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South Korea, ¢ Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh

A 56-day feeding trial was conducted to determine the effect of dietary supplementation
with Bacillus sp. isolated from the intestines of red sea bream on the growth performance,
immunity, and gut microbiome composition of red sea bream. Three diets (a control diet
and two treatments) were formulated without Bacillus sp. PM8313 or B-glucan (control,
CD), 1 x 10° CFU g~' PM8313 (BSD), and 1 x 10® CFU g~ PM8313 + 0.1% B-glucan
(BGSD). At the end of the experiment, the weight, specific growth rate, feed conversion
ratio, and protein efficiency ratio of the fish in the BSD and BGSD diet groups were
significantly improved than those of the control group (P < 0.05). Additionally, amylase and
trypsin activities were significantly higher (P < 0.05) in both groups compared to the
control. Superoxide dismutase and lysozyme activity, which are serum non-specific
immune responses, only increased in the BGSD group. The two treatment groups
exhibited a marked difference in the intestinal microbiota composition compared to the
control group. Furthermore, the treatment groups exhibited an upregulation of IL-6 and
NF-kb, coupled with high survival rates when challenged with Edwardsiella tarda.
Therefore, dietary supplementation with PM8313 improved the growth performance,
digestive enzyme activity, non-specific immunity, and pathogen resistance of red sea
bream, in addition to affecting the composition of its intestinal microflora.
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INTRODUCTION

Red seabream (Pagrus major) is one of the most prominent
cultured finfish species in East-Asian countries such as China,
Japan, and the Korean peninsula (1). The artificial breeding of
this species for aquaculture production began in 1980 in Korea.
In 2020, this species became the 4th most important aquaculture
species in the Republic of Korea, with annual production yields
reaching 5,800 tonnes, which constitutes approximately 6.6% of
the total national finfish production (88,200 tons) (2). In Korea,
sea bream culture has recently intensified due to the availability
offingerlings, the pleasant flavor and palatability of its meat, high
market demand and economic turnover, and government
research investment.

Nevertheless, the intensification of red sea bream aquaculture
has also led to widespread concerns regarding infectious disease
outbreaks in culture systems, which have resulted in substantial
economic losses. Intensive culture demands a high supply of
artificial feed, of which a certain portion remains uneaten, in
addition to limited water exchange, high stocking density, and
application of growth promoters, all of which have been linked to
environmental degradation (3, 4). Poor aquatic environments
weaken the immune system of fish, which makes them more
vulnerable to pathogenic and opportunistic bacteria in culture
farms. Particularly, Edwardsiella tarda, Vibrio alginolyticus, and
Lactococcus garvieae (5) are among the most common pathogens
in P. major, resulting in hemorrhage, exophthalmia, skin lesions
and ulcers, erratic swimming, nervous dysfunction, and sudden
death, all of which have led to massive economic losses. To
control diseases, farmers apply synthetic antibiotics and
chemotherapeutics in the feed and water, and these practices
are often conducted in an unscientific manner.

In addition to eliminating pathogens, antibiotics also non-
specifically eliminate beneficial aquatic bacteria in the
environment, remain in the fish muscles, and promote
antibiotic resistance, thereby posing a serious human health
threat (6). In fact, antibiotic-resistant pathogens have
previously been identified in both fish and humans (7). To
overcome the aforementioned challenges, some countries have
already banned antibiotics in aquaculture and scientists are
actively searching for eco-friendly alternatives, among which
probiotics are considered a promising candidate treatment (8).

The World Health Organization and Food and Agricultural
Organization (9) defined probiotics as “a live microorganism
administrated at an appropriate concentration that exerts
beneficial effects on host health and immune parameters.” The
action mechanisms of probiotics are commonly categorized as
antagonistic (e.g., nisin and bacteriocin), sources of nutrients and
digestive enzymes, adhesion and colonization of the
gastrointestinal tract (GIT) for pathogen exclusion, and
upregulation of immunity and immune-related gene
transcription (10, 11). Autochthonous bacteria that inhabit the
mucosal layer of the intestine of aquatic animals are an excellent
basis for the development of aquaculture probiotics (Van 12).
Moreover, host-associated intestinal probiotics are more likely to

survive and colonize the harsh environment of the GIT, thereby
promoting fish health by upregulating immune-related genes
and controlling infectious diseases.

