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University of Chinese Medicine, Changsha, China, 4The First People's Hospital of Changde City,
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Objective: To evaluate Safety and efficacy of probiotic supplementation in

inflammatory arthritis.

Methods: The literature on the treatment of inflammatory arthritis with

probiotics has been collected in databases such as CNKI, Pubmed, Cochrane

library, Embase, etc. The search time is for them to build the database until May

2022. The included literatures are randomized controlled trials (RCTs) of

probiotics in the treatment of hyperuricemia and gout. The Cochrane risk

assessment tool was used for quality evaluation, and the Rev Man5.3 software

was used for meta-analysis.

Results: A total of 37 records were finally included, involving 34 RCTs and 8

types of autoimmune disease (Hyperuricemia and gout, Inflammatory bowel

disease arthritis, juvenile idiopathic arthritis [JIA], Osteoarthritis [OA],

Osteoporosis and Osteopenia, Psoriasis, rheumatoid arthritis (RA),

Spondyloarthritis). RA involved 10 RCTs (632 participants) whose results

showed that probiotic intervention reduced CRP. Psoriasis involved 4 RCTs

(214 participants) whose results showed that probiotic intervention could

reduce PASI scores. Spondyloarthritis involved 2 RCTs (197 participants)

whose results showed that probiotic intervention improved symptoms in

patients. Osteoporosis and Ostepenia involving 10 RCTs (1156 participants)

showed that probiotic intervention improved bone mineral density in patients.

Hyperuricemia and gout involving 4 RCTs (294 participants) showed that

probiotic intervention improved serum uric acid in patients. OA involving 1

RCTs (433 participants) showed that probiotic intervention improved
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symptoms in patients. JIA involving 2 RCTs (72 participants) showed that

probiotic intervention improved symptoms in patients. Inflammatory bowel

disease arthritis involving 1 RCTs (120 participants) showed that probiotic

intervention improved symptoms in patients. All of the above RCTs showed

that probiotics did not increase the incidence of adverse events.

Conclusion: Probiotic supplements may improve Hyperuricemia and gout,

Inflammatory bowel disease arthritis, JIA, OA, Osteoporosis and Osteopenia,

Psoriasis, RA, Spondyloarthritis. However, more randomized controlled trials

are needed in the future to determine the efficacy and optimal dosing design of

probiotics.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42021286425, identifier CRD42021286425.
KEYWORDS

inflammatory arthritis, hyperuricemia and gout, inflammatory bowel disease arthritis,
juvenile idiopathic arthritis, osteoarthritis, osteoporosis and osteopenia,
spondyloarthritis, probiotics
1 Introduction

Chronic inflammatory arthritis disease is a multifactorial

disease characterized by autoantibody production and systemic

features. The main pathological features of inflammatory

arthritis are persistent synovitis and joint erosion, in which

synovitis induces the pannus and joint destruction of arthritis

(1). Chronic inflammatory arthritis, as one of the important

clinical manifestations of rheumatic immune diseases, often

leads to joint pain, limited mobility, and eventually joint

deformity and disability (2, 3). The main clinical features of

chronic inflammatory arthritis are chronic progression and

recurrent attacks, which cause a huge burden of disease and

pain in patients. There are many types of inflammatory arthritis,

mainly include: (1) rheumatoid arthritis (RA) (4); (2) Gout (gout

is characterized by a buildup of uric acid that forms crystals in

the joints—especially in the big toe, and sometimes in the hands,

wrists, or knees) (5); (3) psoriatic arthritis (about 30 percent of

people with psoriasis (an autoimmune disease that causes scaly

raised skin bumps) develop psoriatic arthritis, which affects the

knees, ankles, wrists, or fingers) (6); (7) osteoarthritis (OA) (8);

(4) ankylosing spondylitis (9); (6) arthritis associated with

inflammato ry bowe l d i s e a s e ( 10 ) . Among them ,

epidemiological surveys show that globally, the prevalence of

RA is estimated to be 0.24%. Currently, the total number of RA

patients in the top 10 global drug markets exceeds 7 million, and

this number will exceed 8.5 million by 2023 (11). Gouty arthritis
02
caused by hyperuricemia has also increased rapidly, becoming

one of the most common types of arthritis (12, 13). Current

treatment drugs mainly include: (1) Non-steroidal anti-

inflammatory drugs (NSAIDs) (which reduce the level of

prostaglandins – chemicals that promote inflammation) (14).

(2) Steroid hormones (which reduce inflammation and suppress

the immune system) (15). (3) Anti-rheumatic drugs (DMARDs)

(16). (4) Drugs that lower uric acid levels (gout) (17). (5) Other

related nutritional supplements. However, the above-mentioned

drug-related adverse reactions are common and cannot

guarantee remission, and are prone to drug resistance over

time leading to treatment failure (18–20). Therefore, there is a

need for new related target therapeutic approaches for drug

development and treatment of joint inflammation, thereby

reducing the disease burden of inflammatory arthritis. A study

showed that gut microbial dysbiosis (in combination with

environmental triggers) may contribute to inflammatory

immune disturbances in inflammatory arthritis in combination

with genetically predisposed individuals (21). As shown in a

study of a subset of patients with early RA, subclinical intestinal

inflammation was present in almost all patients (22). Intestinal

inflammation in these patients was characterized by increased

numbers of infiltrating monocytes, T cells, B cells, and CD68+

macrophages, as well as the presence of lymphoid follicles. These

histological findings suggest that a chronic inflammatory process

develops in the gut of patients with early RA (23). Furthermore,

in the presence of inflammation, alterations in gut barrier
frontiersin.org
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function and concomitant increases in gut permeability and

bacterial translocation can promote inflammatory bowel disease

and autoimmune responses in genetically susceptible hosts (24).

Signs of altered intestinal permeability have been observed in RA

patients, which may be related to the possible entry of

inflammatory immune cells in the intestinal tissue into

joints (24).

Probiotics are defined by the Food and Agriculture

Organization of the United Nations (FAO) and the World

Health Organization (WHO) as “ live microorganisms

that, when administered in adequate amounts, confer

a health benefit on the host” (25). Numerous in vivo and

in vitro studies have shown that probiotics can exert

immunomodulatory effects in several ways: (1) regulate

intestinal inflammation and immune function; (2) prevent the

increase in intestinal permeability and bacterial translocation

that accompanies disruption of intestinal barrier function; (3)

reduce the production of autoantibodies in the inflamed

intestine; (4) reduce the entry of pro-inflammatory immune

cells in the gut tissue into the joints (26). For example, the genera

Lactobacillus and Bifidobacterium contain strains with anti-

inflammatory properties and are important probiotics. It has

been proven that some strains of L. casei can alleviate RA in rats

by increasing the body’s anti-inflammatory cytokines (such as

IL-10, TGF-b) and inhibiting pro-inflammatory cytokines (such

as IL-1b, IL-2, IL-6, IL-12, IL-17) (27). Both L. plantarum LC27

and B. longum LC67 can inhibit the inflammatory response by

inhibiting the nuclear factor kappa-B (NF-kB) inflammatory

pathway (28). L. casei can promote the differentiation of CD4+ T

cells into regulatory T cells (Treg) and inhibit their

differentiation into Th17 cells, enhance the function of Treg

cells, inhibit the function of Th17, and relieve inflammatory

arthritis through immune regulation (29). A number of

randomized controlled trials (RCTs) have also shown that

probiotics can inhibit inflammatory factors, regulate immunity

and improve pain scores in the intervention of arthritis.

However, due to different types of probiotics and different

types of arthritis, RCTs need to be summarized and

summarized to clarify their clinical efficacy and safety.

Therefore, this systematic review and meta-analysis

summarizes and analyzes the RCTs of probiotics in the

treatment of inflammatory arthritis so as to provide reference

information for clinical application.
2 Materials and methods

2.1 Protocol

This systematic review and meta-analysis were conducted

strictly in accordance with the protocol registered in

PROSPERO (CRD42021286425) and PRISMA-guidelines (see

Supplementary Material).
Frontiers in Immunology 03
2.2 Search criteria

2.2.1 Inclusion criteria
(1) Study type: The included studies were RCTs, with no

restrictions on random sequence generation methods, and no

restrictions on language and publication time. (2) Participants:

patients diagnosed with a type of inflammatory arthritis

according to accepted criteria. (3) Intervention methods: The

experimental group was an intervention containing a probiotic

preparation (preparation type, dose, and type of probiotics are

not limited). The control group was the intervention without the

probiotic preparation. (4) Outcomes: Disease efficacy indicators,

inflammatory indicators and adverse events.

