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Fisetin reduces the senescent
tubular epithelial cell burden
and also inhibits proliferative
fibroblasts in murine lupus
nephritis
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Taiki Iwamoto2, Maki Miyajima3 and Takako S. Chikenji2,3*

1Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan,
2Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan,
3Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory

disease characterized by the involvement of multiple organs. Lupus nephritis

(LN) is a major risk factor for overall morbidity and mortality in SLE patients.

Hence, designing effective drugs is pivotal for treating individuals with LN.

Fisetin plays a senolytic role by specifically eliminating senescent cells,

inhibiting cell proliferation, and exerting anti-inflammatory, anti-oxidant, and

anti-tumorigenic effects. However, limited research has been conducted on

the utility and therapeutic mechanisms of fisetin in chronic inflammation.

Similarly, whether the effects of fisetin depend on cell type remains unclear.

In this study, we found that LN-prone MRL/lpr mice demonstrated

accumulation of Ki-67-positive myofibroblasts and p15INK4B-positive

senescent tubular epithelial cells (TECs) that highly expressed transforming

growth factor b (TGF-b). TGF-b stimulation induced senescence of NRK-52E

renal TECs and proliferation of NRK-49F renal fibroblasts, suggesting that TGF-

b promotes senescence and proliferation in a cell type-dependent manner,

which is inhibited by fisetin treatment in vitro. Furthermore, fisetin treatment in

vivo reduced the number of senescent TECs and myofibroblasts, which

attenuated kidney fibrosis, reduced senescence-associated secretory

phenotype (SASP) expression, and increased TEC proliferation. These data

suggest that the effects of fisetin vary depending on the cell type and may

have therapeutic effects in complex and diverse LN pathologies.

KEYWORDS

systemic lupus erythematosus (SLE), lupus nephritis (LN), senescence, transforming
growth factor b (TGF-b), p15INK4B, senolytic agent, fisetin
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune

disease characterized by the production of autoantibodies that

affect multiple organs, including the heart, brain, skin, lungs, and

kidneys. The most common and severe complication of SLE is

lupus nephritis (LN), which is a major contributor to morbidity

and mortality (1, 2). The pathogenesis of LN involves various

factors, but its specific pathomechanisms remain unknown.

Immunosuppressive agents and corticosteroids are standard

treatments for patients with SLE. However, the long-term

administration of these treatments is associated with

numerous side effects, including osteoporosis, hypertension,

diabetes, and infection (3). Therefore, a precise understanding

of LN pathogenesis is essential for the development of new

therapeutic targets.

Cellular senescence is characterized by irreversible cell cycle

arrest, which can be triggered by many different factors

including DNA damage, telomere dysfunction, oncogene

activation, and organelle stress. The main physiological

purpose of cellular senescence is to prevent the proliferation of

damaged cells and trigger tissue repair through the secretion of

various proteins—a phenotype termed as senescence-associated

secretory phenotype (SASP) (4). However, aging or persistent

damage causes the accumulation of senescent cells and impaired

cell removal by the immune system, which can lead to the

accumulation of chronic senescent cells and the promotion of

fibrotic pathologies (5, 6).

Transforming growth factor b (TGF-b) is associated with

several pathological processes, including renal fibrosis, promotion

of myofibroblast differentiation, and accumulation of proteins and

other components in the extracellular matrix (ECM) (7–9). In

human glomerular diseases, increased TGF-b expression levels are

observed in progressive glomerular diseases, and fibrotic areas are

strongly correlated with TGF-b1 expression in biopsy specimens

(10). TGF-b can also trigger the cellular senescence response, and

TGF-b-mediated accumulation of senescent cells is implicated in

idiopathic pulmonary fibrosis (6). TGF-b induces cyclin-dependent

kinase inhibitor p15INK4B and suppresses cell proliferation through

a G1-phase cell cycle arrest. TGF-b induces or accelerates

senescence and senescence-associated features in various cell types

(11, 12). Although TGF-b induces cellular senescence in multiple

cell types, it also induces proliferation in several types of

mesenchymal cells. The stimulation of smooth muscle cells by

TGF-b induces the expression of platelet-derived growth factor

(PDGF) (13). In addition, cellular proliferation of human kidney

cortical fibroblasts was induced in vitro by TGF-b treatment via the

induction of basic fibroblast growth factor (FGF-2) (14). TGF-b1
promotes tubular and glomerular cell epithelial–mesenchymal

transition (EMT), and the stimulated myofibroblasts produce

excessive ECM and promote its deposition in the glomeruli and

tubulointerstitium (15). TGF-b has different effects among different
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cell types, which may result in complex pathologies in chronic

inflammation, including LN.

Senolytics—a class of drugs that selectively induce apoptosis in

senescent cells—have attracted considerable attention as a novel

therapeutic strategy against multiple chronic inflammatory diseases

(16). Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a senolytic that is a

natural flavonoid found in various fruits and vegetables (17). It

eliminates senescent cells by inducing apoptosis, thereby reducing

chronic inflammation and fibrosis (16–18). Although fisetin

functions as a senolytic, it also exerts anti-tumorigenic,

antioxidant, anti-inflammatory, and anti-apoptotic effects (19–22).

