

was treated with cyclosporine, dexamethasone, and etoposide

(21). Soon after discharge, he was readmitted with fever,

hepatosplenomegaly, oral candidiasis, and herpetic stomatitis.

Blood counts showed pancytopenia, with Hb 7.5g/dL, white

blood cells 2,200 (down to 300), neutrophils 1500 (down to 200),
FIGURE 5

Lymphocyte subsets for B and Treg cells from patient 1, after failed HSCT with mixed chimerism. Plasmablasts and Memory B cells are low, as
are Tregs.
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lymphocytes 1,100 (down to 14), monocytes 100, and platelets

19,000-29,000/mm3. Ferritin 14,724-225,300 ng/ml. Serum IgM

was marginally low, too: IgG 515-1,280 mg/dL (normal range for

age 600-1600), IgM 38 (50-190), IgA 272 mg/dL (80-280). IgG1

766, IgG2 154, IgG3 28.3, IgG4 16.9mg/dl. Serum autoantibodies

(anti-Ro/La, ANA, lupus anticoagulant), and serologies for HIV,

HBV, HCV, syphilis, and brucellosis, were all negative. EBV

serum antibodies VCA (IgG), EA, and EBNA were positive. PCR

identified 2,580 copies/ml of EBV in serum, and up to 239,411

cp/ml in bone marrow. A bone marrow aspirate (BMA) was

normocellular, with megaloblastic changes and active

hemophagocytosis. A second BMA found hypocellularity, low

megakaryocytes, and 8 hemophagocytes, with EBER diffusely

positive in numerous cells.

In addition to the HLH-2004 protocol (etoposide,

dexamethasone, cyclosporine) and high-dose intravenous

immunoglobulin, the patient received treatment with blood

transfusions and filgrastim. He was admitted to the intensive

care unit and required mechanical ventilation, despite which he

progressed to disseminated intravascular coagulation with

multiorgan failure and perished. Given the rapid course of the

disease, further immunologic studies could not be performed.

A post-mortem WES analysis revealed a very rare

heterozygous missense variant, predicted as pathogenic and

highly conserved, in exon 7 of 15 of NFAT5, c.1291A>T

(p.Thr431Ser), in the DNA-binding domain RHD (Rel

homology domain); gnomAD exomes allele count 1 (minor

allele frequency MAF 3.99x10-6), SIFT 0.04, PolyPhen2 0.996,

CADD Phred 24.6 (Minimum significance cutoff 3.3). GERP++

RS 4.85. MutPred Top5 features predict a loss of sheet (p=0.014)

and gain of a loop (p=0.024). Unfortunately, after the patient’s
Frontiers in Immunology 08
death, the family was not willing to undergo family segregation

studies. (Figure 6).

A table comparing blood counts and acute phase serum

reactants of both patients can be found in Supplementary

Materials as Table S1. Tables listing other interesting (rare and

likely pathogenic) variants found in the exomes of both patients

can be also found as Tables S2 and S3.
Literature review

A literature review on PubMed Medline searching for:

(NFAT5 AND deficiency AND patient) without filters,

retrieved 5 results and identified only one previously published

human patient with NFAT5 haploinsufficiency (vide infra). Our

two patients did not share the large heterozygous deletion

encompassing 8 genes identified by the authors (14).
Structural analysis

By using the AlphaFold-predicted structure of NFAT5 that

includes the NH-terminal domain (19), we searched for the

consequences of missense variant p.Ser112Phe in the human

NFAT5 protein (Supplementary Figure S2). Thus far the only

fragments of the protein to have been successfully crystallized

are the middle DNA-binding domains (22). The N-terminal

region of the transcription factor is constituted by a large

amount of sequence in a random coil configuration, which

seems to be rather mobile, intrinsically disordered, and

important for nuclear translocation. Importantly, Ser112 is
B

C

A

FIGURE 6

Family trees (A) and Sanger electropherograms (B) show de novo heterozygous missense variants in exons 4 and 7 of NFAT5, affecting Transcription
activation and DNA binding domains of NFAT5 (C), in two patients with EBV-susceptibility.
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in a disordered region that cannot form enough favorable

intra-chain interactions to fold spontaneously but has

the energetic capability to gain structure by interacting with

co-regulatory proteins. Such coregulatory proteins have

been reported as critical for initiating and maintaining

transcriptional activity (23). Also, it is important to note

that the phosphorylation level of NFAT5 may play a role in

its activity. Therefore, the substitution of Ser112 by Phe might

be impairing the activity of NFAT5 by diminishing its

phosphorylation capacities.

The missense variant p.Thr431Ser was analyzed by using the

crystallographic coordinates of the NFAT5 DNA-binding

domain (PDB code: 1IMH). Thr431 is in the dimerization

domain of NFAT5 (Supplementary Figure S3); therefore, the

Thr431Ser substitution increases the probability of being

phosphorylated and generating a negative charge. Lys131 is

near position 431, which in turn enables attraction between

charges, increasing rigidity in the dimerization domain

(Supplementary Figure 4). It has previously been reported

that dimerization of NFAT5 is required for proper DNA

binding (24).
Discussion

We present the cases of two pediatric patients with NFAT5

haploinsufficiency and EBV susceptibility: one with CAEBV

infection with hepatitis and enterocolitis, and one with fatal

HLH. Both patients were found to have rare and conserved

heterozygous missense variants in critical domains of NFAT5.

The clear limitations of this report are the small number of cases

and a lack of mechanistic evidence to prove causation. However,

this is the first time that we know, that NFAT5 deficiency has

been linked to EBV susceptibility and HLH.