2.2.2 Exclusion criteria
(1) Non-RCT; (2) Animal experiments, reviews, etc.; (3)

Unable to view full text for data extraction; (4) The therapy of

the control group included probiotics.
2.3 Search databases

Web of Science, China National Knowledge Infrastructure

(CNKI), VIP Database for Chinese Technical Periodicals,

Sinomed, Pubmed, Embase, Wanfang Database on Academic

Institutions in China, Medline Complete, ClinicalTrials.gov and

Cochrane Library were searched from the time of their

establishment to May 15, 2022. The search strategy was shown

in Table S1.
2.4 Search strategy, data extraction and
quality assessments

Two researchers independently screened the literature and

extract the data according to the established inclusion and

exclusion criteria. The literature was initially screened by

reading the title and abstract, and those that obviously did not

meet the inclusion criteria were excluded. Subsequently, the

remaining articles were read in full to determine their final

inclusion. In case of disagreement, it was decided by discussion

with all researchers.

Regarding literature quality assessment, the final included RCTs

were assessed for randomization, allocation concealment, blinding,

incompleteness of outcomes, selective reporting, and other risks

using risk of bias assessment tools by 2 researchers (30). In case of

disagreement, it was decided by discussion with all researchers.
2.5 Statistical analysis

This study used RevMan 5.3 software provided by the

Cochrane Collaboration for statistical analysis (31).
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For continuous variables, mean difference (MD) was used as the

pooled effect size. Heterogeneity test was performed for each

analysis. If I2≥50%, P<0.1, indicating the existence of

heterogeneity, the random-effects model was used for analysis; if

it was homogeneous, the fixed-effects model was used for analysis.
3 Results

3.1 Literature search results

A total of 40 relevant studies were obtained in the initial

examination, and after screening, 37 records were finally included

(32–68), and 3 records were excluded for they are not RCTs (69–71).

The literature screening process and results are shown in Figure 1.
3.2 Description of included trials

Three records (32–34) came from the same RCT and were

therefore recorded as Alipour et al., 2014 (32–34). Two records

(56, 57) came from the same RCT and were therefore recorded as
Frontiers in Immunology 04
Nilsson et al., 2018 (56, 57). The included RCTs involved 8

inflammatory arthritis (Hyperuricemia and gout, Inflammatory

bowel disease arthritis, JIA, OA, Osteoporosis and Osteopenia,

Psoriasis, RA, Spondyloarthritis) and were from 14 different

countries (Iran, Finland, the U.S.A., Canada, Sweden, China,

Brazil, Spanish, Ireland, New Zealand, the U.K., Denmark,

Japan, India). The details of study characteristics are presented

in Table 1.
3.3 Risk of bias assessments

The summary and graph of risk of bias ware shown in

Figures 2, 3.

3.3.1 Sequence generation and allocation
concealment

Twenty-three (23) RCTs (32–34, 36–42, 44, 47–54, 56, 57,

60, 63, 64, 66, 68) describe the random sequences generating

method and were rated as low risk of bias, while other RCTs did

not described the generating methods, and were rated as unclear

risk of bias.
FIGURE 1

Flow diagram of clinical research.
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TABLE 1 The characteristics of the included studies.

Disease Study Trial registration Country Sample size Intervention Relevant outcomes Mean age (years) Duration

rol group Trial

group

Control

group

DAS28, CRP, Number of

tender joints, Number of

swollen joint, adverse

events

41.14 ±

12.65

44.29 ±

9.77

8 weeks

CRP, ESR, Number of

tender joints, Number of

swollen joint

50 ± 10 53 ± 7 12 months

CRP, ESR, Number of

tender joints, Number of

swollen joint, adverse

events

36-82 2 weeks

DAS28, CRP, ESR, Number

of tender joints, Number of

swollen joint, adverse

events

63.8 ± 7.5 59.1 ± 9.1 12 weeks

DAS28, CRP, Number of

tender joints, Number of

swollen joint

52.2 ±

12.2

50.6 ±

13.1

8 weeks

DAS28, CRP 49.5 ±

12.9

49.3 ±

11.0

8 weeks

otrexate 15-20 mg +

2.5 mg

DAS28, CRP, ESR, Number

of tender joints, Number of

swollen joint

17-85 12 weeks

intake in Sweden

tics)

DAS28, CRP, ESR, Number

of tender joints, Number of

swollen joint, adverse

events

61 ± 12 10 weeks

ium 60 mg T.i.d +

mg once a week,

mg Q.d.

DAS28, CRP, ESR, Number

of tender joints, Number of

43.88 ±

7.34

44.50 ±

7.55

12 weeks

(Continued)
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number

Trial

group

Control

group

Trial group Con

RA Alipour

et al., 2014

(32–34)

IRCT201206234105N9 Iran 24 22 L. casei 1×108 CFU Placebo

Hatakka

et al., 2003

(35)

– Finland 8 13 L. rhamnosus GG 1×1010 CFU Placebo

Mandel

et al., 2010

(36)

ACTRN12609000435280 the

U.S.A.

22 22 Bacillus coagulans GBI-30, 6086 2×108 CFU Placebo

Pineda

Mde et al.,

2011 (37)

Not provide Canada 15 14 L. rhamnosus GR-1 4×108 CFU + L. reuteri RC-1 4×108 CFU Placebo

Zamani

et al., 2016

(38)

IRCT201511015623N58 Iran 30 30 L. acidophilus 2×109 CFU + L. casei 2×109 CFU + B. bifidum 2×109 CFU Placebo

Zamani

et al., 2017

(39)

IRCT201611165623N94 Iran 27 27 L. acidophilus 2×109 CFU + L. casei 2×109 CFU + B. bifidum 2×109 CFU Placebo

Esmaeili

et al., 2020

(40)

IRCT20121216011763N37 Iran 186 L. acidophilus 2×109 CFU + L. bulgaricus 2×109 CFU + L. casei 2×109 CFU + L.

rhamnosus 2×109 CFU + B. breve 2×109 CFU + B. longum 2×109 CFU +

Streptococcus thermophiles 2×109 CFU + Methotrexate 15-20 mg + Prednisolone

0-2.5 mg

Placebo + Meth

Prednisolone 0

Vadell

et al., 2020

(41)

NCT02941055 Sweden 26 24 Anti-inflammatory foods (including L. plantarum 299v) General dietary

(without probio

Gao et al.,

2017 (42)

– China 50 50 B. infantis, L. acidophilus and Enterococcus faecalis≥4.5×106 CFU; Bacillus

cereus≥4.5×105CFU+ Loxoprofen sodium 60 mg T.i.d + methotrexate 10 mg

once a week, leflunomide 10 mg Q.d.