Due to the many benefits of probiotics, there are ongoing efforts
to identify and characterize novel beneficial bacterial strains in fish
intestines, as well as to assess the benefits of these probiotics through
dietary supplementation. Previous studies have assessed the effects
of dietary supplementation with different probiotics [e.g., heat-killed
Lactobacillus plantarum (13) and Pediococcus pentosaceus (14), L.
rhamnosus (15) and/or L. lactis (16), Bacillus subtilis (17), and B.
subtilis C-3102 (18)] in P. major. These probiotics, some of which
were commercial or derived from other sources, were found to
improve growth, feed utilization, immunomodulation, antioxidant
activity, serum biochemistry, and disease resistance. However, none
of them was isolated from red sea bream. Therefore, to the best of
our knowledge, our study is the first to assess the dietary
administration of Bacillus sp. PM8313 isolated from the intestinal
tract of P. major, as well as the probiotic effects of this treatment in
red sea bream. Moreover, in vitro characterization of strain PM8313
demonstrated that this bacterium possesses probiotic potential, and
higher utilization of B-glucan for its growth and survival compared
to fructooligosaccharides, mannan oligosaccharide, and inulin. 3
glucan is a widely recognized immune stimulant that also possesses
prebiotic (low-density oligosaccharide) potential (19, 20) for the
modulation of growth, immunity, and disease resistance in Salmo
salar (21), Oreochromis niloticus (22), Cyprinus carpio (23), and
many commercial fish species. Therefore, our study not only sought
to assess the probiotic potential of strain PM8313, but also its ability
to ferment -glucan inside the intestinal environment to improve
innate immunity, beneficial bacterial richness in the intestine, and
disease resistance in P. major.

Specifically, the objectives of this study were to characterize the
effectiveness of host-associated Bacillus sp. PM8313 both alone and
paired with B-glucan to enhance P. major growth, innate immunity,
and edwardsiellosis resistance. Moreover, digestive enzyme
activities, immune gene transcription, and intestinal microbial
community modulation were also quantified to assess the
effectiveness of this newly isolated probiotic.

MATERIALS AND METHODS

All animal procedures were performed in accordance with the
National Research Council guidelines (Guide for the Care and
Use of Laboratory Animals) and with approval from the Dong-
eui University Laboratory Animal Ethics Committee.

Experimental Diet Preparation

Bacillus sp. PM8313 (KCTC14892BP), which was used as a
dietary supplement in this study, was isolated from the
intestine of wild red sea bream and identified by 16S rRNA
sequencing analysis (Supplementary Figure 1). Three types
of feed were used to investigate the effects of PM8313
supplementation. The composition of the control diet (CD) is
shown in Table 1. After measuring the required amount of
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TABLE 1 | Composition of the basal experimental diet for red sea bream (Pagrus major).

Ingredients Percentage (%)
Fish meal 30.00
Wheat flour 28.88
Chicken by product 31.20
Fish oil 4.00
Squid liver powder 3.00
Lecithin 1.00
Mono calcium phosphate 0.20
Vitamin C 0.50
Vitamin premix® 0.50
Mineral premix® 0.50
Choline® 0.12
Cellulose 0.10

Feed proximate composition Percentage (%)

Moisture 5.02
Crude protein 44.02
Crude lipid 13.78
Crude ash 12.61

Supplement for BSD group
Bacillus sp. PM8313 1 x 108 CFU/g
Supplements for BGSD group
Bacillus sp. PM8313

B-glucan

1 x 108 CFU/g
0.10%

AVitamin premix (as mg kg1 in diets): Ascorbic acid, 300; dl-Calcium pantothenate, 150; Choline bitate, 3000; Inositol, 150; Menadion, 6; Niacin, 150; Pyridoxine. HCI, 15; Rivoflavin, 30;
Thiamine mononitrate, 15; dl-o-Tocopherol acetate, 201; Retinyl acetate, 6; Biotin, 1.5, Folic acid, 5.4, Cobalamin, 0.06.
PMineral premix (as mg kg—1 in diets): NaCl, 437.4; MgSO4-7H20, 1379.8; ZnS04-7H20, 226.4; Fe-Citrate, 299; MnSO4, 0.016; FeSO4, 0.0378; CuSO4, 0.00033; Ca(l0)3, 0.0006;

MgO, 0.00135; NaSeO3, 0.00025.

ingredients, 300 ml/kg of distilled water and fish oil were added
and mixed thoroughly to prepare CD. A bacterial supplement
diet (BSD) was formulated by adding PM8313 to that 300 ml of
water to adjust a bacterial concentration at 3.34 x 10° CFU/ml
and mixed with CD ingredients to ensure PM8313 at 1 x 10°
CFU/g diet. In the bacterial and B-glucan supplementation diet
(BGSD), 0.1% cellulose of CD was replaced by 0.1% B-glucan
(24), and then followed the B SD preparation protocol. Without
any heat production, feeds were prepared by a pelleting machine
(Baokyong, South Korea), air-dried at room temperature, and
stored at —4°C in a sealed polybag. Feed proximate composition
analysis was performed in accordance with the AOAC (25).