Furthermore, fisetin inhibits cell proliferation by upregulating p53

and p21, which are known senescence markers (23, 24). The effects

of fisetin, such as senolysis and induction of cell senescence, appear

to depend on the target cell type. Thus, several multifunctional

effects of fisetin may be involved in treating the complex pathology

of LN.

In this study, we hypothesized that TGF-b-related cellular

senescence or proliferation occurs in LN and that the effects of

fisetin vary according to the target cell type. We investigated the

localization of TGF-b- and p15INK4B-positive cells in the LN of

lupus-prone MRL/lpr mice. We found that p15INK4B-positive

tubular epithelial cells (TECs) showed elevated TGF-b
expression. Furthermore, the number of proliferative smooth

muscle actin (SMA)-a-positive interstitial fibroblasts increased

in MRL/lpr mice. In vitro experiments revealed that TGF-b
stimulation triggered senescence in renal TECs, but promoted

the proliferation of renal fibroblasts. Thus, fisetin treatment

eliminates senescent TECs through its action as a senolytic

and limits the proliferation of fibroblasts both in vivo and

in vitro.
Materials and methods

Mice

Animal experiments were performed in accordance with the

Guide for the Care and Use of Laboratory Animals and approved

by the local review boards and authorities. Female MRL/lpr mice

were used as SLE mouse models, and haplotype-matched female

MRL/MpJ mice were used as phenotypic controls (Sankyo Lab

Service). The mice were housed under specific pathogen-free

(SPF) conditions in filter-top cages in rooms with constant

temperature and humidity under a 12-h light/12-h dark cycle.
Proteinuria

Proteinuria was assessed and scored semi-quantitatively

using Albustix test strips (Siemens Healthineers). The scores

were as follows: grade 0, 0 mg/dL; grade ±, <30 mg/dL; grade
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1+, ≥30 mg/dL; grade 2+, ≥100 mg/dL; grade 3+, ≥300 mg/

mL; and grade 4+, ≥1000 mg/dL.
Cell culture and cell proliferation assays

NRK-52E rat renal proximal TECs (JCRB Cell bank:

IFO50480) and NRK-49F rat renal fibroblasts (JCRB Cell

bank: JCRB9067) were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) with non-essential amino acids containing

10% fetal bovine serum (FBS) or 5% FBS, respectively. For TGF-

b stimulation, the cells were either untreated or treated with

various concentrations (1, 5, or 10 ng/mL) of recombinant

human TGF-b1 (240-b; R&D Systems) for two days. For

fisetin treatment, the cells were untreated or treated with

various concentrations (5, 10, or 20 µM) of fisetin dissolved in

DMSO. Fisetin was purchased from Selleck (S2298). Cell

proliferation was assessed using a Cell Counting Kit-8

(CK04; Dojindo).
In vivo fisetin treatment

Eighteen-week-old MRL/lpr (n = 24) and MRL/MpJ mice (n =

24) were randomized for pharmacological treatment analysis, as

previously described (25). Mice were orally administered 100mg/kg

fisetin (Tokyo Chemical Industry) (MRL/MpJ: n = 12 andMRL/lpr:

n = 12) or vehicle (20% PEG 400) (MRL/MpJ: n = 12 andMRL/lpr:

n = 12) five days a week for four weeks.
Histology, immunohistochemistry, and
immunofluorescence

Tissue samples were collected, fixed overnight in 4%

paraformaldehyde (PFA) at 4°C, and embedded in paraffin.

Paraffin-embedded tissues were sectioned (3-mm thickness) and

stained with periodic acid-Schiff (PAS) for histological analysis. For

immunohistochemical staining, the paraffin-embedded sections

were deparaffinized and rehydrated for immunostaining. Antigen

retrieval was performed in a microwave oven (95–98 °C for 10min)

using a citrate buffer (10mM sodium citrate, pH 6.0). After cooling,

the slides were washed twice with deionized water and once with 1X

Tris-buffered saline with Tween-20 (TBST) for 5min every time.

The sections were blocked with 1% bovine serum albumin (BSA) in

TBST for 15min at room temperature (RT) and then incubated

with primary antibodies overnight at 4 °C or for 1 h at RT. After

washing thrice with TBST for 5min each time, the sections were

incubated with SignalStain Boost IHC Detection Reagent (HRP,

Rabbit #8114; Cell Signaling Technology) for 30min at RT in the

dark. The sections were then washed in TBST thrice for 5min each

time and treated with TSA Plus Working Solution (Fluorescein,

Cyanine 3, and Cyanine 5; AKOYA BIOSCIENCES) for 10min at
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RT in the dark. For multiplex staining, stripping was performed in a