Loxoprofen sod

methotrexate 1

leflunomide 10
t

-

0
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TABLE 1 Continued

Disease Study Trial registration

number

Country Sample size Intervention Relevant outcomes Mean age (years) Duration

rol group Trial

group

Control

group

swollen joint, adverse

events

dextrin DAS28, CRP, ESR 48-64 49-68 8 weeks

altodextrin)

osteroid

in combination with

PASI score, adverse events 41.57 ±

13.23

43.09 ±

10.32

12 weeks

altodextran) CRP, TNF-a and IL-6 – – 8 weeks

0mg Tid PASI score 51.3 ± 5.6 52.2 ± 5.9 12 weeks

dextrin PASI score, CRP, TNF-a

and IL-6, adverse events

42.70 ±

9.10

43.10 ±

7.80

8 weeks

Efficacy indicators, adverse

events

45.5 ± 15 41.1 ± 10 12 weeks

Efficacy indicators, adverse

events

44.8 ±

12.1

42.7 ±

12.7

12 weeks

BMD 61.91 ±

6.37

6.34 ±

5.71

6 months

BMD 58.85 ±

0.68

57.29 ±

0.72

6 months

BMD, Adverse events 59.1 ± 3.8 58.1 ± 4.3 12 months

by 90 L of water

g brown food

BMD, adverse events 60.84 ±

1.07

62.85 ±

0.99

12 months

(Continued)

Z
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n
tie

rsin
.o
rg

0
6

Trial

group

Control

group

Trial group Con

Cannarella

et al., 2021

(43)

– Brazil 21 21 L. acidophilus La-14 2×109 CFU + L. casei Lc-11 2×109 CFU + Lactococcus lactis

Ll-23 2×109 CFU + B. lactis Bl-04 2×109 CFU + B. bifidum Bb-06 + maltodextrin

Placebo + mal

Psoriasis Navarro-

López

et al., 2019

(44)

NCT02576197 Spanish 45 43 B. longum CECT 7347, B. lactis CECT 8145 and L. rhamnosus CECT

8361≥1×109 CFU + Topical corticosteroid betamethasone in combination with

calcipotriol

Oral placebo (

+Topical cortic

betamethasone

calcipotriol

Groeger

et al., 2013

(45)

– Ireland 12 14 B. infantis 35264 1×1010 CFU Oral placebo (

Lu 2017

(46)

– China 25 25 B. infantis, L. acidophilus and Enterococcus faecalis≥4.5×106 CFU; Bacillus

cereus≥4.5×105 CFU+Oral Acitretin 10mg Tid

Oral Acitretin

Moludi

et al., 2021

(47)

IRCT20180712040438N2 Iran 25 25 L. acidophilus 3.6×109 CFU + B. bifidum 3.6×109 CFU + B. lactis 3.6×109 CFU +

B. langum 3.6×109 CFU

Placebo + mal

Spondyloarthritis Jenks et al.,

2010 (48)

– New

Zealand

32 31 Streptococcus salivarius K12 1.6×108 CFU + B. lactis LAFTI B94 6.4×108 CFU +

L. acidophilus LAFTI L10 6.4×108 CFU

Placebo

Brophy

et al., 2008

(49)

ISRCTN36133252 the U.K. 69 65 L. salivarius (CUL61) 6.25×109 CFU + L. paracasei (CUL08) 1.25×109 CFU + B.

infantis (CUL34) 1.25×109 CFU + B. bifidum (CUL20) 1.25×109 CFU

Placebo

Osteoporosis

and Osteopenia

Guo et al.,

2020 (50)

– China 30 24 B. lactis Probio-M8 1.5×1010 CFU Placebo

Jafarnejad

et al., 2017

(51)

IRCT2015092024103N1 Iran 20 21 L. casei 1.3×1010 CFU + B. longum 5 ×1010 CFU + L. acidophilus 1.5×1010 CFU

+ L. rhamnosus 3.5×109 CFU + L. bulgaricus 2.5 ×108 CFU + B. breve 1×1010

CFU + Streptococcus thermophilus 1.5×108 CFU

Placebo

Jansson

et al., 2019

(52)

NCT02722980 Sweden 126 123 L. paracasei 8700:2 (DSM 13434) + L. plantarum Heal 9 (DSM 15312) + L.

plantarum Heal 19 (DSM 15313) total 1*1010 CFU

Placebo

NCT02174666 Denmark 38 40 Red clover extract (RCE) (rich in isoflavone aglycones and probiotics) Placebo [made

mixed with 25
t

to

m

m

1

to

0
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TABLE 1 Continued

Disease Study Trial registration

number

Country Sample size Intervention Relevant outcomes Mean age (years) Duration

Control group Trial

group

Control

group

ammoniated caramel)

dronate sodium 10 mg Qd

neous or intramuscular

of salmon calcitonin 50 IU

BMD, Adverse events 68. 15 ±

22.36

69. 82 ±

21.47

6 months

onal therapy BMD 70.5 ± 6.8 69.8 ± 6.4 6 months

maltodextrin powder) BMD, Adverse events 76.4 ± 1.0 76.3 ± 1.1 12 months

onal therapy BMD 68. 20 ±

12. 78

69. 76 ±

12. 09

12 months

BMD, Adverse events 57.5 ± 4.3 57.8 ± 5.4 6 months

onal therapy BMD 71.52 ±

5.46

71.68 ±

5.41

2 months

verage (100g) without PA- Serum uric acid levels 63.0 ± 8.5 63.6 ± 6.9 8 weeks

verage (85g) without PA-3 Serum uric acid levels >35 8 weeks

t Serum uric acid levels 18-75 4 weeks

t Serum uric acid levels 54. 08 ±

3. 99

52. 41 ±

4. 67

8 weeks

(Continued)
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7

Trial

group

Control

group

Trial group

Lambert

et al., 2017

(53)

coloring

(Kavli)]

Li et al.,

2021 (54)

– China 73 73 B. infantis, L. acidophilus and Enterococcus faecalis≥4.5×106 CFU; Bacillus

cereus≥4.5×105CFU + Oral alendronate sodium + subcutaneous or intramuscular

injection of salmon calcitonin

Oral alen

+ subcut

injection

Qd.

Liu 2019

(55)

– China 42 45 B. longum, L. acidophilus and Enterococcus faecalis≥2×107 CFU + Conventional

therapy

Convent

Nilsson

et al., 2018

(56, 57)

NCT02422082 Sweden 45 45 Freeze-dried L. reuteri 6475 1*1010 CFU Placebo

Song et al.,

2020 (58)

– China 100 100 B. infantis, L. acidophilus and Enterococcus faecalis≥4.5×106 CFU; Bacillus

cereus≥4.5×105CFU + Conventional therapy

Convent

Takimoto

et al., 2018

(59)

– Japan 31 30 Probiotic Bacillus subtilis C-3102 (C-3102) 3.4*109 CFU Placebo

Wang

et al., 2019

(60)

– China 75 75 B. longum, L. acidophilus and Enterococcus faecalis≥2×107 CFU + Conventional

therapy

Convent

Hyperuricemia

and gout

Yamanaka

et al., 2019

(61)

UMIN000021837 Japan 13 12 PA-3Y, yogurt containing L. delbrueckii ssp. bulgaricus and Streptococcus

thermophilus (PA-3) at 8.5×107cfu/g or more (100g)

Yogurt b

3

Kamatani

et al., 2018

(62)

– Japan 40 20 PA-3 3×107 CFU/g (85g); PA-3 3×106CFU/g (85g) Yogurt b

Zhan et al.,

2020 (63)

– China 50 50 Clostridium butyricum ≥ 0.735×106 CFU + febuxostat Febuxos

Wang and

Xu 2022

(64)

– China 55 54 B. longum, L. acidophilus and Enterococcus faecalis≥2×107 CFU + febuxostat Febuxos
(
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i
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i
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Twenty (20) RCTs (32–34, 36–40, 44, 45, 47–53, 56, 57, 59,

61, 62, 66) used allocation concealment (using identical-looking

drugs, or allocation methods that were imperceptible to patients

and physicians) and were therefore assessed as low risk of bias.

Other RCTs did not describe whether allocation concealment

was performed, the information was unclear, and therefore were

assessed as unclear risk of bias.

3.3.2 Blinding
Twenty (20) RCTs (32–34, 36, 37, 39, 40, 45, 47–60, 66)

described blinding of participants and personnel and blinding of

outcome assessment, and were therefore assessed as low risk of

bias. Other RCTs did not describe whether blinding was

performed and were therefore assessed as unclear risk of bias.

