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Integrated time-series
transcriptomic and
metabolomic analyses
reveal different inflammatory
and adaptive immune responses
contributing to host resistance
to PRRSV
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College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China,
2The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China, 3Department of
Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA,
United States, 4Hubei Hongshan Laboratory, Wuhan, China, 5The Engineering Technology Research
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Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly

contagious disease that affects the global pig industry. To understand

mechanisms of susceptibility/resistance to PRRSV, this study profiled the

time-serial white blood cells transcriptomic and serum metabolomic

responses to PRRSV in piglets from a crossbred population of PRRSV-

resistant Tongcheng pigs and PRRSV-susceptible Large White pigs. Gene set

enrichment analysis (GSEA) illustrated that PRRSV infection up-regulated the

expression levels of marker genes of dendritic cells, monocytes and neutrophils

and inflammatory response, but down-regulated T cells, B cells and NK cells

markers. CIBERSORT analysis confirmed the higher T cells proportion in

resistant pigs during PRRSV infection. Resistant pigs showed a significantly

higher level of T cell activation and lower expression levels of monocyte

surface signatures post infection than susceptible pigs, corresponding to

more severe suppression of T cell immunity and inflammatory response in

susceptible pigs. Differentially expressed genes between resistant/susceptible

pigs during the course of infection were significantly enriched in oxidative

stress, innate immunity and humoral immunity, cell cycle, biotic stimulated

cellular response, wounding response and behavior related pathways. Fourteen

of these genes were distributed in 5 different QTL regions associated with

PRRSV-related traits. Chemokine CXCL10 levels post PRRSV infection were

differentially expressed between resistant pigs and susceptible pigs and can be

a promising marker for susceptibility/resistance to PRRSV. Furthermore, the
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metabolomics dataset indicated differences in amino acid pathways and lipid

metabolism between pre-infection/post-infection and resistant/susceptible

pigs. The majority of metabolites levels were also down-regulated after

PRRSV infection and were significantly positively correlated to the expression

levels of marker genes in adaptive immune response. The integration of

transcriptome and metabolome revealed concerted molecular events

triggered by the infection, notably involving inflammatory response, adaptive

immunity and G protein-coupled receptor downstream signaling. This study

has increased our knowledge of the immune response differences induced by

PRRSV infection and susceptibility differences at the transcriptomic and

metabolomic levels, providing the basis for the PRRSV resistance mechanism

and effective PRRS control.
KEYWORDS

PRRSV, Tongcheng pigs, disease resistance, transcriptome, metabolome, adaptive
immunity, inflammatory response
Introduction
Porcine reproductive and respiratory syndrome (PRRS),

caused by PRRS virus (PRRSV), is a widespread viral swine

disease that causes reproductive failure in sows and respiratory

disease in pigs of any age (1). Swine production in the US, China

and other countries all over the world suffer huge annual

economic losses from PRRSV infections (2). PRRSV is

characterized by high variability, persistent infections,

immunosuppression, delayed appearance and low levels of

neutralizing antibody, and antibody-dependent enhancement

(2–4). Development of killed and modified-live PRRSV

vaccines have failed to provide adequate protection against

heterologous PRRSV strains (5–7) . Therefore , the

improvement of host resistance to PRRS may provide a more

effective approach for PRRS control (8).

Previous studies clearly showed that genetic differences play

an important role in susceptibility/resistance to PRRSV.

Susceptibility of monocyte-derived macrophages to PRRSV

were divergent among diverse commercial lines of pigs and

greater PRRSV-induced lung lesions were reported in Large

White (LW) pigs (9). The replication of PRRSV in porcine

alveolar macrophages (PAMs) from Landrace pigs was

significantly slower compared to PAMs from LW and Pietrain

pigs (10). Interestingly, Chinese native breeds such as

Tongcheng (TC) (11–13), Dingyuan (14) and Tibetan pigs

(15) exhibit differential susceptibility to natural infections of

PRRSV with mild lesion in lungs and low infection rate. These

findings suggest that resistance to PRRSV infection is heritable.

The host resistance to PRRSV is estimated by a combination of

factors, such as viral loads, weight gains and regulation of innate
02
and adaptive immune responses (8). A genome-wide association

study revealed a major QTL associated with host response to

PRRSV and moderate heritability of viral load and weight gain in

crossbred pigs, impacting the severity and progression of disease

(16). Recently, pigs with low tonsil PRRS viral levels were

phenotypically related to earlier and faster serum virus

clearance (17). Furthermore, recent studies discovered that

polymorphisms in the genes GBP5 , CD163 and SNP

rs80800372 (WUR) were associated with susceptibility/

resistance to PRRSV (18–20).

Because the PRRSV can evade the porcine innate immune

response, the development of an adaptive immune response may

play a crucial role in virus clearance (21). At the early stage of

infection, PRRSV induces a sharp decrease in white blood cell

counts, lymphocytes and monocytes in piglets (2, 22–24).

PRRSV-related lymphopenia mainly marked by changes in the

subpopulations of T-lymphocytes, results in a weak and delayed

adaptive immune response (25). Differences in T cell responses

have been documented in pigs that have succumbed to or

survived PRRSV infection (23). Moreover, T cell responses as

measured by the number of virus-specific IFN-g T cells have a

striking association with the reduction of PRRSV viremia (26,

27). Thus, PRRS vaccines that target adaptive immune

mechanisms and prevent virus-driven immunosuppression

may be the most effective approach to preventing PRRSV

infection (28, 29).