microwave oven (95–98 °C for 10min) using citrate buffer. After

cooling, staining with different tyramide fluorescent labels was

performed as described above. The following antibodies were

used: anti-Col1 (Abcam, ab34710, rabbit polyclonal, 1:300), anti–

TGF-b1 (ProteinTech, 21898-1-AP, rabbit polyclonal, 1:400),

anti–a-SMA (Cell Signaling Technology, D4K9N, 1:500), anti-

p15INK4b (Abcam, ab53034, rabbit polyclonal, 1:500), anti-CD4

(Cell Signaling Technology, D7D2Z, 1:200), anti-CD8a (Cell

Signaling Technology, D4W2Z, 1:800), anti-F4/80 (Cell Signaling

Technology, D2S9R, 1:500), and anti-Sox9 (Cell Signaling

Technology, D8G8H, 1:800). Nuclei were stained using 4’,6-

diamidino-2-phenylindole (DAPI) (Dojindo). Sections were

observed under a fluorescence microscope (Axio Observer 7;

Zeiss). The fluorescence intensities of p15INK4B and TGF-b1 were

analyzed using the image analysis function of ZEN (Zeiss).

Photographs (×20 magnification) of randomly selected tubules

and glomeruli were analyzed, and the average intensities of

p15INK4B and TGF-b1 per area were obtained. For tubule

analysis, nine tubules from each of the three fields per mouse

were randomly selected and evaluated. For glomerular analysis, 2–3

glomeruli in each of the three fields per mouse were randomly

selected and evaluated. The number of a-SMA-, Ki-67-, CD4-,

CD8-, F4/80-, and Sox9-positive cells was counted manually under

blinded conditions. Cultured cells were fixed with 4%

paraformaldehyde for 15 min at RT, incubated in 0.01 M

phosphate-buffered saline (PBS) containing 0.3% Triton (PBS-T),

and then treated with 2% BSA for 60 min at RT. After washing with

PBS-T, the cells were incubated first with the primary antibodies

anti-p15INK4B (Abcam, polyclonal, 1:500), anti-gH2AX (Cell

Signaling Technology, 20E3, 1:400), anti–phospho-mTOR

(Ser2448) (Sigma-Aldrich, 1C22, 1:100), and anti-Smad2/3 (Cell

Signaling Technology, D7G7, 1:400) and then with the secondary

antibody Alexa Fluor Plus 555 (Invitrogen). The nuclei were stained

with DAPI (Dojindo). The cells were observed under a fluorescence

microscope (ZEISS) and analyzed using ImageJ software (National

Institutes of Health). The percentage of p15INK4B-positive cells was

calculated by dividing the number of p15INK4B-positive cells by the

total number of DAPI-positive cells. The number of foci of gH2AX
(histone H2AX phosphorylation, a marker of DNA damage–related

senescence (26)) was counted using ImageJ software and

normalized against the total cell number in each image. To count

the gH2AX foci, the TIFF images were imported into ImageJ and

converted into 8-bit images. The “Binary and Threshold” functions

of ImageJ were used to detect gH2AX foci, which were counted

using the “Analyze Particles” function. The counted gH2AX foci

number was divided by the number of DAPI-stained cells. To

analyze the intensity corresponding to phospho-mTOR and

Smad2/3 proteins, the cells were randomly selected using the

“Regions of interest (ROI)” function and analyzed using the

“Measure” function of ImageJ. For SPiDER-b-gal staining, the
cells were washed twice with PBS, fixed in 4% PFA at RT for

5 min, and washed twice again with PBS. The sections were
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incubated in 20 µM SPiDER-b-gal (Dojindo) in McIlvaine buffer

(pH 6.0) for 60min at 37°C. After washing the tissue sections, the

nuclei were stained with DAPI.
Histopathological evaluation of
the kidney

PAS-stained paraffin sections were used for morphological

evaluation, and both glomerular inflammation (hypercellularity,

mesangial matrix expansion, and crescent formation) and

interstitial inflammation were graded on a scale of 0–3 as

previously described by Pérez de Lema et al. (27).

Hypercellularity, mesangial matrix expansion, and interstitial

inflammation were classified as follows: grade 0, absence; grade

1, mild; grade 2, moderate; and grade 3, severe. Crescent

formation was defined as follows: grade 0, <10%; grade 1, 10–

25%; grade 2, 25–40%; and grade 3, >40%.
RNA extraction and quantitative real-
time PCR

Total RNA was isolated from cultured cells and tissues using

TRI Reagent (Molecular Research Center) and was reverse

transcribed into cDNA using the iScript Advanced cDNA

Synthesis Kit (Bio-Rad). Quantitative PCR was performed

using the SsoAdvanced Universal SYBR Green Supermix (Bio-

Rad) in a CFX Connect Real-Time PCR Detection System (Bio-

Rad) under the following cycling conditions: 95°C for 30 s,

followed by 40 cycles of amplification (95°C for 10 s and 60°C for

30 s). The primer sequences used for the PCR are listed in

Supplementary Table 1. The samples were compared using the

DDCt method.
ELISA

Blood samples were collected from the mice after fisetin

treatment through cardiac puncture under anesthesia at the time

of euthanization. The concentration of anti-dsDNA antibodies was

measured using an ELISA kit (AKRDD-061, Fujifilm Wako).
Gene expression omnibus data