Fish Maintenance and Feeding Trial

Red sea bream was obtained from the Nam-Bu fish farm (Yeosu,
Republic of Korea) and divided into 360 L semi-recirculating
tanks to acclimatize for 1 week. After acclimatization, 180
healthy red seabreams were randomly assigned to three groups.
The fish were fed twice a day at 9:00 and 16:00 until apparent
satiation. Water quality was regularly monitored, and stable
environmental parameters were maintained (temperature,
18.0°C * 0.5°C; salinity, 32.3 + 0.7 ppt; dissolved oxygen, 5.6 +
0.3 mg/L; pH, 7.8 £ 0.2; water flow, 1.2 L/min).

Growth Performance, Feed Utilization, and
Body Indices
After 8 weeks of the feeding trial, growth performance, feed
utilization, and organosomatic indices were calculated as follows:

o Weight gain (WG; %) = 100 x (Final weight — Initial
weight)/Initial weight

« Specific growth rate (SGR; %/day) = 100 x (In final weight —
In initial weight)/days

o Feed conversion ratio (FCR) = Dry feed intake/Wet
body WG

» Protein efficiency ratio (PER) = Wet body WG/Protein fed

« Condition factor (CF; %) = 100 x Body weight/(Total
body length)’

o Viscerosomatic index (VSI; %) = 100 x Visceral weight/
Body weight

o Hepatosomatic index (HSI; %) = 100 x Liver weight/
Body weight

Analysis of Digestive Enzymes

Digestive enzyme activity on the anterior midgut of fish (n = 5)
from each group was analyzed using amylase, trypsin, and lipase
activity assay kits (BioVision, USA) according to the
manufacturer’s instructions.

Nonspecific Inmune Parameter Analysis
Superoxide dismutase (SOD), lysozyme, and myeloperoxidase
(MPO) activities in serum were assessed using an SOD activity
colorimetric assay kit (BioVision), a lysozyme detection kit (Sigma-
Aldrich), and an MPO colorimetric assay kit (Sigma-Aldrich),
respectively, according to the manufacturers’ instructions.

Serum Biochemical Parameter Analysis

The levels of serum biochemical parameters such as serum
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), total glucose, and total cholesterol were measured using
Mindray commercial kits and a Mindray BS-390 automatic
biochemistry analyzer (Mindray Bio-Medical Electronics,
China) at the Core-Facility Center of Dong-eui University
(Busan, South Korea).

Intestinal Microbiota Analysis

Total microbial DNA was isolated from the intestines of sea
bream fed with the experimental diets for 8 weeks using the
FavorPrepTM Tissue Genomic DNA Extraction Mini Kit
(Favorgen Biotech Corp., Taiwan). The quality of the total
DNA was assessed through gel electrophoresis and the V3-V4
region was amplified to construct a library. The prepared library
was sequenced on an Illumina MiSeq system (300 bp paired-
end reads).

Gene Expression Analysis

Real-time quantitative polymerase chain reaction (RT-qPCR)
was performed to investigate immune-related gene expression. A
Hybrid-R RNA purification kit and Riboclear plus kit (GeneAll
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Biotechnology, South Korea) were used for RNA isolation and
residual DNA removal from red sea bream intestines. Next,
c¢DNA was synthesized from the isolated RNA using the
PrimeScript 1st strand cDNA synthesis kit (Takara, Japan).
Gene expression was examined using TB Green Premix Ex Taq
(Takara, Japan) on a TP700/760 Thermal Cycler Dice Real Time
System (Takara, Japan), and relative expression was calculated
using the Thermal Cycler Dice software V5.0x with the 244"
method and B-actin as a reference gene. The gene-specific
primers used for gene amplification are summarized in Table 2.