3.3.3 Incomplete outcome data and
selective reporting

Alipour et al., 2014 (32–34), Esmaeili et al., 2020 (40), Jenks

et al., 2010 (48), Wang and Xu 2022 (64), Lei et al., 2017 (65),

Shukla et al., 2016 (66) had incomplete outcome data and did

not report the use of intent-to-treat, and were therefore assessed

as having an unclear risk of bias. The other RCTs do not have

incomplete outcome data. All RCTs reported outcomes assessed

in the protocol and were therefore assessed as low risk of bias.
3.3.4 Other potential bias
Mandel et al., 2010 (36), Navarro-López et al., 2019 (44),

Groeger et al., 2013 (45), Nilsson et al., 2018 (56, 57), Yamanaka

et al., 2019 (61), Kamatani et al., 2018 (62) was funded by a

pharmaceutical company and was therefore assessed to be at

high risk of bias. Brophy et al., 2008 (49) conducted an Internet-

based survey without face-to-face patient contact and were

therefore assessed to be at high risk of bias. The others were

rated as low risk of bias.
3.4 Probiotics for RA

Alipour et al., 2014 treated patients with L. casei 1*10^8 CFU

and found improvements in CRP levels, tender and swollen joint

counts, global health (GH) scores and DAS28 compared to

placebo (P < 0.05). At the end of the study, more patients in

the probiotic group had a moderate response to treatment (P <

0.05). Mandel et al., 2010 found a statistically significant

improvement in joint pain and a reduction in CRP in patients

receiving Bacillus coagulans GBI-30, 6086 2*10^8 CFU

compared to placebo. Vadell et al., 2020 found no significant

difference in DAS28-ESR compared with controls after

administration of anti-inflammatory foods (including

Lactobacillus plantarum 299v) (P = 0.116). Esmaeili et al.,

2020 found that no significant differences in measured

parameters were observed between the probiotic and placebo
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groups (P>0.05). Cannarella et al., 2021 found that probiotics

improved white blood cell counts, TNF-a (P = 0.004) and IL-6

plasma levels (P < 0.05). However, no differences were observed

in CRP, ESR, DAS28 between the two groups (P>0.05). Since

data from the above RCTs could not be combined for meta-

analysis, they are described only. The results of the meta-analysis

are shown below.
3.4.1 Efficacy indicators
(1) DAS28: Four (4) RCTs reported the DAS28 data that can

be meta-analyzed. The result of heterogeneity analysis was I2 =

97% and P<0.00001, which showed that there was statistical

heterogeneity among the 4 studies, so the random effects model

was used. The results of Meta analysis showed that the difference

of DAS28 between experiment group and control group was of

no statistical significance [WMD -0.55 (-1.33, 0.24),

P=0.17] (Figure 4).

(2) Tender joint count: Four (4) RCTs reported the tender

joint count data that can be meta-analyzed. The result of

heterogeneity analysis was I2 = 75% and P=0.007, which

showed that there was statistical heterogeneity among the 4

studies, so the random effects model was used. The results of

Meta analysis showed that the difference between the
Frontiers in Immunology 09
experimental group and control group is of no statistical

significance [SMD -0.34 (-0.94, 0.27), P=0.27] (Figure 5).

(3) Swollen joint count: Four (4) RCTs reported the swollen

joint count data that can be meta-analyzed. The result of

heterogeneity analysis was I2 = 69% and P=0.02, which

showed that there was statistical heterogeneity among the 4

studies, so the random effects model was used. The results of

Meta analysis showed that the difference between the

experimental group and control group is of no statistical

significance [SMD -0.10 (-0.64, 0.44), P=0.71] (Figure 6).

3.4.2 Inflammatory indicator
(1) ESR: Three (3) RCTs reported the ESR data that can be

meta-analyzed. The result of heterogeneity analysis was I2 = 83%

and P=0.003, which showed that there was statistical

heterogeneity among the 3 studies, so the random effects

model was used. The results of Meta analysis showed that the

difference between the experimental group and control group is

of no statistical significance [SMD -0.63 (-1.56, 0.31),

P=0.19] (Figure 7).

(2) CRP: Five (5) RCTs reported the CRP data that can be

meta-analyzed. Since The result of heterogeneity analysis was I2 =

95% and P<0.00001, which showed that there was statistical

heterogeneity among the 5 studies, so the random effects model
FIGURE 2

Risk of bias graph.
FIGURE 3

Risk of bias summary.
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was used. The results of Meta analysis showed that there was a

statistical difference between the experimental group and the

control group (P=0.03), which indicates that curcumin may

decrease CRP [SMD -1.57 (-2.98, -0.15)] (Figure 8).

3.4.3 Adverse events
Five RCTs (32–34, 36, 37, 41, 42) reported adverse events. No

adverse events were observed in Alipour et al., 2014 (32–34),

Mandel et al., 2010 (36), PinedaMde et al., 2011 (37). Vadell et al.,

2020 (41) observed 13 gastrointestinal adverse events in the

intervention group and 4 gastrointestinal adverse events in the

control group, mainly stomach pain, gas, diarrhea, heartburn and

nausea. Gao et al., 2017 (42) found that 1 patient felt mild pain

and discomfort in the lower abdomen after 3 days of oral

treatment, and 1 patient had increased stool frequency; no

serious adverse events were observed in any of the patients. In

addition, five RCTs (35, 38–40, 43) did not report whether adverse

events were observed, possibly because they did not monitor for

adverse events, or did not observe adverse events indeed.
3.5 Probiotics for psoriasis

3.5.1 PASI score
Three RCTs reported PASI score. The results of Navarro-López

et al., 2019 showed that the improvement of PASI in the probiotic

group was better than that in the placebo group (P>0.05); however,
Frontiers in Immunology 10
because it did not provide specific values, it could not be integrated

into the meta-analysis. The result of heterogeneity analysis was I2 =

0% and P=0.60, which showed that the heterogeneity among the 2

studies was low, so the fixed effects model was used. The summary

results showed that the PASI score in probiotic group was lower

than the control group (WMD -4.25 [-6.65, -1.85], P=0.0005; fixed

effect model) (Figure 9).

3.5.2 CRP, TNF-a and IL-6
Two RCTs reported CRP and IL-6 levels. Both Groeger et al.,

2013 and Moludi et al., 2021 found that CRP was reduced after

the intervention of probiotics (P<0.05). However, for IL-6,

Moludi et al., 2021 found that IL-16 was lower after the

intervention of probiotics (P<0.05), while Groeger et al., 2013

showed that there was no significant difference between the

probiotics intervention and the placebo group (P>0.05). Groeger

et al., 2013 also reported TNF-a level and showed it was lower

after the intervention of probiotics (P<0.05).

3.5.3 Adverse events
Two RCTs reported adverse events. Navarro-López et al.,

2019 (44) showed a low incidence of adverse events, and no

serious adverse events occurred in both groups. Moludi et al., 2021

(47) showed that 12% of patients in the placebo group and 8% of

the patients in the probiotic group experienced gastrointestinal

reactions, suggesting that patients tolerated probiotics well. In
FIGURE 4

The results of DAS28 (CI, confidence interval; SD, standard deviation).
FIGURE 5

Tender joint count (CI, confidence interval; SD, standard deviation).
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addition, two RCTs (45, 46) did not report whether adverse events

were observed, possibly because they did not monitor for adverse

events, or did not observe adverse events indeed.
3.6 Probiotics for spondyloarthritis

Only two RCTs reported the results of probiotics for

Spondyloarthritis. Jenks et al., 2010 found no significant

difference in mean BASFI and BASDAI after probiotic

intervention compared with placebo (P>0.05). It also found

adverse events in 14 patients in the probiotic group (12 in the

placebo group), with no statistically significant difference,

including include changes in bowel habits, nausea, vomiting,

abdominal pain, and increased breathing. Brophy et al., 2008

used the Internet to recruit patients, send drugs to patients by

post, and finally obtain patient feedback through the Internet. It

found no significant differences in global health status, severity

of intestinal symptoms or arthritis, and incidence of adverse

events between the probiotic and control groups (P>0.05).
3.7 Probiotics for hyperuricemia
and gout

3.7.1 Serum uric acid
Four RCTs (157 participants in experimental group and 137

participants in control group) reported uric acid. The heterogeneity
Frontiers in Immunology 11
test showed P=0.05, I2 = 58%, indicating high heterogeneity, and

the random effects model was used for analysis. The summary result

showed that uric acid in the probiotic group was lower than that in

the control group (SMD -0.51 [-0.91, -0.10], P=0.01; random effect

model) (Figure 10).
3.7.2 Adverse events
None of the four RCTs reported relevant adverse events,

possibly because they were not observed or were not monitored.