Gene expression data of patients with LN were obtained

from the NCBI Gene Expression Omnibus (GEO) using the

GEOquery R package (28). The accession number of the dataset

is GSE200306. The dataset includes 10 control and 45 LN

tubulointerstitial samples, 9 control glomeruli samples, and 34

LN glomeruli samples.
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Statistical analysis

Quantitative data are reported as means and medians with

interquartile ranges (IQRs) and 1.5 times the IQR. Data were

plotted using dot plots and box and violin plots using ggplot2,

ggpubr, and gplots, which are plotting systems for R based on the

Grammar of Graphics (The R Foundation for Statistical

Computing). Normality was assessed using the Shapiro–Wilk test.

The pairwise t-test or two-tailed Mann–Whitney U test was used

for comparisons between the two groups. One-way analysis of

variance (ANOVA) was conducted to assess the differences among

three or more groups. P-values for multiple comparisons were

adjusted using the Tukey’s method. Pearson’s correlation coefficient

was used to assess the correlations. Statistical analyses were

performed using EZR, a graphical user interface for R (29). Two-

sided p-values less than 0.05 were considered statistically significant.
Result

Expression of TGF-b and p15INK4B is
elevated in TECs

To investigate if TGF-b is associated with LN, we examined the

cellular expression of TGF-b in the LNs of 18-week-old MRL/lpr

mice and age-matched MRL/MpJ mice as controls. MRL/lpr mice

have a mutation in the gene encoding Fas(lpr) and develop a

syndrome resembling human SLE-induced LN (30, 31). First, we

confirmed that these mice exhibited more severe proteinuria and

higher histopathological scores for the glomeruli and

tubulointerstitium than did the controls (Supplementary

Figures 1A–D). To examine ECM deposition in the kidneys, type

I collagen (Col1) was stained using immunohistochemistry. Col1

expression was increased in both glomeruli and tubulointerstitium

of MRL/lpr mice (Supplementary Figures 1E–G), suggesting that

these mice had increased fibrotic areas in the kidney. Next, we

performed immunohistochemical analysis to identify the location of

the TGF-b1- and p15INK4B-expressing cells. Compared with that in

control mice, MRL/lpr mice showed higher TGF-b1 expression in

TECs, but not in the glomeruli (Figures 1A, B). Using NCBI’s Gene

Expression Omnibus (32), we also found that TGFB1 expression

was significantly increased in the tubulointerstitium of LN patients,

but not in the glomeruli (Supplementary Figure 2). The expression

of p15INK4B in both TECs and glomeruli was higher in MRL/lpr

mice than that in control mice (Figures 1A, C). In addition, MRL/

lpr mice exhibited higher expression of TGF-b1 and p15INK4B in the
TECs than in the glomeruli (Figures 1A–C). To determine whether

p15INK4B is a senescence marker, we performed co-immunostaining

using anti-p15INK4B, p16INK4A, and gH2AX antibodies. We found

that 89% of the p15INK4B cells expressed either p16INK4A, gH2AX, or
both (Supplementary Figure 3). a-smooth muscle actin (a-SMA),

which is expressed onmyofibroblasts and mesangial cells in chronic
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glomerulonephritis (33), was present at higher levels in MRL/lpr

mice than in control mice (Figures 1D, E). Furthermore, the

percentages of Ki-67+ proliferating myofibroblasts and mesangial

cells increased in MRL/lpr mice (Figures 1D, F). PCR analysis

revealed that compared with that in control mice, MRL/lpr mice

showed increased expression of senescence-related genes (Cdkn1a,
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Cdkn2a (p16 and p19), and Cdkn2b), SASP-related genes (Il1b,