Edwardsiella tarda Challenge Experiments
The pathogenic bacterium E. tarda (ATCC 15947) was
purchased from the Korean Collection for Type Cultures
(Seoul, South Korea). E. tarda was cultured in brain heart
infusion (BHI) broth at 30°C and washed three times with
phosphate-buffered saline. Five fish from each tank (n = 15
fish per group) were randomly collected and anesthetized using
2-phenoxyethanol. The fish were intraperitoneally injected with
100 L (1 x 10® CFU/mL) of E. tarda. Fish mortality in each tank
was monitored every 6 h up to 100% death in the control group,
and swabs from tissue samples were collected and spread on a
BHI agar plate to confirm edwardsiellosis.

Statistical Analysis

The statistical significance of the data was analyzed by one-way
analysis of variance using SPSS (IBM, USA), followed by
Duncan’s multiple range test.

RESULTS

Growth Performance, Feed Utilization, and
Body Indices

Dietary administration with BSD or BGSD significantly (P <
0.05) enhanced WG, SGR, FCR, and FCR compared with CD
(Table 3). However, there were no significant differences in any
of the evaluated parameters between the BSD and BGSD groups.
Furthermore, the body indices (CF, VSI, and HSI; Table 3) and
whole-body proximate composition (data not shown) of red sea
bream did not vary significantly between the BSD or BGSD

groups after 8 weeks of the feeding trial. These results
demonstrated that oral administration of both PM8313 and
PM8313 + B-glucan enhanced the growth and feed utilization
of red sea bream.

Analysis of Digestive Enzymes

The amylase and trypsin activities were significantly increased in
the BSD (12.56 + 0.14 and 8.63 + 0.71, respectively) and BGSD
(12.22 + 0.41 and 9.47 + 0.55, respectively) groups compared to
the CD (11.03 + 0.37 and 6.42 + 0.68, respectively) group.
Significant differences in lipase activity occurred only between
the BSD (50.71 + 2.16) and CD (46.66 * 2.05) groups. There were
no significant differences between the BSD and BGSD groups in
any of the enzyme assays conducted herein (Figure 1).

Nonspecific Inmune and Serum

Biochemical Parameter Analysis

SOD activity was significantly increased in the BGSD group
compared to the other two groups. Significant differences in
serum lysozyme activity occurred only between the BGSD (0.82
+ 0.04) and CD (0.65 * 0.10) groups. There was no significant
difference in MPO activity between the groups (Figure 2). The
investigated serum biochemical parameters (AST, ALT, total

glucose, and total cholesterol) were not significantly affected by
feed additives (Table 4).

Intestinal Microbiome Analysis

The studied feed additives significantly decreased the ACE,
CHAO, and Jackknife alpha diversity estimators. The Shannon
index was also significantly decreased in the BSD (2.66 + 0.20)
and BGSD (2.27 + 0.37) groups compared to the CD (5.14 +
0.06) group. Significant differences in the Simpson index
occurred only between the CD (0.01 + 0.01) and BGSD (0.26 +
0.13) groups (Table 5). These results demonstrated that the
intestinal bacterial community of red sea bream was altered by
the feed additives.

Analysis of the beta-diversity at the genus level based on
UniFrac metrics using principal coordinate analysis elucidated
clear differences between the feed additive groups and CD group.
The BSD and BGSD groups clustered relatively close, and there

TABLE 2 | Gene-specific primers used to quantify relative gene expression.

Gene Oligonucleotide Sequence (5 to 3)

Forward Reverse
B-actin CAAAGCCAACAGGGAGAAG TACGACCAGAGGCATACAG
IL-6 ACAACATCCCCTCACTTCC CCTCTTTCTCCACATACTTCAG
IL-8 AGGACAGGCCAAGAGGTTTG AGTGTGTTTGGGTGCCCTTA
NF-xB ACACTCTTCCTACAGCAGCG TCCTCCATAACCCAACCCAC
TNF-o ATCAGCAGCAAAGCCAAG GTTGTCAACCAGTCGGAAG
HSP70 GGACATCAGCGACAACAAG CGGAAGAGGTCAGCATTGAG
GH ACCAGAACCAGAACCAGAAC CAGACAGAGAGAGAGAGAGAG
TLR TCATCATCAGCAACAACCAG TCAGGAGGCAAATAGGAGAG
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TABLE 3 | Growth performance, feed utilization, and organosomatic indices of red sea bream supplemented with the experimental feed additives.