The integration of transcriptome and metabolome gives a

comprehensive insight into understanding immune responses to

viral infections like PRRSV (30). Several studies have further

explored adaptive immune response differences to PRRSV

infection using the RNA-Seq technique. The blood

transcriptomes of pregnant gilts infected with PRRSV with low
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fetal mortality rates exhibited greater T cell activation than gilts

with high fetal mortality rates (31). Interestingly, more active

adaptive immune responses in lung transcriptomes were

observed than in lymphoid organs of pigs infected with

PRRSV (32). Dong et al. studied the tonsil transcriptome of

PRRSV infected pigs and found that pigs with high tonsil virus

levels potentially trigger stronger immune responses (33).

Additionally, metabolites also participate in the regulation

and signal transduction of immune cells upon viral infection and

inflammation response (34–36). Recent studies have suggested

metabolic changes in host responses of pigs following Swine

Fever Virus (37), Mycoplasma hyopneumoniae (38) and PRRSV

(39) infections. In a recent study, alpha-AAA, kynurenine and

lysoPCs were identified as potential metabolomic markers of

PRRSV fetal susceptibility (39).

In a previous study, TC pigs had stronger resistance, less

severe symptoms, lower viral load levels, and stable leukocyte

counts compared to LW pigs during early PRRSV infection (12).

Large genetic differences between TC and LW pigs have limited

the identification of important genes associated with PRRSV

susceptibility. Therefore, we constructed a crossbred population

by crossing PRRSV-resistant TC pigs and PRRSV-susceptible

LW pigs to the ninth generation. After several generations of

recombination, the population generates a rich genetic resource

with large phenotypic diversity suitable for studying the genetic

architecture of disease resistance to PRRSV infection (40).

Previous PRRSV artificial infection experiments in the

crossbred population suggest significantly different immune

responses between pigs who did or did not survive the

infection, especially in serum viral load and lymphocyte

percentage (41, 42). Our objective was to decipher the

mechanisms of immune response differences for the

susceptibility/resistance to PRRSV infection. In this study, we

performed an integrated analysis of the white blood cells

transcriptome and serum metabolome of infected piglets from

the crossbred population described above at serial timepoints.

Differentially expressed genes (DEGs) and metabolites

participating in immune responses were identified to

characterize the dynamic immune response differences

between the resistant and susceptible pigs.
Materials and methods

Animal experiment and blood sampling

In order to decipher the mechanism of disease resistance to

PRRSV infection, we constructed a crossbred population of

PRRSV-resistant TC pigs and PRRSV-susceptible LW pigs to

the ninth generation. Seventy-four healthy weaned piglets with

average weight of 15 kg were selected from this population.
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Piglets received a 2 ml intramuscular and 1 ml intranasal

injection of the PRRSV strain WUH3 (virus dose: 105 TCID50/

ml) on day 0. Blood samples were collected in anticoagulation

tube with EDTA-K2 at 0, 4, 7 and 11 days post infection (dpi) as

illustrated in the diagram (Figure 1A). The white blood cells

were separated from fresh blood by Red Blood Cell Lysis Buffer

(Solarbio, China) and resuspended with RNAiso Plus reagent

(Takara, Japan) for total RNA extraction. The serum samples

were separated from the clot by centrifuging at 1000 g for 10

minutes in a refrigerated centrifuge (Eppendorf, Germany).

White blood cell samples and serum samples were stored at

-80℃. The determination method of serum viral loads by

absolute quantitative RT-PCR assay was the same as

previously described (12). The lymphocyte percentages in

peripheral blood were detected by BC-2800VET Auto

Hematology Analyzer (Mindray, China). All animal

procedures were approved by the Ethical Committee for

Animal Experiments at Huazhong Agricultural University,

Wuhan, China. The animal experiments were performed at

the Laboratory Animal Center of Huazhong Agricultural

University (Animal experiment approval ID Number:

HZAUSW-2017-005).
RNA preparation and RNA-Seq

Sixty white blood cell samples from a total of 17 pigs at four

timepoints (0 dpi, 4 dpi,7 dpi, 11 dpi) were used for RNA-seq

(Figure 1A). Among them, 8 pigs died of PRRSV after 8 dpi.

Detailed information on the experimental design is provided in

Figure 1A. Total RNA was isolated from white blood cells using

the RNAiso Plus reagent (Takara, Japan) according to the

manufacturer’s instructions. RNA quality was assessed on an

Agilent 2100 Bioanalyzer (Agilent Technologies, USA). Then the

mRNAs were enriched by oligo(dT) magnetic beads and

fragmented with fragmentation buffer. Six-base random

hexamers were used to synthesize the first cDNA strand, and

then second-strand cDNA fragments were synthesized by DNA

polymerase I, RNase H, dNTP and buffer. The cDNA fragments

were purified with QiaQuick PCR extraction kit (Qiagen,

Germany), end repaired, poly(A) added, ligated to Illumina

sequencing adapters and then size selected to construct

sequencing libraries. All libraries were sequenced on Illumina

NovaSeq 6000 platform with a 150-bp paired-end module at

Berry Genomics Company (Beijing, China). Clean reads were

obtained by removing reads containing adapter or poly-N and

low-quality reads from raw reads. Clean reads were aligned

against ENSEMBL Suscrofa11.1 with TopHat v2.0.9 (available

online: https://github.com/infphilo/tophat) and bowtie v2.1.0

(available online: http://bowtie-bio.sourceforge.net/

index.shtml).
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Transcriptome data analysis

The raw sequence count data were normalized with the

edgeR R package (43) using the “TMM” method and genes were

excluded when all samples had raw counts of ≤ 10 to reduce

statistical bias. DEGs were identified using the limma R package

(44). The resulting p-values were adjusted using Benjamini and

Hochberg’s approach for controlling the false discovery rate.