Tgfb1, Il6, and Nfkb1), and fibrosis-related genes (Col1a1, Col3a1,

Mki67, Pdgfra, Vim, and Acta2) (Figure 1G). These results

suggested that the kidneys of MRL/lpr mice were characterized

with not just nephropathy, but with increased numbers of senescent

TECs and proliferating a-SMA-positive myofibroblasts.
B C

D E F

G

A

FIGURE 1

Numbers of senescent cells and proliferating cells are increased in the kidneys of MRL/lpr mice. (A) Representative images of
immunohistochemical staining for TGF-b1 and p15INK4B in kidney sections from MRL/lpr and MRL/MpJ (control) mice. (B–C) Quantification of
TGF-b1 and p15INK4B expression levels in tubular epithelial cells (TEC) and glomeruli measured using fluorescence intensity (arbitrary units, a.u.).
(D) Representative images of immunohistochemical staining for a-SMA and Ki-67 in kidney sections from MRL/lpr and MRL/MpJ mice.
(E–F) Quantification of the number of a-SMA-positive cells and the percentage of Ki-67- and a-SMA-positive cells in the interstitium and
glomeruli. (G) Relative mRNA expression of senescence-related genes (Cdkn2b, Cdkn1a, Cdkn2a(p19), Cdkn2a(p16)), fibrosis-related genes
(Col1a1, Col3a1, Mki67, Pdgfra, Vim, Acta2), and SASP-related genes (Tgfb1, Nfkb1, Il6, Il1b) in the kidneys of MRL/lpr and MRL/MpJ (control)
mice. Data are presented as medians with IQRs and 1.5 times the IQR and are displayed as dot plots and box-and-whisker plots. P-values were
determined using one-way ANOVA adjusted by Tukey’s method or the two-tailed Student’s t-test. (*P < 0.05 and **P < 0.01). Scale bars
represent 50 µm.
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TGF-b induces renal TEC senescence
and promotes renal fibroblast
proliferation

Based on the histological analysis described above, we

hypothesized that TGF-b triggers senescence in renal TECs in

an autocrine manner and proliferation of renal fibroblasts in a

paracrine manner. To test this hypothesis, we cultured the

normal renal proximal tubular cell line NRK-52E and normal

renal fibroblast line NRK-49F with and without TGF-b1
stimulation (1, 5, or 10 ng/mL) for two days. The WST-8

assay revealed that proliferation decreased in NRK-52E cells

(Figure 2A), but increased in NRK-49F cells following TGF-b1
stimulation (Figure 2B). Furthermore, NRK-52E cells showed

increased Cdkn2b (p15INK4B) mRNA expression in response to

TGF-b1 treatment, whereas NRK-49F cells did not (Figure 2C).

The protein expression of p15INK4B and gH2AX was also
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increased in NRK-52E cells following TGF-b1 stimulation,

whereas that of NRK-49F was not (Figures 2D–G). These

results suggest that TGF-b induces cellular senescence in renal

TECs but promotes the proliferation of renal fibroblasts. They

also suggest that the diverse functions of TGF-b may induce

TEC senescence and interstitial fibrosis in LN.
Fisetin treatment reduces SPiDER-b-gal
expression in NRK-52E cells and inhibits
TGF-b-induced activation of NRK-49F
cells

Next, we tested the effects of fisetin on TGF-b-induced
senescence in NRK-52E cells. Fisetin has been shown to have a

therapeutic effect on neuropsychiatric symptoms in MRL/lpr

mice (25). Senescent NRK-52E cells with and without TGF-b
B

C

D

E

F G

A

FIGURE 2

TGF-b induces senescence in renal tubular cells and the proliferation of renal fibroblasts. (A, B) WST-8 cell proliferation assay in NRK-52E
normal renal proximal tubular cells (A) and NRK-49F normal renal fibroblasts (B) cultured with and without TGF-b1 stimulation (1, 5, or 10
ng/ml). (C) Relative mRNA expression of Cdkn2b in NRK-52E and NRK-49F cells with and without TGF-b1 stimulation (1, 5, or 10 ng/mL).
(D, E) Representative images of p15INK4b and gH2AX staining in NRK-52E and NRK-49F cells with and without TGF-b1 stimulation (1, 5, or 10
ng/mL). (F, G) Percentage of cells positive for p15INK4B and the number of gH2AX foci. P-values were determined using one-way ANOVA
adjusted by Tukey’s method (*P < 0.05 and **P < 0.01).
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induction were treated with serial concentrations of fisetin (0–20

µM) for 24 h. To detect senescence-associated b-galactosidase,
we used SPiDER-b-Gal, which is a fluorescent probe that

exhibits fluorescence activation upon reaction with b-
galactosidase (34). TGF-b-treated cells showed increased

SPiDER-b-Gal expression and decreased cell proliferation

(Figures 3A–C). The doses of 5, 10, and 20 µM fisetin

decreased SPiDER-b-Gal expression in TGF-b-treated
senescent NRK-52E cells (Figures 3A, B). In the cell

proliferation assay, control NRK-52E cells exhibited increased

cell proliferation at a fisetin dose of 10 µM, and fisetin-treated

senescent NRK-52E cells demonstrated increased cell

proliferation in a dose-dependent manner (Figures 3A, C).

Furthermore, TGF-b treatment increased proliferation and F-

actin expression in NRK-49F cells (Figures 4A–C). A fisetin dose

of 20 mM decreased the proliferation of TGF-b-treated NRK-49F
cells and F-actin expression (Figures 4A–C). In addition, fisetin

doses of 10 and 20 µM decreased phospho-mTOR expression,

but did not inhibit the nuclear translocation of Smad2/3

(Supplementary Figures 4A–D). Based on these results, we

hypothesized that fisetin decreases the number of senescent

TECs and inhibits fibroblast proliferation in MRL/lpr kidneys.
Fisetin treatment reduces the expression
of p15INK4B in TECs