It is expected that future studies will report in detail the adverse

events of probiotics intervention in hyperuricemia or gout.
3.8 Probiotics for osteoporosis
and osteopenia

3.8.1 BMD
Seven (7) RCTs reported the absolute value of BMD, and 3

RCTs reported the percentage of BMD improvement. For the

absolute value of BMD, the result of heterogeneity analysis

showed that the heterogeneity was high in lumbar spine’s BMD

(I2 = 71% and P=0.004) but low in total hip’s BMD (I2 = 24% and

P=0.27), the random effects model was used. In lumbar spine

subgroup, the difference between experimental group and control

group was of no statistical significance (WMD 0.04 [-0.00, 0.09],

P=0.07; random effect model). In total hip subgroup, the
FIGURE 6

Swollen joint count (CI, confidence interval; SD, standard deviation).
FIGURE 7

The results of ESR (CI, confidence interval; SD, standard deviation).
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improvement of BMD in experimental group was higher (WMD

0.05 [0.02, 0.08], P=0.0005; random effect model) (Figure 3). The

summary results also showed that the improvement of BMD in the

experimental group was higher (WMD 0.04 [0.02, 0.07], P=0.001,

random effect model) (Figure 11).

For the percentage of BMD improvement, the result of

heterogeneity analysis showed that the heterogeneity was high

in lumbar spine’s BMD (I2 = 94% and P<0.00001) and total

hip’s BMD (I2 = 96% and P<0.00001), the random effects

model was used. In lumbar spine subgroup, the improvement

of BMD in experimental group was higher (SMD 1.16 [0.21,

2.12], P=0.02; random effect model) (Figure 3). In total hip

subgroup, the difference between experimental group and

control group was of no statistical significance (SMD 0.52

[-0.69, 1.73], P=0.40; random effect model). The summary

results also showed that the difference of BMD between the

two groups was of no statistical significance (SMD 0.84 [0.00,

1.68], P=0.05, random effect model) (Figure 12).

3.8.2 Adverse events
Five (5) RCTs reported the adverse events (52–54, 56, 57, 59).

Lambert et al., 2017 (53) reported gastrointestinal adverse events

in 2 patients in the probiotic group and 1 patient in the control

group. Takimoto et al., 2018 (59) showed that no adverse events

were observed. Nilsson et al., 2018 (56, 57) showed that there were

36 adverse events in the probiotic group and 39 in the control

group, and there was no statistical difference between the two
Frontiers in Immunology 12
groups (P>0.05). Jansson et al., 2019 (52) showed that there were

30 adverse events in the probiotic group and 32 in the control

group, and there was no statistical difference between the two

(P>0.05), most of which were gastrointestinal reactions. Li et al.,

2021 (54) showed that there were 5 cases of adverse events in the

probiotic group and 7 cases in the control group, mainly nausea,

vomiting, diarrhea and dizziness, and the difference was not

statistically significant (P>0.05). In addition, five RCTs (50, 51,

55, 58, 60) did not report whether adverse events were observed,

possibly because they did not monitor for adverse events, or did

not observe adverse events indeed.
3.9 Probiotics for OA

Only one RCT reported probiotics for OA. Lei et al., 2017

treated 215 patients with L. casei Shirota and another 218 with

placebo. They found that after 6 months of treatment, compared

with the placebo group, patients in the probiotic group had

significantly improved WOMAC and VAS scores, and decreased

serum hs-CRP levels (P<0.05). They also claim that no serious

adverse events were observed throughout the study.
3.10 Probiotics for JIA

Only two (2) RCTs reported probiotics for JIA. Shukla et al.,

2016 found that the improvement of mJSpADAwas not statistically
FIGURE 8

The results of CRP (CI, confidence interval; SD, standard deviation).
FIGURE 9

The results of PASI (CI, confidence interval; SD, standard deviation).
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different between the probiotic group and the control group

(P>0.05). IL-10 levels were decreased in the probiotic group

compared with the placebo group (P < 0.01). It also reported that

there was no significant difference in adverse reactions between the

probiotic group and the placebo group (11 vs 9, P>0.05), mostly

diarrhea, abdominal pain, mild infection and flatulence. Malin et al.,

1997 randomly assigned 30 adolescent patients to receive either L.

rhamnosus GG or bovine colostrum or a lyophilized powder of

bovine immunized colostrum for two weeks. They found that the

probiotic group increased the number of immune cells secreting

IgA and IgM (P<0.05). Fecal urease activity associated withmucosal

tissue damage was decreased in the probiotic group, while increased

in the control group (P<0.05). They suggest that oral administration

of L. rhamnosus GG has the potential to strengthen the mucosal

barrier mechanism of juvenile chronic arthritis. In addition, those

two RCTs (66, 67) did not report whether adverse events were
Frontiers in Immunology 13
observed, possibly because they did not monitor for adverse events,

or did not observe adverse events indeed.
3.11 Probiotics for inflammatory bowel
disease arthritis

Only Zhang et al., 2020 (68) reported probiotics for

inflammatory bowel disease arthritis. They treated 120 patients

with probiotic therapy, narrative medical education therapy,

probiotics combined with narrative medical education therapy,

and primary care therapy. They found that the patients in the

probiotics combined with narrative medical education group

had the longest total sleep time, the shortest sleep latency, and

the highest sleep efficiency, suggesting that this therapy could

help improve the sleep quality of patients. In addition, Zhang
FIGURE 10

Serum Uric acid (CI, confidence interval; SD, standard deviation).
FIGURE 11

The absolute value of BMD (CI, confidence interval; SD, standard deviation).
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et al., 2020 (68) did not report whether adverse events were

observed, possibly because they did not monitor for adverse

events, or did not observe adverse events indeed.
4 Discussion

There is increasing evidence that non-human genetic factors,

especially the human microbiota, may contribute to the

development of inflammatory arthritis (e.g., RA and

spondyloarthritis) in genetically susceptible individuals (72–74).

There has been an increasing number of studies investigating the

gut community as a determinant of the pathogenesis of

inflammatory arthritis. Evidence from multiple epidemiological

and translational studies suggests that interactions between

mucosal sites and dysregulated microbiota may contribute to

the development of inflammatory arthritis (75–78). Studies have

shown that in most inflammatory arthritis in the preclinical stage

of arthritis, there is already a change in the microbial microbiota

of the individual patient. This suggests that gut dysbiosis plays an

important role in the development of inflammatory arthritis and

systemic inflammation throughout the chronic course (79–86).

Therefore, the current hypothesis model is mainly that the

inflammatory “gut-arthritis axis” is the pathogenic pathway of

inflammatory arthritis. The gut is composed of the most innate

and adaptive immune cells in the human body, so it is generally

considered to be the largest immune organ in the human body

(87). The possible complex interplay between gut microbiota

disturbances and genetic factors (the immune system susceptible

to autoimmunity) may provide the basis for the development of

pathological processes such as systemic inflammation in

inflammatory arthritis (88–90). Basic and clinical studies suggest
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that these alterations in gut microbiota disturbances may occur

before disease onset, and to some extent represent hidden triggers

of systemic inflammation (24, 91). After initiation of the initiating

factors, the links between barrier dysfunction, intestinal

inflammation and arthritis reciprocate to form the “gut-

arthritis” axis. Among them, dysbiosis may lead to subclinical

intestinal inflammation in patients and promote the abnormal

activation of specific innate and adaptive immune response

pathways. Mucosal lesions due to inflammation exhibit reduced

intestinal barrier function, and abnormally activated immune cells

are also transported from intestinal sites to secondary lymphoid

organs and recirculation of arthritic joints (92, 93) (Figure 13).

Therefore, therapies targeting the entero-arthritis axis have

emerged as new therapeutic measures for inflammatory arthritis.

At present, probiotics are live microorganisms that are

beneficial to the human body and are of great significance to

maintain the intestinal microecological balance. Several clinical

studies have shown that probiotics and their metabolites or

probiotic fermented foods have received great attention in

improving inflammatory arthritis. Among them, Bifidobacterium

(such as B. longum, B. breve, B.infantis) and Lactobacillus (such as L.

helveticus, L. rhamnosus, L. plantarum and L.casei) are the most

widely used probiotics (94). According to the WHO, probiotics, as

active microorganisms, can have beneficial effects on the body if

taken in appropriate doses (75). Probiotics can restore the balance

of microbiota in the gut in various ways, including regulating gut

immunity or competing with other gut microbes for nutrients,

resulting in a competitive inhibitory effect (76). More and more

researchers have found that probiotics can regulate the immune

system of humans or animals (77, 78). A systematic review and

meta-analysis of chronic intestinal inflammatory diseases showed

that in 8 case-control studies and 1 randomized controlled study,
FIGURE 12

The percentage of BMD improvement (CI, confidence interval; SD, standard deviation).
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more than 45% of patients achieved clinical remission after

probiotic intervention (79). Some researchers have also discovered

the therapeutic effect of probiotics on inflammatory arthritis.