Genes with |log2(FoldChange)| > 1 and adjusted p-value < 0.05

found by limma were assigned as differentially expressed. Gene

set enrichment analysis (GSEA) was performed using the java

GSEA software (45). Blood Transcription Modules (BTMs) were

used as gene sets and module activity scores were taken as the

mean value of member genes (46). Significant enrichment was

determined by a false discovery rate (FDR) < 0.05 and

normalized enrichment score (NES) >1.
Cell composition analysis

The RNA-Seq dataset consisting of sixty white blood cell

samples was analyzed by CIBERSORT (47) R package to

quantify immune cell compositions. The gene expression
Frontiers in Immunology 04
dataset was run using the LM22 signature and 100

permutations. The proportions of 22 cell types in each sample

were estimated and their differences between resistant pigs and

susceptible pigs were tested by Wilcoxon’s test. Statistical

significance was defined as a p-value less than 0.10.
Functional analysis of differential
expressed genes

Three RNA-seq time course tools (ImpulseDE2, splineTC

and maSigPro) based on different core methods were used for

identifying the DEGs between susceptible and resistant pigs (48–

50). The DEGs between susceptible and resistant pigs were

clustered using a hierarchical clustering method with the

clustering function of the maSigPro R package. Functional

enrichment analyses were performed by clusterProfiler R

package, using biological process terms in the Gene Ontology

(GO) database for the genes in each cluster (51). The top eight

terms in the enrichment results for each cluster were used for

visualization. The positions of DEGs were matched to

quantitative trait loci (QTL) regions for PRRSV related traits
A

B

FIGURE 1

Study Overview. (A) Schematic representation of the experimental design in terms of sample types, target tissues, and sampling time points (0
dpi, 4 dpi, 7 dpi, 11 dpi) after PRRSV infection. (B) Serum viral loads and peripheral blood lymphocyte percentages in susceptible and
resistant pigs.
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in the pig QTL database (http://www.animalgenome.org/cgi-

bin/QTLdb/SS/index).
Quantitative PCR validation of differential
expressed genes

Total RNA from three resistant pigs and three susceptible

pigs at three different timepoints (0, 4 and 7 dpi) were used for

quantitative PCR (qPCR) validation. Samples were reverse

transcribed into cDNA using the PrimeScript™ RT reagent kit

with gDNA Eraser (TaKaRa, Japan) according to the

manufacturer’s instructions. The qPCR reactions were

performed by SYBR Green method using the CFX384 Touch

Real-Time PCR Detection System (Bio-Rad, USA). The 10 mL
qPCR reactions comprised 5 mL 2× TB Green Premix Ex Taq II

(TaKaRa, Japan), 0.2 mM primers designed for target genes, and

1 mL of cDNA sample. Every assay for target genes included no-

template controls and every sample was analyzed in triplicate.

The thermocycler program consisted of an initial hot start cycle

at 95 °C for 30 sec, followed by 40 cycles at 95 °C for 5 sec and

60 °C for 30 sec with melting curve analysis. Relative expression

levels were normalized to the expression level of reference gene

RPS18 (52) and calculated using the 2-DDCt method. qPCR results

were presented as fold changes relative to the expression level of

each sample at 0 dpi. The primers used for qPCR are shown in

Supplementary Table 3.
Metabolomic profile using liquid
chromatography-mass spectrometry

Twenty-sixty serum samples collected from 13 pigs at 0 dpi

(pre-infection) and 7 dpi (post-infection) were used for liquid

chromatography-mass spectrometry (LC-MS) analyses

(Figure 1A). Methanol (precooled at -2 0°C) was added to

thawed samples and centrifuged for 10 min at 12,000 rpm at 4°

C. A 20 µl aliquot from each sample was used for quality control

assessment and the remaining sample was used for LC-MS

detection. Chromatographic separation was accomplished in a

Thermo Ultimate 3000 system equipped with an ACQUITY

UPLC® HSS T3 (150×2.1 mm, 1.8 µm, Waters) column

maintained at 40°C. The ESI-MSn experiments were executed

on the Thermo Q Exactive mass spectrometer with the spray

voltage of 3.8 kV and -2.5 kV in positive and negative modes,

respectively. The original dataset was used for peak picking, peak

alignment and peak annotation by XCMS and CAMERA.