To examine the effect of fisetin in vivo, we orally

administered fisetin (100 mg/kg) or 20% PEG400 (as a

control) to MRL/lpr and MRL/MpJ mice for five days a week

for four weeks. The proteinuria score was significantly higher in

MRL/lpr mice than in MRL/MpJ mice before treatment, but this

score did not differ significantly between MRL/lpr and MRL/

MpJ mice after four weeks of fisetin treatment (Figure 5A). The

concentration of dsDNA autoantibodies was significantly higher

in vehicle-treated MRL/lpr mice than in vehicle-treated MRL/

MpJ mice; however, there was no significant difference between

vehicle-treated MRL/MpJ mice and fisetin-treated MRL/lpr mice

(Supplementary Figure 5). Histopathological analysis showed

that four-week fisetin treatment in MRL/lpr mice did not

improve the histopathological scores of glomeruli, but did

significantly decrease cell infiltration in the interstitium

(Figures 5B–D). IHC analysis showed increased presence of

CD4-, CD8-, and F4/80-positive cells in vehicle-treated MRL/

lpr mice, and these cells were decreased on fisetin treatment in

MRL/lpr mice (Supplementary Figures 6A, B). Fisetin also

reduced the expression of p15INK4B in TECs and increased the

number of KI-67+ TECs in MRL/lpr mice (Figures 5E–H). In

addition, fisetin inhibited the accumulation of aSMA+

myofibroblasts and decreased the number of KI-67+ aSMA+

myofibroblasts in the interstitium (Figures 5E, I, and J). The

number of aSMA+ cells and p15INK4B expression levels in the

glomeruli were not affected by fisetin treatment in MRL/lpr mice
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(Figures 5E, G, and K). The number of cells positive for SOX9—a

marker of renal stem/progenitor cells (35)—was higher in

fisetin-treated MRL/lpr mice than in vehicle-treated MRL/lpr

mice (Supplementary Figures 7A, B). PCR analysis showed that

fisetin treatment decreased the expression of senescence-related

genes (Cdkn1a, Cdkn2a (p16 and p19), and Cdkn2b), SASP-

related genes (Tnf, Mmp3, Il1b, Tgfb1, and Il6), and fibrosis-

related genes (Col1a1, Col3a1, Fn1, Mki67, Acta2, and

Vim) (Figure 5L).
Discussion

Cellular senescence is a stress-induced growth arrest that has

been observed in multiple kidney diseases. Senescent TECs were

present in 80% and 21% of the patients with and without kidney

disease, respectively (36, 37). Furthermore, patients with IgA

nephropathy demonstrated increased p21Cip1 and p16INK4A

protein expression confined to the tubules (36, 38). TEC

senescence was also observed in the early phase after acute

kidney injury in various mouse models (39). Patients with LN

demonstrated increased renal p16INK4A expression, which was

associated with more severe fibrosis and greater CD8+ T-cell

infiltration (40). Another study reported that p16INK4A

expression was increased in TECs (41). We demonstrated that

p15INK4B-expressing TECs with high TGF-b expression

accumulated in MRL/lpr mice—an animal model of LN.

Although various senescence-related genes and proteins are

involved in chronic inflammation in multiple organs, we

focused on p15INK4B, which is upregulated during TGF-b-
related cell senescence (42). p15INK5B, encoded by CDKN2B, is

located near CDKN2A, which is another member of the INK4

family. p15INK4B binds to CDK4 and CDK6, preventing their

binding to cyclins, thereby inhibiting cell cycle progression (42).

Another means by which TGF-b prevents cell proliferation is by

inhibiting c-Myc expression. c-Myc is a key transcription factor

involved in regulating cell growth, and it inhibits the expression

of p15INK4B and p21Cip1 in proliferating cells (43). Suppression

of c-Myc expression by TGF-b limits c-Myc availability and

suppresses p15INK4B and p21Cip1 function (13, 44). In addition,

the upregulation of p15INK4B expression in response to TGF-b is

mediated by Smad-induced transcriptional activation. FoxO

proteins, a family of transcription factors that interact with

Smads, upregulate CDKN2B expression (45). The interaction

between Smads and Sp1 at the CDKN2B promoter also

contributes to the induction of these genes in response to

TGF-b (46). For the analysis of senescence markers in this

study, we included p15INK4B, p16INK4A, and gH2AX. Although

terminally differentiated cells such as podocytes may also express

cell cycle arrest markers, a recent study showed that p16INK4A

expression levels in podocytes were positively correlated with age

and levels of other SASP factors in mice (47). We found that 89%

of p15INK4B-positive cells exhibited co-expression of the
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B

C

A

FIGURE 3

Fisetin treatment reduces the number of SPiDER-b-Gal–positive cells in TGF-b1–treated senescent renal tubular cells. (A) Representative images
of SPiDER-b-Gal staining in TGF-b1–treated senescent NRK-52E cells with and without fisetin treatment (0, 5, 10, 20 µM). (B) Quantification of
SPiDER-b-Gal expression levels in NRK-52E cells measured based on fluorescence intensity. (C) WST-8 cell proliferation assay in NRK-52E cells
after TGF-b1 and fisetin treatment. P-values were determined using two-way ANOVA adjusted by Tukey’s method (*P < 0.05 and **P < 0.01).
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senescence markers p16INK4A and gH2AX. An increased number

of senescent cells may be a pathological change characteristic of

LN, and terminally differentiated cells may not be eliminated.