Therefore, we conducted a comprehensive and extensive

systematic review and meta-analysis on the efficacy and safety of

probiotics on the mechanism of inflammatory arthritis.
4.1 Probiotics for RA

RA is a chronic systemic autoimmune disease characterized

by joint lesions, in which autoantibodies are mainly represented

by rheumatoid factor and anti-cyclic citrullinated peptide

antibody (ACPA) (95). It is characterized by joint swelling and

pain, followed by deformity and disability (96), and is

accompanied by damage to internal organs, such as lungs,

heart, and kidneys. Epidemiological surveys show that the

prevalence of RA is 0.3% and 1%, and it is one of the most

common autoimmune diseases (97). Current research shows

that RA is caused by the combined action of genetic factors and

environmental factors. Among environmental factors, immune

abnormalities caused by immune cell imbalance have been

confirmed to be involved in the occurrence and development

of RA (98). These include T, B lymphocytes, macrophages,

neutrophils, etc., and imbalances in the proportion of Th1,

Th2 and Th17 cells and immune damage caused by cytokines

IL-1, IL-2, IL-17, IFN-g and TNF-a (99). It is a key factor leading

to chronic inflammation in RA. In particular, adaptive immunity

dominated by CD4+ T cells plays an important role in initiating

and maintaining the characteristics of the autoimmune response

in rheumatoid arthritis. Among them, Th1 and Th17 cells in

CD4+ T cells are important drivers of RA, which activate
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macrophages and recruit other inflammatory cells to inhibit

Treg-mediated immune tolerance (100).

The current study showed significant differences in the

fecal microbiota of RA patients compared with healthy

subjects. The levels of Bifidobacterium , Bacteroides ,

Lactobacillus and other probiotics in the feces of RA patients

were significantly decreased, while the levels of Escherichia coli

and Enterococcus were significantly increased (38, 101, 102).

These gut microbiota are involved in the innate immune

response pathway and the immune abnormalities of the

acquired immune response pathway in the pathogenesis of

RA (103). The study found that gavage of Lactobacillus could

correct the imbalance of intestinal bacteria in mice with

collagen-induced arthritis (CIA), and at the same time

reduce the expression of cytokines IL-12, IFN-g, TGF-b and

IL-6 that induce Th1 and Th17 cell differentiation. That is,

Lactobacillus can alleviate mouse RA by regulating CD4+ T

subset-related cytokines (104). Another study (105) also found

that the B cells and Tfh cells associated with antibody

production in the inguinal lymph nodes were significantly

reduced in CIA mice fed L. helveticus SBT2171. In terms of

Treg cells regulating immunity, the alleviating effect of

probiotics on CIA rats was related to the time of

intervention. Bifidobacterium preventive intervention is more

likely to improve the intestinal microecology, increase the

concentration of short-chain fatty acids, increase the

frequency of Treg cells, and relieve the symptoms of CIA rats

than the therapeutic intervention (106). RA symptoms are

closely related to the overproduction of pro-inflammatory

factors and the activation of intracellular pro-inflammatory

signals. In addition, after different doses of compound

probiotics (B. breve, L. casei, L. bulgaricus, L. rhamnosus and
FIGURE 13

Inflammatory arthritis - the pathogenic mechanism of the “gut-arthritis” axis (ATP, adenosine triphosphate; IL, interleukin; ILC, innate lymphoid
cells; MAIT cell, mucosal associated invariant T; Th17, T helper cell 17).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.961325
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2022.961325
L. acidophilus) intervened in CIA mice, the degree of joint

swelling and pain sensitivity of mice were reduced, and the

infiltration of inflammatory cells was also reduced. Serum IL-

1b levels decreased, and the activated p38 mitogen-activated

protein kinase (MAPK) inflammatory pathway in the spinal

cord was inhibited (107). In addition, the reduction of

inflammatory factors by gut microbes by regulating redox

balance may be one of the mechanisms by which probiotics

alleviate rheumatoid arthritis (108). Gavage og L. casei in CIA

rats can significantly increase the types and abundance of gut

microbes. They found that enterobacterial abundance was

inversely correlated with pentose phosphate pathway

activating enzyme activity. This indicates that L. casei can

inhibit the activation of the pentose phosphate pathway,

maintain redox balance, and reduce the production of pro-

inflammatory factors IL-1b, IL-6, and IL-17, thereby alleviating
rheumatoid arthritis in rats (109).

In this meta-analysis, although only CRP in this meta-analysis

showed lower in the probiotic group, results from some studies

showed improvement in RA. Alipour et al., 2014 treated patients

with L. casei 1*10^8 CFU and found improvements in CRP levels,

tender and swollen joint counts, GH scores and DAS28 compared

to placebo; meanwhile, more patients in the probiotic group had a

moderate response to treatment. Mandel et al., 2010 found a

statistically significant improvement in joint pain and a reduction

in CRP in patients receiving Bacillus coagulans GBI-30, 6086

2*10^8 CFU compared to placebo. Cannarella et al., 2021 found

that probiotics improved white blood cell counts, TNF-a (P =

0.004) and IL-6 plasma levels. This suggests that L. casei, Bacillus

coagulans, L. acidophilus, Lactococcus lactis, B. lactis and B.

bifidum may have potential curative effects on RA, and more

research on the intervention of these probiotics in RA can be

carried out in the future. However, since some of these RCTs do

not report the details of random sequence generation methods,

allocation concealment methods, and blinding methods, the

quality was degraded. Hence, the results need to be interpreted

with caution. In addition, some RCTs did not report adverse

events, so more RCTs reporting efficacy and safety are needed to

further explore the treatment of RA with probiotics.
4.2 Probiotics for psoriasis

Psoriasis affects about 2% of the global population and

affects all age groups (110). Psoriasis may be related to genetic

factors, immune dysfunction, and environmental factors. As a

chronic inflammatory disease, psoriasis can be caused by a

variety of factors, and the disease is prone to relapse over time.

Studies have shown that the pathogenesis of psoriasis is mainly

related to the helper T cell (Th cell) 17/IL-23 axis. The intestinal

microbiota can participate in the differentiation of T cells, such

as segmented filamentous bacteria can induce pro-inflammatory

responses in Th17 cells in the intestine (111). Experiments have
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shown that both short-chain fatty acids (SCFAs)-producing

microbiota and SCFAs can act as potent regulators of T cells

in the context of T cell-mediated inflammation (112–115).

Among them, Clostridium is the main producer of SCFAs,

which can induce the production of IL-10 in the colon, and at

the same time increase the number of regulatory T cells (Treg

cells) in the mucosa, playing a key role in intestinal homeostasis

(113). In terms of microbiota distribution, there are certain

differences between healthy people and patients with psoriasis.