Groups

WG (%) SGR (% day™) FCR
cD 120.84 + 3.48% 1.41 + 0.03? 1.46 + 0.05°
BSD 131.41 + 4.15° 1.50 + 0.03° 1.23 + 0.042
BGSD 134.61 + 4.55° 1.52 + 0.03° 1.33 + 0.06%

Growth performance, feed utilization and organosomatic parameters

PER CF (%) VSl (%) HSI (%)
1.43 + 0.05% 1.70 + 0.06 2.07 £0.10 2.20 £ 0.04
1.69 = 0.05P 1.73+0.15 2.08 £ 0.11 219 +0.07
1.57 +0.07° 1.77 + 0.07 2.09 +0.13 2.16 +0.07

Values are mean + SD of three replicates. Values with different superscript letters within the same column in the table are significantly different (P < .05). The lack of superscript letter
indlicates no significant differences (P > 0.05). Control diet, CD: without Bacillus sp. PM8313 or B-glucan, BSD: 1 x 10° CFU g~ Bacillus sp. PM8313, and BGSD: BSD + 0.1% B-glucan.

was no clear difference between the groups in some
samples (Figure 3).

Upon comparing the relative abundances from the phylum to
genus levels, our findings indicated that the feed additives
significantly affected the composition of the gut microbiota of
red sea bream. The largest difference in the relative abundance
between groups was observed in the Bacillus genus, and the BSD
and BGSD groups had higher ratios than the CD group
(Figure 4). BGSD containing [3-glucan as a carbon source for
Bacillus sp. PM8313 had a higher Bacillus abundance and a
significantly higher LDA score than BSD (Figure 5). The
composition ratio of several genera including Bacillus, Bosea,
Bradyrhizobium, and Sphingomonas was higher in the group
supplemented with additives compared to the CD group. In
contrast, the ratio of Cellulophaga, Litoreibacter, Muricauda, and
Maritimimonas decreased (Figure 6).

Gene Expression Analysis

The dietary additives significantly increased the expression of the
immune-related genes IL-6 and NF-kB. However, no significant
differences in IL-8, TNF-o, and HSP-70 expression were
observed among the experimental groups (Figure 7).

E. tarda Challenge

The cumulative survival of red sea bream challenged with E.
tarda is shown in Figure 8. The first mortality occurred five days
after intraperitoneal injection. The highest survival rate was
observed in the BGSD group. After 10 days of challenge, all

fish in the CD group died, and the survival rates of the BSD and
BGSD groups were 33.33% and 80.00%, respectively.

DISCUSSION

Bacteria isolated from the host’s gastrointestinal tract that
positively affect the growth and health of the host are referred
to as host-associated probiotics (HAPs) (12). Because they
adapt to the host defense system and produce many
beneficial substances such as digestive enzymes and bioactive
compounds, they may be more suitable for probiotic
development than bacteria isolated from other sources (12, 26—
29). Numerous studies have demonstrated the ability of
probiotics to enhance the growth performance and immune
response of fish, as well as to modulate the gut microbiota.
However, the development of HAPs began only recently in 2020,
and therefore very few studies have evaluated their applicability
as aquaculture probiotics. Thus, the present study sought to
evaluate the effects of dietary supplementation of HAPs on the
growth, immunity, and gut microbiota composition of red
sea bream.

Positive changes in growth performance and feed utilization
were observed in the group fed with strain PM8313, which was
isolated from the intestines of healthy red sea bream, both alone
or mixed with PB-glucan. These results are consistent with
previous studies in which probiotic supplementation
significantly increased the growth performance of various

1 x 10® CFU g~ Bacillus sp. PM8313, and BGSD: BSD + 0.1% B-glucan.
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FIGURE 1 | Comparison of the measured amylase (A), trypsin (B), and lipase (C) activities between the three groups. The data represent the mean + standard
deviation; different letters indicate statistically significant differences between groups (P < 0.05). Control diet, CD: without Bacillus sp. PM8313 or B-glucan, BSD:
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FIGURE 2 | Serum non-specific immune parameters [(A), superoxide dismutase; (B), lysozyme activity; (C), Myeloperoxidase activity] of red sea bream fed with the
experimental diets. The data represent the mean + standard deviation; different letters indicate statistically significant differences between groups (P < 0.05). Control
diet, CD: without Bacillus sp. PM8313 or B-glucan, BSD: 1 x 108 CFU g™ Bacillus sp. PM8313, and BGSD: BSD + 0.1% B-glucan.