Briefly, the UPLC/MS/MS product ion spectra were annotated

using the Human Metabolome Database (http://www.hmdb.ca),

Metlin (http://metlin.scripps.edu), massbank (http://www.

massbank.jp/), Lipid Maps (http://www.lipidmaps.org),

mzCloud (https://www.mzcloud.org), and BioNovoGene

Company (http://www.bionovogene.com) standard database
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and Kyoto Encyclopedia of Genes and Genomes databases

(KEGG, http://www.genome.jp/kegg/). The resulting peak

intensity table was exported for comprehensive statistical and

functional analyses.
Metabolomics data analyses

The peak intensity table consists of samples in columns and

metabolic features in rows. The peak intensity matrix was

normalized by log2 transformation, followed for partial least

squares discriminant analysis (PLS-DA) using MetaboAnalyst

5.0 (53). Pairwise comparisons were conducted using the

Wilcoxon’s test. The differentially expressed (DE) metabolites

were filtered with the following cut-off: |log2(FoldChange)| >

log2(1.5) and p-value < 0.05. The functional enrichment

pathways were identified by MetaboAnalyst 5.0 using

databases KEGG. Besides pairwise comparisons, we also

performed one-way analysis of variance (ANOVA) to identify

the DE metabolites (FDR < 0.10). DE metabolites were clustered

using a hierarchical clustering method in R.
Joint analyses of transcriptomics and
metabolomics data

The transcriptomics and metabolomics datasets were

collapsed into their respective clusters by unsupervised

hierarchical clustering. The cluster scores were taken as the

mean value of member genes or metabolites. The BTM clusters

for analyses were those gene sets from significantly enriched

BTMs at 7 dpi in the GSEA results. Pearson’s correlation

coefficients between the scores of transcriptomic clusters and

metabolomic clusters were calculated by R. Associations between

transcriptomic clusters (or genes) and metabolomic clusters (or

metabolites) were estimated by general linear regression (GLM).

The integrated enrichment pathway analyses of DEGs and DE

metabolites were performed by IMPaLA webtools (http://

impala.molgen.mpg.de/). The resulting networks were

visualized using Cytoscape 3.8.2 (http://cytoscape.org).
Results

Overview of transcriptome data reveal
different immune response to PRRSV
between resistant pigs and
susceptible pigs

To identify how the peripheral blood cell transcriptome is

influenced by PRRSV infection, we performed challenge trials

with 74 pigs that were infected with PRRSV strain WUH3. Based

on survival time, serum viral loads and lymphocyte percentage
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post-PRRSV infection, we classified 17 pigs into susceptible (n =

10) and resistant (n = 7) groups (Supplementary Table 1).

Susceptible pigs were characterized by high viral loads and low

lymphocyte percentage at 7 dpi and death before 14 dpi, while

resistant pigs had low viral loads and high lymphocyte

percentages at 7 dpi and survived past 14 dpi (Figures 1A, B).

Paired-end sequences from 60 white blood cell samples from 17

pigs collected at 0, 4, 7 and 11 dpi were generated.

Approximately 83.51% of the 2.5 billion sequenced reads (an

average of 41.3 million paired-end reads per sample) were

mapped to the pig re ference genome Sscro fa11 .1

(Supplementary Table 2). Differential expression analyses were

respectively performed in susceptible-, resistant- and all pigs by

comparing blood transcriptome datasets at 4,7, and 11 dpi with 0

dpi (Figure 2A). We identified 2952 DEGs in resistant pigs and

4628 DEGs in susceptible pigs in response to PRRSV infection

for at least one of the collection times (adjusted p-value < 0.05

and |log2(FoldChange)| > 1). The overlapping DEGs are shown

in Venn diagrams (Figures 2B, C). There were 30.1% (899/2952)

and 31.3% (1448/4628) DEGs in common among the three

collection timepoints in resistant and susceptible pigs,

respectively (Figures 2B, C). Moreover, the susceptible pigs
Frontiers in Immunology 06
showed a relatively modest increase in the number of DEGs at

all time points compared to the resistant pigs. Our results

demonstrate that PRRSV infection induces a greater number

of DEGs in susceptible pigs than resistant pigs.

Gene set enrichment analysis (GSEA) was employed to

identify the transcriptional pathways related to PRRSV

infection in all pigs, resistant pigs and susceptible pigs. BTMs

with higher sensitivity of capturing immunological events from

blood transcriptomics were used as enrichment gene sets. A

summary of significantly enriched BTMs is shown in Figure 3A

(FDR < 0.05 & NES >1). All three groups exhibited up-

regulation of pathways related to activation of dendritic cells,

monocytes and neutrophils and inflammatory/TLR/chemokines

responses and down-regulation of pathways associated with

activation of T cells, B cells and NK cells after PRRSV

infection (Figure 3A). Notably, comparison of susceptible and

resistant pigs revealed significant differences in three modules

(p-value < 0.05, Figure 3B). The resistant pigs showed a higher

level of T cell activation module (M7.1) at 4, 7, 11 dpi (Figure 3B

(a), Supplementary Figure 1A) and were highly enriched in the

NK cells module (M7.2) at 4 dpi (Figure 3B(c), Supplementary

Figure 1C). In comparison, monocyte surface markers (S4) were
A

B C

FIGURE 2

(A) Number of genes differentially expressed (|log2(FoldChange)| > 1 and adjusted p-value < 0.05) relative to day 0 in resistant (left) and
susceptible (right) pigs on days 4, 7 and 11 post-infection. (B) Venn diagram comparing identified DEGs in resistant pigs. (C) Venn diagram
comparing identified DEGs in susceptible pigs.
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more abundant in susceptible pigs at 4, 7, 11 dpi (Figure 3B(b),