For example, the abundance of Akkermansiamuciniphila is

decreased in patients with psoriasis (116). Experiments have

shown that increasing A. muciniphila can reduce obesity and

repair the damaged intestinal barrier in mice caused by diet

(117). Therefore, the decreased abundance of A. muciniphila in

the gut of patients with psoriasis can lead to impairment of the

intestinal barrier, which in turn induces the development of

psoriasis. The gut microbiota of patients with psoriatic arthritis

was the same as that of patients with cutaneous psoriasis, and

both beneficial bacteria were reduced. It is manifested as Th1

and Th17 cell-driven inflammatory arthritis with new bone

formation, suggesting that spondyloarthritis and psoriasis may

share a common pathogenic pathway (118). The study found

disturbances in the gut microbiota in both people with

spondyloarthritis and rodent models. The results of ileal

biopsy showed that the Porphyromonas, Lachnospiraceae,

Verrucobacterium, Rikenbacteriaceae and Bacteroidetes are rich

(119). Meanwhile, transplantation of Escherichia coli from

Crohn’s disease patients with spondyloarthritis into germ-free

mice induces a Th17 cell response. It also increases the severity

of colitis or arthritis in disease-sensitive IL-10-deficient or

potassium/BxN mice (120). In summary, the intestinal

microbiota is involved in the occurrence and development of

psoriasis and psoriatic arthritis. Deng et al. (121) found that

reducing B. breve CCFM1078 and B. adolescentis CCFM667 and

L. paracasei CCFM1074 and L. reuteri could reduce the levels of

IL-23/Th17 axis inflammatory factors in animal models of

psoriasis. Its specific action pathway is to promote the

production of short-chain fatty acid SCFAs and then reduce

the level of IL-23/Th17 axis inflammatory factors, thereby

alleviating psoriasis. This meta-analysis also showed that the

PASI score of patients with psoriasis decreased after probiotic

intervention. However, due to the small number of RCTs, meta-

analysis of outcomes such as inflammatory factors could not be

performed and the results need to be interpreted with caution. In

addition, some RCTs did not report adverse events, hence, more

RCTs reporting efficacy and safety are needed to further explore

the treatment of psoriasis with probiotics.
4.3 Probiotics for spondyloarthritis

Ankylosing spondylitis (AS) is a chronic progressive

rheumatic disease that is mainly characterized by chronic
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inflammation of the axial joint and can involve internal organs

and other tissues. The incidence of AS ranges from 0.1% to 1.6%

(122), the age of first onset is 20 to 30 years old, and it is more

common in young men (123). AS is a common, highly hereditary

immune arthropathy that occurs in genetically susceptible

individuals exposed to unknown but possibly prevalent

environmental triggers. Animal model studies have shown that

germ-free SKG mice cannot develop the disease, but chlamydia

infection can lead to axial and peripheral arthritis, psoriasis and

uveitis, indicating that the intestinal microbiota plays an

important role in the pathogenesis of AS (124). The study

found that the intestinal microbiota structure of AS patients was

significantly changed compared with the normal population.

Compared with healthy controls, the ileum terminal ileum had

higher abundances of five bacterial families: Lachnospira,

Prevotella, Rikenbacteriaceae, Porphyromonas, and Bacteroidetes

(125). Another study found that Bacteroidetes, Firmicutes,

Proteobacteria, and Actinobacteria were the four major

microbiota in the gut microbiota of AS patients and healthy

controls. However, the abundance of actinomycetes in AS

patients was significantly higher than that in the control group,

especially Bifidobacterium, while the abundance of Clostridium

and Verrucobacterium was lower, and Gram-negative

Enterobacteriaceae and Citrobacter were relatively less (126). At

present, the mechanism of action of gut microbiota in the etiology

of AS is not fully understood. It is generally believed that intestinal

microbiota may lead to the occurrence and development of AS

through molecular simulation of HLA-B27, modification of

autoantigens, destruction of tight junction proteins, increase of

intestinal permeability and mediating abnormal immune

responses of intestinal-associated lymphoid tissues (127).

Asquith et al. believed that HLA alleles increased the risk of AS

by interacting with the gut microbiome, and suggested that

therapies targeting the microbiome may be effective in

preventing or treating AS (128). Amdekar et al. have shown

that L. casei may prevent arthritis by reducing prostaglandin

levels and reducing joint inflammation in rats with collagen-

induced arthritis (129). However, in this systematic review and

meta-analysis, only two RCTs were included and showed no

clinical effect, which indicates that the therapy (Streptococcus

salivarius K12 1.6×10^8 CFU + B. lactis LAFTI B94 6.4×10^8

CFU + L. acidophilus LAFTI L10 6.4×10^8 CFU) in Jenks et al.,

2010 (48) and the therapy (L. salivarius CUL61 6.25×10^9 CFU +

L. paracasei CUL08 1.25×10^9 CFU + B. infantis CUL34

1.25×10^9 CFU + B. bifidum CUL20 1.25×10^9 CFU) in

Brophy et al., 2008 (49) may not be effective in AS and

potentially other probiotics could be considered for

investigation. However, since Brophy et al., 2008 (49) conducted

an Internet survey without face-to-face patient contact; and

probiotics for spondyloarthritis involved only 2 RCTs, the

reliability of the results needs to be interpreted with caution. In

addition, some RCTs did not report adverse events, hence, more
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RCTs reporting efficacy and safety are needed to further explore

the treatment of spondyloarthritis with probiotics.
4.4 Probiotics for hyperuricemia
and gout

Gout is an inflammatory disease caused by purine metabolism

disorder, decreased uric acid excretion or excessive production,

resulting in elevated blood uric acid levels and deposition of uric

acid crystals in joints and other connective tissues (130). The typical

clinical manifestations of joint swelling and pain are not only joint

deformities, but also kidney damage, cardiovascular and

cerebrovascular diseases, etc., which seriously affect the quality of

life of patients (131). The occurrence and development of gout is

directly related to the level of blood uric acid in the body, and uric

acid is the final metabolite of purine compounds. Therefore,

regulating purine metabolism is very important for the

pathogenesis and treatment of gout. Studies have found that there

are two types of purines in the body, exogenous and endogenous.

Reasonable adjustment of dietary structure to reduce the intake of

exogenous purines is an effective method for clinically controlling

acute gout attacks (132). As an important organ for digestion and

absorption of food, the main function of the intestine is that the

intestinal microbiota decomposes food into monosaccharides,

which are then absorbed into the blood by small intestinal

epithelial cells. If the intestinal microenvironment is disturbed,

the intestinal microbiota will directly migrate to the extra-

intestinal tissues, produce small molecules and participate in the

blood circulation, and ultimately interfere with the intestinal Toll-

like receptors and lead to the occurrence of rheumatic immune

diseases (133, 134). Therefore, intestinal microbiota is closely related

to the occurrence and development of gout by participating in the

synthesis of purine metabolizing enzymes and the release of

inflammatory factors. Studies have confirmed that compared with

healthy people, the abundance of intestinal microbiota in gout

patients is significantly lower (135). At present, many studies have

found that the intestinal microbiota in gout patients is significantly

different from that of healthy people. Ren et al. found that there is

an imbalance of intestinal microbiota in patients with

hyperuricemia, which is mainly manifested as a decrease in the

number of physiological microbiota (136). However, the number of

Enterobacteriaceae and total anaerobic bacteria increased

significantly, indicating that the increase in serum uric acid may

be related to the reduction of probiotics such as Bifidobacterium and

Lactobacillus (136). Guo et al. found that the number of Bacteroides

caccae and Bacteroides xylanisolvens in gout patients was

significantly increased, while Faecalibacterium prausnitzii and

Bifidobacterium pseudocatenulatum were relatively absent (137).

Shao et al. (138) found that the diversity of gut microbiota in most

gout patients showed a downward trend, with changes in

opportunistic pathogens such as anaerobic bacteria and
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Bacteroidetes. In addition, Xing et al. (139) found that the number

of Clostridium spp. in gout patients was significantly lower than that

in healthy people. Some researchers have also used 1 H-NMR and

Illumina Miseq technology to study the metabolic profile and

microbial community of fecal extracts from gout patients and

healthy people. They found that opportunistic pathogens such as

Anaerobic bacteria, Bacteroides and Porphyromonas were

significantly increased in gout patients (140). Animal studies have

shown that under the effects of Proteobacteria, the intestinal

nutritional conditions of gout rats are deteriorated, and the

permeability of intestinal epithelium and renal endothelium is

significantly increased, which promotes the entry of

lipopolysaccharide into the blood circulation and significantly

aggravates the attack of gout (141). Another study found that

compared with normal mice, hyperuricemia mice had

significantly less Bifidobacteria and Lactobacilli, while serum

xanthine oxidase activity and lipopolysaccharide levels increased.