In recent years, NFAT5 has emerged as an important

regulator of the immune response. An animal model with

homozygous targeted deletion of exons 6 and 7 of the NFAT5

gene, which encode a critical region of the DNA-binding

domain, resulted in complete loss of function and late

gestational lethality (25, 26). Heterozygous mice with partial

loss of function (haploinsufficiency) resulted in impaired

lymphocyte proliferation under hypertonic conditions,

lymphoid hypocellularity, and impaired antigen-specific

antibody response (25, 27). Lymphoid tissues have a

hyperosmolar microenvironment, and lymphocyte-mediated

immunity requires adaptation to physiologic osmotic stress;

NFAT5 is thus a critical component for optimal adaptive

immunity (9), and defective NFAT5 signaling results in poor

thymocyte development and survival, independent of NFAT5’s

osmoprotective role (27).

In T lymphocytes, NFAT5 is also critical for development

and subsistence. NFAT5 is expressed constitutively and
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abundantly in the thymus and can be induced in mature

lymphocytes upon TCR activation (8). In hyperosmotic

environments, NFAT5 helps the proliferation and survival of

T cells, promotes polarization towards Th17 cells, and attenuates

excessive pro-inflammatory responses in T cells (9). NFAT5

deficiency may also contribute to the development and survival

of NK cells (14).

There is one report of an NFAT5-haploinsufficient human

patient with recurrent sinopulmonary infections during the

first years of life, who developed autoimmune entero-

colonopathy around age seven. Basic lymphocyte subsets,

levels of serum immunoglobulins, and vaccine response were

within normal limits, but further immunologic evaluation

showed impairment of both innate and adaptive immunity.

The patient had an altered distribution of B cell subsets and a

selective IgG subclass deficiency. Lymphocyte proliferation to

mitogens was normal but antigen-specific proliferation was

impaired, and CD8+T cell function was altered due to a

reduced ability to degranulate and produce the pro-

inflammatory cytokines IFNg and TNFa. He also had a

reduction of CD56+CD16+ NK cells and reduced survival of

peripheral blood mononuclear cells (PBMCs) in hypertonic

conditions. The genetic evaluation revealed a de novo large

deletion at 16q22.1 encompassing 8 genes, NFAT5 among

them. The authors, Boland et al, used a dominant-negative

NFAT5 construct with reduced NFAT5 expression that showed

decreased cell viability in hypertonic conditions and reduced

production of TNFa by CD8+T cells, analogous to the immune

defects seen in the patient (14).

Some other patients from Belarus, Ukraine, and the USA, with

NFAT5 haploinsufficiency caused by heterozygous missense or

small deletion variants, manifest early in life with diverse

autoimmune diseases, and their T cells show reduced

proliferation and survival under hypertonic conditions (Svetlana

Sharapova, personal communication). Loss-of-function intolerance

probability score (pLI) in ExAC and gnomAD is 1.00, with an

observed/expected ratio of 0.12 (0.07-0.2), which suggests NFAT5

does not tolerate haploinsufficiency. A high, positive Z-score of 3.13

also predicts an intolerance of missense variants (https://gnomad.

broadinstitute.org/gene/ENSG00000102908).

Our two patients from Mexico seem to be the first to present

with EBV susceptibility and HLH. NFAT5 is expressed in all T

cells, natural killers, and macrophages, the three protagonists of

the hemophagocytic cytokine storm. Inside the nucleus, NFAT5

suppresses the induction activity of IRF3, involved in the

interferon beta response to viruses (28). Both NFAT5 and

EBV directly interact with IRF3: the EBV kinase BGLF4

phosphorylates residues of IRF3 to prevent DNA binding,

while NFAT5 forms dimers that compete with the DNA

binding of IRF3 to the IFN-b enhancer consensus region (29).

This suggests plausibility for the implication of NFAT5

haploinsufficiency in our patients’ phenotypes. Type I
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interferon is a double-edged sword: unbridled production and

prolonged secretion result in systemic inflammation and stem

cell exhaustion. Although we do not fully understand the

pathogenic mechanisms, lymphocyte maturation/activation

defects, excess interferon response, and/or disruption of the

latent phase of EBV, are suitable candidates.

In the investigation of patients with increased susceptibility

to EBV and HLH, physicians and researchers should also include

NFAT5 haploinsufficiency as a differential diagnosis. Phenotypes

that include enteropathy, sinopulmonary infections, and

reduced numbers of transitional B cells, plasmablasts, and NK

cells, are perhaps the most likely candidates.

Next, we want to further characterize the two heterozygous

variants in cell lines through plasmid transfection, as one of our

patients was successfully transplanted and the other one died.

We expect to be able to perform lymphocyte proliferation assay

under hyperosmotic conditions, and phenotype rescue.

In conclusion, NFAT5 deficiency can impair T lymphocyte

function, and NFAT5 haploinsufficiency has already been

described as an immunodeficiency syndrome affecting

innate and adaptive immunity. It could also predispose to

EBV susceptibility and HLH, given the pivotal role it plays

as a transcription factor in lymphocytes, macrophages, and

NK cells.
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SUPPLEMENTARY FIGURE 1

A timeline showing treatments and copynumbers of EBV in serum of

patient 1.

SUPPLEMENTARY FIGURE 2

3D structure of the NFAT5 dimer bound to a DNA double helix. PDB code:
1IMH. Structure displayed with UCSF Chimera (Pettersen, et al., 2004).

SUPPLEMENTARY FIGURE 3

Structural localization of the Thr431Ser substitution, affecting the
dimerization domain of NFAT5, close to Lys131. The Serine substitution

generates a negative charge and that increases the probability of

phosphorylation, which in turn might impair the dimerization of NFAT5
and its interaction with DNA..
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