Supplementary Figure 1B). The abundances of several T cell, NK

cell and monocyte markers including CD2, TGFBR3, KLRD1,

LRP1 were significantly different between resistant and

susceptible pigs (p-value < 0.05, Figure 3C). Expression levels

of CD2, P2RY13, KLRD1 and LRP1 were also validated by qPCR

(Supplementary Figure 2, Supplementary Table 3). Immune cell

compositions were estimated by CIBERSORT analysis from the

gene expression profiles (Supplementary Figure 3). Among 6

immune cell types, T cells were the most prevalent population in

both groups at 0 dpi, while the proportions of lymphocytes (B

cells and T cells) decreased and monocytes and macrophages

were the most prevalent populations at 4 dpi. Significant

differences were observed in the proportions of T cells (p-

value = 0.055), dendritic cells (p-value = 0.043) and

neutrophils (p-value = 0.088) at 4 dpi between resistant/

susceptible pigs (Supplementary Figure 3A). Resistant pigs

have higher average percentages among almost all T cell

subpopulations and have significantly greater numbers of

Tregs (Supplementary Figure 3B) and the proportion of sum

of CD4 T cell subpopulations at dpi 4 (p-value < 0.10,

Figure 3D). Overall, these data indicate that susceptible pigs
Frontiers in Immunology 07
developed a stronger T cell suppression and monocyte activation

at 4, 7, 11 dpi, which may contribute to the lower lymphocyte

p e r c e n t a g e and s e v e r e s ymp toms a f t e r PRRSV

infection (Figure 1B).
Transcriptome profile reveals
susceptible pigs have severe
immune response to PRRSV

A total of 209 DEGs between susceptible and resistant pigs

identified by time-course expression analyses were grouped into

six gene sets by hierarchical clustering (Figure 4A,

Supplementary Figure 4). These clusters displayed different

temporal expression patterns between susceptible and resistant

pigs (Figure 4A). The DEGs from these six clustered DEGs sets

were subjected to GO enrichment analyses, revealing the top

eight GO terms shown in Figure 4B. The DEGs within the 6

clusters were respectively enriched in oxidative stress (cluster 1),

innate immunity and humoral immunity (cluster 2), cell cycle

(cluster 3), biotic stimulated cellular response (cluster 4),

wounding response (cluster 5) and behavior (cluster 6) related
A B(a) C

B(b)

B(c) D

FIGURE 3

(A) BTMs significantly enriched (FDR < 0.05 & NES >1) in all (left), resistant (center) and susceptible (right) pigs post infection by GSEA; Blue to
red scale indicates negative or positive associations based on normalized enrichment scores (NES). (B) Temporal expression patterns of modules
with significant differences between resistant (red) and susceptible (blue) pigs: (a) M7.1: T cell activation(II); (b) S4: Monocyte surface signatures;
(c) M7.2: enriched in NK cells(I). (C) Temporal expression patterns of genes with significant differences between resistant (red) and susceptible
(blue) pigs. Significance levels are shown as *, p-value < 0.05; **, p-value < 0.01; ****, p-value < 0.0001. (D) The proportion of CD4 T cells
between resistant (red) and susceptible (blue) pigs.
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pathways. More specifically, abundances of CXCL10 andMTDH

were significantly differential between susceptible/resistant pigs

at 7 dpi, and the susceptible pigs had higher fold changes than

resistant pigs (Figure 4C and Supplementary Figure 2).

Furthermore, we matched positions of DEGs to PRRSV-

related QTLs. Fourteen DEGs, including LMNA, PRPF3, ST18,

CENPQ, KLF15, KIF7, CRISP3, TAC1 and SHTN1 were

distributed in 5 different QTL regions associated with PRRSV-

related traits (Supplementary Table 4) (54–56).
Overview of metabolome data reveal
distinct metabolomic responses
to PRRSV between resistant and
susceptible pigs

The samples were divided into four classes according to their

susceptibility/resistance to PRRSV and their timepoints (0 dpi or

7 dpi), labeled as “sus0”, “sus7”, “res0”, “res7”. A final matrix

(302 metabolites × 26 samples) was employed to build a PLS–

DA classification model. The four groups (res0, res7, sus0, sus7)

were distinct and the two resistant groups (res0 and res7) were

distinguished from susceptible groups (sus0 and sus7) by three

components (Figure 5A), indicating significant differences

underlying host susceptibility to PRRSV infection. To
Frontiers in Immunology 08
investigate the metabolomic changes induced by PRRSV

infection, the pre-infection (0 dpi) vs post-infection (7 dpi)

comparisons were performed in three groups (all pigs,

resistant pigs and susceptible pigs). The DE metabolites (|log2

(FoldChange)| > log2(1.5) & p-value < 0.05) were mainly down-

regulated after PRRSV infection in all three groups (Figure 5B).

The KEGG enrichment analysis of those DE metabolites

demonstrated that most significant pathways driven by PRRSV

infection were in amino acid metabolism and synthesis, such as

valine, leucine and isoleucine biosynthesis and D-glutamine and

D-glutamate metabolism (Figure 5C). Moreover, the majority of

DE metabolites were categorized in amino acid and lipid

classifications (Figure 5D).