aquaculture fish species (30-32). Dawood etal. (16) suggested
that probiotic supplementation could affect feed palatability,
resulting in significant improvement in feed intake and feed
utilization parameters (PER, FCR, and protein gain) in fish, thus
slightly increasing growth rates in fish. Probiotics may also
stimulate the host’s digestive enzymes, thereby enhancing
nutrient assimilation (33), or improve nutrient absorption and
utilization by improving gut microbiome balance (34). However,
no synergistic effects of PM8313 and B-glucan supplementation
on growth performance were observed in this study. This may be
due to the dosage and frequency of administration, and therefore
additional studies are required to maximize the effectiveness of
these feed additives.

In the present study, the results of digestive enzyme activity in
the anterior midgut of fish further supported the hypothesis
that probiotic supplementation may increase digestive
enzyme activity, thereby improving growth performance.
Supplementation with PM8313 significantly increased amylase,
trypsin, and lipase activities. Bacillus species are known to secrete
digestive enzymes such as amylase, protease, and lipase. The
hydrolysis of enzymes secreted by bacteria has been shown to
improve the bioavailability of dry matter, proteins, and lipids
(35), which may lead to higher growth and nutrient utilization in
the host, as shown in this study. The higher digestive enzyme
activities observed in the probiotic-supplemented fish were
mainly due to the stimulation by the probiotic itself or by
exogenous enzymes that promoted the synthesis of endogenous
digestive enzymes. In turn, this might have improved nutrient
digestibility, resulting in better growth performance and feed

efficiency in fish (16). Similarly, previous studies have reported
that dietary supplementation with probiotics increases the
activity of intestinal digestive enzymes in fish (8, 33, 36);

A growing body of evidence has indicated that probiotics can
effectively improve the host’s innate and adaptive immune
responses (17). The interaction between host intestinal
epithelial cells and probiotics stimulates cellular and humoral
immune functions to control the physical and immunological
barrier properties of the gut (17, 37). Our study identified
significant differences in non-specific immune responses,
including SOD and lysozyme activity. SOD is an enzyme that
catalyzes the conversion of highly reactive superoxides (i.e.,
potentially harmful oxygen molecules in cells) into oxygen and
hydrogen peroxide to maintain immune homeostasis and
prevent tissue damage (38). Lysozyme is found in fish mucus,
serum, and tissues where leukocytes exist, and is an important
Iytic protein in the non-specific defense system that breaks down
the cell wall of Gram-positive bacteria (39). PM8313 and (-
glucan supplementation significantly increased SOD and
lysozyme activity compared to the control group. Similarly,
Zaineldin etal. (17) reported that fish fed with a diet
supplemented with Bacillus exhibited an increase in non-
specific immune responses including serum peroxidase
and lysozyme.

After administration, probiotics interact with the intestinal
microbial community and block the adhesion of pathogens in the
intestinal wall. Probiotic cell wall components like flagella,
lipopolysaccharides, and peptidoglycan as well as bacterial
nucleic acid are commonly known as microbial-associated

TABLE 4 | Biochemical parameters of red sea bream fed with the experimental diets.

Groups Serum biochemical parameters

AST (UL™) ALT (U L) Total glucose (mg dI™) Total cholesterol (mg dI")
CD 39.33 + 1.53 12.33 £ 2.52 4590 + 2.70 133.83 + 11.45
BSD 40.33 + 2.08 12.33 + 4.16 45.00 + 5.62 137.50 + 7.78
BGSD 38.33 + 5.86 11.33+£2.08 46.80 + 3.12 139.33 £ 8.40

Values are mean + SD of three replicates. All values within the same column in the table are not significantly different (P > 0.05). Control diiet, CD: without Bacillus sp. PM8313 or -glucan,

BSD: 1 x 10° CFU g~' Bacillus sp. PM8313, and BGSD: BSD + 0.1% p-glucan.
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TABLE 5 | Alpha diversity of the intestinal bacterial communities of red sea bream (Pagrus major).