Further research is needed to investigate the specific markers

that identify senescent cells.

This study demonstrated that MRL/lpr mice exhibited an

increased number of p15INK4B-expressing TECs and Ki-67-

expressing myofibroblasts. Although TGF-b induces
Frontiers in Immunology 09
antiproliferative effects in multiple cell types, such as epithelial,

endothelial, and neuronal cells, it also stimulates cell

proliferation in other mesenchymal cell types (48, 49). Strutz

et al. demonstrated that TGF-b1 stimulation induces the

proliferation of human renal fibroblasts via the induction of

basic fibroblast growth factor (14). Battegay et al. demonstrated

that stimulation of TGF-b in smooth muscle cells induced the

expression of PDGF and the autocrine effect of PDGF-induced
B

C

A

FIGURE 4

Fisetin treatment reduces cell proliferation and F-actin expression in TGF-b1–stimulated NRK-49F cells. (A) Representative images of F-actin
staining in TGF-b1–stimulated NRK-49F cells with and without fisetin treatment (0, 5, 10, 20 µM). (B) WST-8 cell proliferation assay of NRK-49F
cells after TGF-b1 and fisetin treatment. (C) Quantification of F-actin expression levels in NRK-49F cells measured using a fluorescence
microplate reader. P-values were determined using two-way ANOVA adjusted by Tukey’s method (*P < 0.05 and **P < 0.01).
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cell proliferation (13). TGF-b-stimulated proliferation of smooth

muscle cells only occurs at low TGF-b concentrations, whereas

higher concentrations limit cell proliferation (13). The molecular

mechanism underlying this observation is still unclear, but cell

type and TGF-b expression level may affect both cell senescence

and proliferation in SLE-induced LN.

Fisetin—a flavonoid found in many fruits and vegetables (22,

50)—has a variety of functional properties such as reducing

inflammation and neutralizing reactive oxygen species (51–53). It

also exerts antitumor activities. For instance, by inhibiting Ki-67
Frontiers in Immunology 10
expression, it blocks the PI3K/AKT/mTOR pathway; by acting as a

topoisomerase inhibitor it decreases cell proliferation (54–56).

Inhibition of PI3K/mTOR suppresses activated myofibroblasts

and possibly induces apoptosis (57). Fisetin has also recently been

found to have senolytic effects, selectively killing senescent cells by

inhibiting the anti-apoptotic pathway of senescent cells, which

includes the PI3K/AKT/mTOR pathway (58, 59). We found that

fisetin treatment inhibited phospho-mTOR expression in TGF-b-
treated senescent NRK-52E cells in vitro but did not inhibit Smad2/

3 nuclear translocation. Fisetin may inhibit the PI3K/AKT/mTOR
B

C D

E

F G

H I

J K

A
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FIGURE 5

In vivo fisetin treatment reduces expression of p15INK4B and SASP genes and inhibits a-SMA–positive myofibroblasts in MRL/lpr mice. (A) Semi-
quantitative data of proteinuria after fisetin treatment. (B–D) Representative images of PAS-stained kidneys from vehicle- and fisetin-treated
MRL/MpJ and MRL/lpr mice (B), and quantification of the histopathological scores of the glomeruli and interstitium (C, D). (E) Representative
images of immunohistochemical staining for p15INK4B in kidney sections from MRL/lpr and MRL/MpJ mice after fisetin treatment. (F–H)
Quantification of fluorescence intensity of p15INK4B expression in tubular cells and glomeruli (F, G) and the number of Ki-67-positive tubular
cells (H). (I, J) Quantification of the number of a-SMA–positive cells (I) and the percentage of Ki-67- and a-SMA-positive cells in the
interstitium (J). (K) Quantification of the number of a-SMA-positive cells in glomeruli. (L) Heatmap of differentially expressed senescence-,
fibrosis-, and SASP-related genes. Higher expression is depicted in red, lower expression is depicted in blue, and equivalent expression is
depicted in yellow. Data are presented as medians with IQRs and 1.5 times the IQR and are displayed as dot plots and box-and-whisker plots.
P-values were determined using one-way ANOVA adjusted by Tukey’s method. (*P < 0.05 and **P < 0.01).
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pathway in senescent TECs in a Smad-independent manner,

resulting in the attenuation of kidney fibrosis. Fisetin may also

exert a therapeutic effect by suppressing renal proinflammatory cell

infiltration or the production of cytokines such as T-cell-derived

TNFa and macrophage-derived TGF-b, both of which can induce

cell senescence (60).We found that CD4-, CD8-, and F4/80-positive

cells were increased in vehicle-treated MRL/lpr mice, and these cell

numbers were decreased on fisetin treatment. Yet, this still does not

indicate whether fisetin treatment reduces senescent cells directly or

indirectly; in fact, both are possible.