There was a total of 48 DE metabolites detected between the

susceptible/resistant pigs at 0 dpi, while fewer numbers were

seen at 7 dpi (Figure 5B). These results may indicate that the

baseline differences were greater between the susceptible/

resistant pigs. Notably, most of the DE metabolites were at

higher levels in the susceptible pigs (Figure 5B). It appears that

butanoate (short chain fatty acids) metabolism was the most

significantly enriched pathway between susceptible/resistant

pigs at 7 dpi (Figure 5C). A large proportion of lipids were

significantly different between susceptible/resistant pigs at 7 dpi

(Figure 5D). A one-way ANOVA analysis was performed to

identify DE metabolites between the four groups (res0, res7,
A B C(a)

C(b)

FIGURE 4

(A) Temporal expression patterns of clustered DEGs in resistant (top) and susceptible (bottom) pigs post infection. (B) Gene ontology
enrichment analyses of DEGs within clusters. (C) The expression values of significant DEGs related to immune response between resistant (red)
and susceptible (blue) pigs; (a) CXCL10, (b) MTDH. Significance level is shown by *, p-value < 0.05.
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sus0, sus7). A total of 39 metabolites were significantly different

(FDR < 0.1) and were classified into 5 clusters using

unsupervised clustering (Figure 6). Obviously, the DE

metabolites in cluster 1 and cluster 4 were induced by PRRSV

infection, while cluster 2, cluster 3 and cluster 5 were responsible

for the susceptibility differences to PRRSV (Figure 6,

Supplementary Table 5).
The integrative analysis of transcriptome
and metabolome revealed DE
metabolites positively correlated with
DEGs in T cell and B cell signatures in
response to PRRSV infection

The metabolomic clusters 1 and 4 were significantly

correlated with all BTM clusters (Figure 7A). Specifically, they

were positively correlated with the BTMs related to T cell and B

cell activation, but negatively correlated with the BTMs related

to DC, neutrophil and monocyte activation (Figure 7A). 2,5-

dihydroxybenzoate, L-tryptophan, D-mannose, salicyluric acid

and phosphonoacetate in clusters 1 and 4 were significantly

correlated with those marker genes in BTMs (Figure 7C).

Focusing on the metabolite levels, the intensity of 2,5-

dihydroxybenzoate (2,5-DHBA) was significantly associated
Frontiers in Immunology 09
with the activity score of B cell surface signature (S2) module

(R2 = 0.74, p-value = 1.88×10-8) and L-tryptophan was

significantly associated with the activity score of the T cell

activation (M7.1) module (R2 = 0.33, p-value = 0.002)

(Figure 7B). The intensity of 2,5-DHBA and L-tryptophan

were significantly down-regulated by PRRSV infection (p-

value < 0.05) and associated with B cell and T cell

activation modules.
The integrative analysis of transcriptome
and metabolome revealed that
creatinine contributes to PRRSV-
induced inflammation

Using unsupervised hierarchical clustering, DEGs between

resistant and susceptible pigs by time-course analyses were

grouped into six clusters and DE metabolites were assembled

into five clusters. We performed the correlation analysis between

the six transcriptomic clusters and five metabolomic clusters and

found that transcriptomic cluster 6 related to behavior

(Figure 4B) was negatively correlated with the metabolomic

cluster 2 (r = -0.75, p-value = 1×10-5) (Figure 8A).

Particularly, bufotenin (member metabolite in cluster 2) was

significantly associated with the scores of the transcriptomic
A B

DC

FIGURE 5

(A) PLS-DA of metabolite-intensity data in resistant and susceptible pigs on days 0 and 7 post-infection; (B) Number of metabolites differentially
expressed (|log2(FoldChange)| > log2(1.5) & p-value < 0.05) in resistant and susceptible pigs on days 0 and 7 post-infection; (C) KEGG
enrichment analysis of DE-metabolites within five groups; (D) The classification of significant DE-metabolites within five comparisons.
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cluster 6 (R2 = 0.31, p-value = 0.003, Figure 8B), with

significantly higher levels in resistant pigs regardless of PRRSV

infection. Moreover, transcriptomic cluster 2 was significantly

enriched with genes related to innate immune response and

humoral immunity (Figure 4B). After correlation analysis of

expression levels of member genes in transcriptomic cluster 2

with all member metabolites in metabolomic cluster 2 and

cluster 5 (p-value < 0.05), we found that the gene CRISP3,

which is located in the PRRSV susceptibil ity QTL

(Supplementary Table 4) was significantly correlated with

creatinine (R2 = 0.24, p-value = 0.01, Figures 8C, D).
Integrative pathway analysis revealed
that DEGs and DE metabolites were
significantly enriched in the GPCR
downstream signaling pathway

Integrated pathway enrichment analysis was performed using

the total number of DEGs and DE metabolites. The most

significantly enriched pathway was G protein-coupled receptor

(GPCR) downstream signaling (p-value = 8.55×10-5). The sub-

pathways of GPCR downstream signaling, including G alpha (i)
Frontiers in Immunology 10
signaling events, G alpha (q) signaling events and GPCR ligand

binding, were significantly enriched as well (p-value < 0.05). DEGs

and DEmetabolites were also significantly enriched in the immune

system pathway (p-value = 0.027). Genes CCR6, RASGRP1 and

ITPR3 were in both the immune system pathway and the GPCR

downstream signaling pathway (Figure 9). To further understand

how PRRSV infection affects the two pathways, the expression

levels of enriched DEGs and DE metabolites involved in both

pathways were visualized by generating a heatmap, which showed

that most components were down-regulated (Supplementary

Figure 5A). Notably, susceptible pigs showed significantly higher

levels of myristic acid than resistant pigs at both 0 and 7 dpi

(Supplementary Figure 5B).
Discussion

Because PRRSV vaccines provide limited protection against

the disease, deciphering the mechanism underlying host

resistance to PRRSV is crucial for effective PRRSV control.