Groups ACE CHAO Jackknife Shannon Simpson

CcD 1722 + 83° 1670 + 70° 1803 + 99° 5.41 + 0.06° 0.01 £0.012
BSD 162 + 242 157 + 212 169 + 232 2.66 + 0.20% 0.12 + 0.01%
BGSD 295 + 529 284 + 502 308 + 622 2.27 +0.37° 0.26 + 0.13°

Control diet, CD: without Bacillus sp. PM8313 or -glucan, BSD: 1 x 10° CFU g~' Bacillus sp. PM8313, and BGSD: BSD + 0.1% B-glucan.
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FIGURE 3 | Principal coordinate analysis based on the weighted UniFrac metrics (A, B) and unweighted pair group method with arithmetic mean tree
(C) of bacterial operational taxonomic units between the different diets. Control diet, CD: without Bacillus sp. PM8313 or B-glucan, BSD: 1 x 10° CFU g~' Bacillus

BGSD

molecular patterns (MAMPs). These MAMPs bind with the  antimicrobial peptides from plasma cells and probiotics,
pathogen pattern receptor (PPRs) of dendritic cells (DCs) or  respectively involved in the killing and eradication of foreign
toll-like receptors (TRLs) of enterocytes (40). DCs stimulate invaders (37, 41). Although the activation of immune-
phagocytic cells, and activate T and plasma cells to search,  physiological pathways by PM8313 was not studied, however,
engulf and destroy pathogens. TRLs induce the transcription of ~ obtained results demonstrate the probiotic potential of this
pro-inflammatory cytokine and production of antibody and  bacteria in sea bream.
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The gut microbiota of fish is altered by a variety of factors
such as habitat, water quality, growth stage, and feeding activity
(38, 42). These changes affect fish metabolism, which in turn
affects nutrient absorption, metabolic pathways, and ultimately
growth (36, 43, 44). Therefore, probiotic supplements can be an
excellent strategy to increase fish growth and immunity by
regulating the gut microbiota, thus increasing aquaculture
yields (38). In this study, PM8313 supplementation induced
clear changes in gut microbiota composition. The group fed
with PM8313 exhibited a marked decrease in microbial
diversity. However, lactic acid bacteria (LAB) such as
Lactobacillus and Lactococcus and other microorganisms
became established in the gut microflora of red sea bream.
The majority of currently used probiotics are based on LAB

strains, and the effects of these probiotics have been
demonstrated in various fish species (45). LAB produce
antimicrobial compounds such as nisin and pediocin and
directly inhibit the growth of Gram-positive pathogenic
bacteria (4). Moreover, there was a decrease in the abundance
of the fish pathogenic bacteria Flavobacterium. Nevertheless,
additional studies are needed to elucidate the mechanisms
through which the gut microbiota affects the growth
and immune response of red sea bream. Particularly,
future studies should focus on the changes in the abundance
of different (both increases and decreases) due to
PM8313 supplementation.

Cytokines are protein mediators produced by immune cells
that contribute to the host’s cell growth, differentiation, and
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FIGURE 6 | Comparison of the relative abundance of decreased (A) or increased (B) OTUs compared to the control group. BSD: 1 x 10° CFU g™ Bacillus sp.

PM8313, and BGSD: BSD + 0.1% B-glucan.
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defense mechanisms (46). Probiotics directly or indirectly
interact with the host’s immune cells to regulate the
transcription of genes that play important roles in the
immune system, including cytokines (3). In this study,
significant differences in IL-6 and NF-xB expression were
observed between the intestinal tissues of the additive-
supplemented group and the control group. IL-6 is a
pleiotropic cytokine that plays an important role in immune
homeostatic processes such as inflammation, antibody
production by B cells, T cell cytotoxicity, and stem cell
differentiation (47). IL-6 is known to stimulate macrophage
proliferation and antimicrobial peptide expression in rainbow
trout (Oncorhynchus mykiss), as well as the expression of

transcription factors that regulate T cell differentiation and
antibody production in orange spot grouper (Epinephelus
coioides) (48, 49). NF-xB is a key regulator of innate and
acquired immune and inflammatory responses and plays an
important role in maintaining immune balance in fish (38). Our
results demonstrated that PM8313 supplementation improves
immunity by regulating the immune-related genes IL-6 and
NF-kB in red sea bream, which enhanced the resistance of red
sea bream against E. tarda infection.

Collectively, our findings demonstrated the potential of
PM8313 as a HAP in aquaculture. Dietary supplementation
with PM8313 was found to improve growth performance and
digestive enzyme activities, in addition to increasing non-specific
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immune activity, regulating intestinal microbiota, and increasing
resistance to pathogenic strains. This newly isolated HAP could
thus be used as a feed additive in red sea bream aquaculture to
increase yields and control disease outbreaks.
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