The inhibitory effect of fisetin on cell proliferation depends

on the cell type and dose. Fisetin inhibited the proliferation of

SGC7901 cells (a human gastric cancer cell line) at a dose of 5–

20 µM (61). Fisetin also promotes the proliferation of other cell

types, such as the human keratinocyte cell line (HaCaT) and

human foreskin fibroblasts (Hs68) at a dose of 5–10 µM (62, 63).

Although the detailed underlying mechanisms remain unknown,

fisetin activates the expression of telomerase reverse

transcriptase (TERT), insulin-like growth factor (IGF)-1, and

keratinocyte growth factor (KGF) (63), all of which promote

epithelial cell proliferation (64). Treatment with 10 µM of fisetin

may affect the proliferation of NRK-52E control cells.

Interestingly, our in vitro and in vivo experiments showed that

fisetin treatment promoted the proliferation of non-senescent

TECs. The adult kidney is characterized by minimal proliferation

of TECs (65, 66). However, TECs rapidly enter the cell cycle after

tissue damage, and their proliferative capacity may contribute to the

replacement of dead cells. This contributes to kidney regeneration

(65–67) via dedifferentiation of proximal tubule epithelial cells,

which act as adult renal stem/progenitor cells (66, 67), or via the

proliferation of new epithelial cells that arise from the self-

duplication of surviving cells rather than from a specialized

progenitor cell population (65). Our in vitro experiment showed a

decrease in the number of NRK-52E cells located near SPiDER-b-
Gal-positive senescent NRK-52E cells, and non-senescent NRK-52E

cell numbers increased after the elimination of senescent NRK-52E

cells by fisetin treatment. Cells in the vicinity of senescent cells

undergo cellular senescence via the SASP and experience cell cycle

arrest (68, 69). Fisetin treatment may activate renal stem/progenitor

cells and induce tubular cell proliferation either directly or by

eliminating senescent cells. In this study, we found that the

number of SOX9-positive cells increased after fisetin treatment in

theMRL/lpr mice. Previous studies have shown that Sox9 activation

occurred after kidney injury and promoted regeneration (35, 70–

72). Although the number of Sox9-positive renal stem/progenitor

cells was relatively low, our results showed that fisetin treatment

could potentially increase their number and contribute to kidney

regeneration, which may reduce proteinuria in LN mice. Further

studies are needed to confirm these findings and clarify the

underlying mechanisms. Fisetin also increases the expression of

Ccnd2, Cdk6, Ccne1, and Cdk1, which are required for the cell cycle

G1/S transition (73). Furthermore, fisetin inhibits ROS production

and caspase 9 expression (51, 73), whichmay promote TEC survival
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after tissue damage. In the future, examination of the mechanism by

which fisetin treatment restores TECs in the context of LN would

need to be explored. In the present study, in an LN model, fisetin

reduced the accumulation of senescent tubular epithelial cells and

inhibited fibroblast proliferation and, by extension, renal fibrosis.

This improved renal function possibly by reducing proteinuria.

Previous studies have shown that improving renal fibrosis reduces

proteinuria (74, 75). Conversely, improving proteinuria prevented

renal fibrosis (76, 77), suggesting that proteinuria and renal fibrosis

play reciprocal roles. Taken together, the clearance of senescent

tubular epithelial cells and inhibition of renal fibrosis may improve

protein reabsorption in the LN model, although it remains unclear

why senescent glomerular cells were not removed. Further research

is needed to investigate why the pathological changes improved in

the LN model.

We demonstrated that fisetin treatment reduced the

number of senescent TECs and proliferating myofibroblasts,

but could not identify a significant therapeutic effect on the

glomeruli. Several studies have shown that 8–16 weeks of fisetin

treatment attenuated diabetic nephropathy in mouse models of

streptozotocin- or a high-fat diet-induced diabetic nephropathy

(78, 79). In our study, fisetin was administered for four weeks.

Although previous studies have shown that a four-week fisetin

treatment decreased the number of senescent cells (25, 80), this

treatment duration may be insufficient to attenuate LN. Further

research is needed to determine whether long-term fisetin

treatment can attenuate nephropathy in SLE.

In conclusion, we demonstrated that p15INK4B-positive

TECs and Ki-67-positive myofibroblasts accumulated in LN-

prone MRL/lpr mice. The p15INK4B-positive TECs in LN

exhibited high TGF-b expression. TGF-b stimulation induced

senescence of NRK-52E renal TECs and proliferation of NRK-

49F renal fibroblasts, suggesting that TGF-b promotes cell

senescence and proliferation in a cell type-dependent manner

as well as providing novel insights into the complex pathology

of LN. Furthermore, in vivo fisetin treatment reduced the

number of senescent TECs and myofibroblasts, thus

attenuating kidney fibrosis, decreasing SASP expression, and

increasing TEC proliferation.
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