Using a resistant × susceptible crossbred pig population, we

found significant immune response differences between pigs

who died and those who survived the infection in the current
FIGURE 6

Heatmap of DE metabolites by one way ANOVA. Blue to red scale indicates negative or positive associations based on metabolites expression
levels. Each column represents a sample, and each row represents a DE metabolite.
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PRRSV challenge study. Specifically, dead pigs had high viral

loads and low lymphocyte percentages while pigs who survived

the infection had low viral loads and high lymphocyte

percentages at 7 dpi (Figure 1B). Recent studies have described

that pigs with high levels of viremia have slower viral clearance

and stronger immune responses than pigs with low levels of

viremia (17, 33). PRRSV infection will induce a general decline

in lymphocyte counts. Lymphopenia tends to be linked to a weak

and delayed adaptive immune response (25). A similar

phenomenon was found in humans infected with COVID-19

where the degree of lymphopenia predicts disease severity in

COVID-19 patients (57). Antibody-mediated humoral

immunity appears to provide minimal protection against viral

infections. In comparison, cell-mediated immunity is essential to

combat viral diseases such as COVID-19, PRRS and Marek’s

disease, especially when antibody levels are low or declining (58–

62). Therefore, viral loads and lymphocyte percentages may

indicate the susceptibility of pigs to PRRSV infection.

The GSEA of the transcriptome dataset illustrated that

PRRSV infection up-regulated genes involved in myeloid cells

(dendritic cells, monocytes and neutrophils) related modules

and inflammatory response modules, but down-regulated genes

involved in lymphoid cells (T cells, B cells and NK cells) modules

(Figure 3A). Notably, the majority of DE metabolites, such as

2,5-DHBA, L-tryptophan, D-mannose, salicyluric acid and

phosphonoacetate, were down-regulated in response to PRRSV
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infection and were positively correlated to T cell and B cell

marker genes (Figure 7C). L-Tryptophan and D-mannose

appear to play important roles in T cell immunity (63–65).

Phosphonoacetate inhibited the growth of African swine

fever virus in cultured swine monocytes (66). 2,5-DHBA

suppresses siderophore synthesis via TLR signaling to regulate

the innate immune response to bacterial infection (67).

Increased alpha-aminoadipic acid and kynurenine levels were

reported in PRRSV infected fetuses, especially in the fetuses with

high viral load (39). In this study, aminoadipic acid levels were

similarly increased in all infected pigs and L-kynurenine levels

were increased in the susceptible pigs after PRRSV infection, but

there were no significant differences between resistant and

susceptible pigs (Figure 6 and Supplementary Figure 6).

Additionally, the majority of DE metabolites and DEGs

enriched in the immune system pathway and GPCR

downstream signaling pathways were down-regulated by

PRRSV infection (Figure 9). The WUR SNP on chromosome 4

is a known marker of susceptibility/resistance to PRRSV in

commercial pigs. Several studies reported that the unfavorable

genotype AA animals had higher levels of viremia than AB and

BB animals (16, 68, 69). A more recent study compared the

transcriptomes of pigs infected with PRRSV with AB and AA

WUR genotypes and found the GPCR pathway at 7 dpi was the

most significant transcriptional difference and may contribute to

the susceptibility differences to PRRS (70). In our data, the WUR
A B(a)

CB(b)

FIGURE 7

(A) Correlation between transcriptomic BTM clusters and metabolomic clusters; The magenta to green scale color indicates a positive to
negative Pearson’s correlation coefficient, and coefficient values and the corresponding p-values were labeled on the boxes. (B(a)) Correlation
between B cell surface signature (S2) module and 2,5-dihydroxybenzoate. (B(b)) Correlation between T cell activation (II) (M7.1) module and L-
tryptophan. (C) Correlation between DE metabolites in cluster 1, 4 and marker genes in T cells, B cells, DCs, neutrophils and monocytes related
modules; the horizontal axis represents DEGs, and the vertical axis represents DE metabolites. Top 2 significant metabolites were marked by "*".
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A

B

D

C

FIGURE 8

(A) Correlation between transcriptomic clusters of DEGs between resistant/susceptible pigs and metabolomic clusters; The magenta to green
scale color indicates a positive to negative Pearson’s coefficient value, and coefficient values and the corresponding p-values are labeled on the
boxes. (B) Correlation between bufotenin and transcriptomics cluster 6. (C) Correlation between DE metabolites in metabolomics cluster 2 and
5 and DEGs in transcriptomics cluster 2; the horizontal axis represents DE metabolites, and the vertical axis represents DEGs. Candidate
combination of the metabolite and gene was marked by "*". (D) Correlation between creatinine and CRISP3. meta1~meta15 respectively
represent metabolites in cluster 2 and 5: Bufotenin, (+)-7-Isojasmonic acid, 12-Hydroxydodecanoic acid, Myristic acid, Hexadecanedioate, L-
Alanine, Uracil, Creatinine, 4,5-Dihydroorotic acid, 2-Dehydro-3-deoxy-L-rhamnonate, 4-Acetamidobutanoic acid,3-Dehydroshikimate,
gamma-Glutamylcysteine, 3-Hydroxyphenylacetic acid, L-Tyrosine.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2022.960709
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.960709
genotypes of the infected piglets had no significant associations

with viral loads and weight gain post PRRSV infection (p-

value>0.05), but the most significantly enriched pathway was

the GPCR pathway at 7 dpi. GPCR signaling is essential for the

control of leukocyte migration patterns in immune responses,

guiding T cell and B cell responses to eliminate or control

pathogen invasions (71). CXCR5 and CCR7 are involved in

the GPCR downstream signaling pathway and can regulate cell

migration speeds. In fact, CCR7-deficient T cells have a 30%

~50% reduction of T cell velocity in vivo (72). RASGRP1 was

shared by the immune system pathway and the GPCR

downstream signaling pathway and was positively correlated

with several DE metabolites (Figure 7C). In addition, the serum

2,5-DHBA levels were highly correlated with numerous genes in

the immune response pathways (Figure 9). DEGs in the T cell

and B cell modules and DE metabolites post PRRSV infection

were generally down-regulated and positively correlated,

indicating their potential cooperative roles in adaptive

immune responses.

Interestingly, the expression profiles of resistant pigs indicate

less suppression of T cell activation than susceptible pigs,

corresponding to their higher lymphocyte percentage post

PRRSV infection (Figure 3B(a), Supplementary Figure 1A).

Resistant pigs had a significant increase in the expression level

of CD2 (Figure 3C), which is generally up-regulated in activated

T cells and memory T cells (73). Moreover, CIBERSORT analysis
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showed that resistant pigs had significantly higher numbers of T

cells and CD4 T cell proportion at 4 dpi (Figure 3D and

Supplementary Figure 3). A lower percentage of CD4 T cell

counts in peripheral blood was associated with the disease

severity and CD4+ counts were lower pigs that died compared

to pigs that survived PRRSV infection in a previous study (23,

74). Several studies reported positive correlations between

CXCL10 and increased disease severity and risk of mortality in

COVID-19 patients (60, 75, 76). In the current research, the

expression of chemokine CXCL10 was significantly increased

after PRRSV infection in all pigs, but the fold changes in

susceptible pigs were higher than resistant pigs at all timepoints

and were significantly different at 7 dpi (Figure 4C(a) and

Supplementary Figure 2). In addition, a recent study suggests

that CXCL10 plays a major role in the SARS-COV-2-induced

cytokine storm (77). Monocytes are the main sources of cytokine

storms, which cause severe inflammatory responses (78).

Susceptible pigs had high-level activities in the monocyte

related modules. LRP1 is described as an inflammatory

mediator and the down-regulation of LRP1 in monocytes may

promote monocyte recruitment and amplify inflammation (79).

The expression levels of LRP1 at 7 dpi were down-regulated in

susceptible pigs while up-regulated in resistant pigs (Figure 3C

and Supplementary Figure 2). Moreover, the overexpression of

MTDH greatly increased the expression of inflammatory

cytokines and was associated with the severity of inflammatory
FIGURE 9

Integrated transcriptomic and metabolomic response network to PRRSV infection. Each node represents a significant correlation (|r| > 0.3 & p-
value < 0.05), box represents metabolite, circle represents gene, the shared genes between immune system and GPCR downstream signaling
pathways colored in yellow.
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response during viral infection (60, 80, 81). The fold changes of

MTDH at 7 dpi were significantly higher in susceptible pigs

(Figure 4C(b) and Supplementary Figure 2). These findings

suggest that susceptible pigs may suffer more severe

inflammatory responses than resistant pigs during early PRRSV

infection. Lipids have been reported as the potent signaling

molecules to regulate the inflammatory response (82). The

majority of DE metabolites between susceptible/resistant pigs at

7 dpi belong to lipids (Figure 5D). Although DE metabolites

between resistant and susceptible pigs in this study were minor,

we noted that myristic acid was significantly higher in serum of

susceptible pigs than resistant pigs at both sampling timepoints

(Supplementary Figure 5B). Myristic acid serum levels are

positively correlated with the severity of an inflammatory

response (83). Creatinine has the potential to function as an

anti-inflammatory agent for both human and animal

inflammatory diseases (84). The creatinine levels in resistant

pigs were higher than susceptible pigs at 0 dpi and 7 dpi

(Figure 8D). A previous study also observed a high creatinine

level in PRRSV infected fetuses with low viral load compared to

fetuses with high viral load (39). Moreover, NK cells response will

be inhibited by PRRSV infection, but resistant pigs had higher

levels in the modules enriched in NK cells at 4 dpi (Figure 3B(c)).

Furthermore, the NK cell-associated gene KLRD1 was up-

regulated in resistant pigs but down-regulated in susceptible

pigs at 4 dpi (Figure 3C). Interestingly, the expression level of

KLRD1 was recently reported as a promising biomarker for

predicting human susceptibility to influenza (85). Nevertheless,

our data suggest that resistant pigs are capable of initiating faster

immune responses to infection with earlier T cell responses

whereas susceptible pigs may suffer from excessive

inflammatory responses, leading to death.

Overall, PRRSV infection may suppress T cell and B cell

activation and promote cytokine storms and inflammatory

responses. The majority of DE metabolites were down-

regulated in response to PRRSV infection and positively

correlated with the expression levels of T cell and B cell

marker genes. Some metabolites are involved in the immune

response to PRRSV infection and may play important roles in

adaptive immunity. Transcriptomic and metabolomic

differences after PRRSV infection in susceptible pigs were

associated with more severe suppression of T cellular

immunity and serious inflammatory responses compared to

resistant pigs. T cell-mediated immunity differences may be

responsible for the susceptibility/resistance to the PRRSV

infection. PRRS vaccines targeting T cell-mediated immunity

may provide effective PRRS control in the future. Additionally,

previous studies have reported that diet can promote more rapid

virus clearance and improve growth performance in PRRSV

challenged experiments (86). Further exploration of the impact
Frontiers in Immunology 14
of DE metabolites on the PRRS resistance by dietary strategies

should be carried out in the future.
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