After treatment with probiotics, beneficial bacteria in the intestinal

tract increased, and the expression levels of serum

lipopolysaccharide and xanthine oxidase decreased significantly

(142). This meta-analysis showed that serum uric acid decreased

in patients after probiotic intervention. Yamanaka et al., 2019 (61)

and Kamatani et al., 2018 (62) used yogurt containing L. delbrueckii

ssp. bulgaricus and Streptococcus thermophilus to treat

hyperuricemia and gout, but did not show an improvement in

serum uric acid, suggesting that the efficacy of these probiotics

needs to be further explored, which provides a reference for

screening effective microbiota. Furthermore, since only 4 RCTs

were involved, and the quality of the literature was degraded

because the details of random sequence generation methods,

allocation concealment methods, and blinding methods in some

RCTs was not reported, the results need to be interpreted with

caution. In addition, those RCTs did not report adverse events,

hence, more RCTs reporting efficacy and safety are needed to

further explore the treatment of psoriasis with probiotics.
4.5 Probiotics for OA

OA is a highly prevalent and disabling disease, affecting

more than 7% of the world’s population (about 528 million

people), of which knee OA (KOA) accounts for about 85% (141,

143). It is estimated that the prevalence of KOA is about 10% in

men and 13% in women among the elderly aged 60 years or

older (144). Global life expectancy, changes in dietary habits and

lifestyles, aging and obesity prevalence and other social trends

have increased the prevalence of KOA, so attention should be

paid to the prevention and treatment of KOA (145). In recent

years, gut microbes have gradually become a focus of attention in

joint inflammatory diseases, and gut microbial imbalance is

closely related to the development of OA (146–148). With the

progress of microbiome research, modern medicine proposed
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the concept of “gut-joint” axis. That is, the intestines and joints

are closely connected, and diseases of the intestines may induce

lesions in the joints. On the contrary, joint diseases can also

affect the intestines, and the two are interrelated (149). Gut

microbes can positively regulate the host’s immune system, exert

immunomodulatory effects (150), protect from pathogenic

microorganisms (151), and maintain normal physiological

functions. Modulation of dysbiosis and metabolic dysfunction

through microbial supplementation may prevent the

development of knee injuries (152). For example, prebiotics

can reduce systemic inflammatory response and protect

articular cartilage in a rodent model of KOA by positively

altering the gut microbiota (153). During monoiodoacetate

(MIA)-induced KOA, administration of probiotics significantly

reduced the expression of proinflammatory cytokines in rat knee

articular cartilage (154). In a model of HFS diet-induced knee

injury in obese rats, both prebiotic fiber supplementation and

aerobic exercise both alone and in combination therapy

improved knee injury (153). In a guinea pig model of

spontaneous OA, oral administration of B. longum CBi0703

significantly improved cartilage structure and exhibited

comprehensive joint protection (155). Therefore, controlling

the gut microbiota is considered to be a feasible therapeutic

strategy to improve obesity-related OA disease (156). Animal

studies have shown that chondroitin sulfate combined with

probiotics can prevent oxidative stress in the serum of rats

with experimental osteoarthritis (157). Probiotics prevent

cartilage damage and osteoarthritis progression in mice (158).

Only one RCT reported probiotics for OA in this research. Lei

et al., 2017 treated 215 patients with L. casei Shirota and another

218 with placebo. They found that after 6 months of treatment,

compared with the placebo group, patients in the probiotic

group had significantly improved WOMAC and VAS scores,

and decreased serum hs-CRP levels (P<0.05). They also claim

that no serious adverse events were observed throughout

the study.
4.6 Probiotics for JIA

JIA, defined as arthritis of unknown etiology with onset

under the age of 16 and lasting more than 6 weeks, is the most

common chronic rheumatic disease in childhood (159–161). At

present, more and more studies believe that the pathogenesis of

JIA is the result of multiple factors. A genetic susceptible

individual is exposed to one or more environmental factors,

resulting in local tissue damage, autoantigen release, excessive

activation of mononuclear macrophages, neutrophils and other

phagocytes, and release of a large number of proinflammatory

cytokines, such as IL-1, IL-6, IL-18 and proinflammatory protein

S100, which eventually lead to chronic synovitis and systemic

multisystem inflammation (162–165). In recent years, the role of
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gut microbes in regulating the homeostasis of the host has

attracted much attention (166). It is gradually recognized that

gut microbes may be an important environmental factor

involved in the occurrence of JIA and affect disease

progression (167). Tejesvi et al. found that the abundance of

Firmicutes and Bacteroidetes increased in the gut microbiota of

children with primary, untreated JIA (168). With the

advancement of experimental technology, the research on gut

microbiota has gradually deepened, and more and more studies

have found that the gut microbiome structure characteristics of

JIA children are significantly different from those of normal

children. It can be manifested as changes in microbial richness

and diversity, abnormal composition and structure of some

bacterial groups, and a decrease in the number of some

beneficial microbiota, such as butyrate-producing bacteria

(169). These studies suggest that alterations in the structural

characteristics of gut microbes are closely related to the

occurrence of JIA. Some scholars have found that the

abundance of Faecalibacterium in the intestinal microbiota of

children with JIA (polyarticular JIA and ERA) is decreased

(170). Faecalibacterium is a butyrate producing bacteria (BPB),

and its reduction can induce an inflammatory state in the body

(167). Due to the difficult treatment of JIA at present, the disease

is easy to repeat, the long-term application of glucocorticoids

and immunosuppressive agents has serious side effects, and the

biological preparations are expensive (160, 171). Therefore, it is

urgent for the clinic to summarize the efficacy and safety of the

intervention effect of probiotic-based microecological

preparations in children with JIA.

Most of the probiotics involved in the included studies were

Bifidobacterium, Lactobacillus, Enterococcus and Bacillus, and

the doses involved were mostly above 1*10^8 CFU. It is

suggested that the intestinal microbiota preparations based on

Bifidobacterium, Lactobacillus, Enterococcus and Bacillus may

have better effect when the dose is above 1*10^8 CFU.
4.7 Strength and limitations and
inspiration for future research

The strength is that this systematic review and meta-analysis

evaluated the efficacy and safety of probiotics on 8 types of

inflammatory arthritis for the first time, and provided

clinical reference.

The limitations of this review are that: (1) The quality of the

included RCTs is generally degraded by the lack of detailed

random sequence generation, allocation concealment, and

blinding information. (2) Vadell et al., 2020 (41) and Lambert

et al., 2017 (53) used food containing probiotics and did not give

specific strains and doses, while for some of other RCTs,

although strains were given, the dosage was uncertain, which
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further brought heterogeneity. (3) In different diseases, although

the same efficacy indicators have been reported, the methods of

recording are different. As in psoriasis, Navarro-López et al.,

2019 (44) reported the percentage of PASI improvement, but did

not provide its specific value, while Lu 2017 (46) and Moludi

et al., 2021 (47) reported the specific value of PASI, therefore

Navarro-López et al., 2019 (44) was not included in the meta-

analysis. (4) Furthermore, most diseases contain fewer than 10

RCTs, and OA even contains only 1 RCT. And only

Osteoporosis and Osteopenia included more than 1000

participants (1156), the rest of the diseases included less than

1000 participants. (5) This systematic review only included 8

types of inflammatory arthritis, and the others were not

retrieved, which may be due to the fact that probiotics for

inflammatory arthritis have just emerged and received less

attention. (6) Many RCTs did not report adverse events,

perhaps because they were not observed, or were not

monitored. These results in the efficacy and safety of

probiotics in the treatment of inflammatory arthritis need to

be interpreted with caution.

For safety, many RCTs did not report adverse events, raising

concerns about the safety of the RCTs included in this review.

Based on this, we need to carefully examine many RCTs that do

not report adverse events. For example, Tang et al. conducted a

search (up to February 2014) of Phase II and IV RCTs of at least

one serious adverse event related to drug therapy registered on

ClinicalTrials.org, and a total of 1580 RCTs were screened. Then

they randomly selected 300 RCTs, and found the corresponding

published literature, and compared the agreement between the

two serious adverse events, but the results were not completely

consistent (172). Specifically, of the 139 RCTs reporting serious

adverse events, 44 (32%) RCTs reported a number of serious

adverse events in publications that were inconsistent with those

recorded on ClinicalTrials.gov. The incidence of serious adverse

events reported in the publications of 22 RCTs was lower than the

incidence of adverse events recorded on ClinicalTrials.gov, with a

difference of more than 30% in each group. Therefore, we consider

that the reasons why the included RCTs did not report adverse

events may be: (1) RCTs are not registered in the clinical trial

center, and the writing is not standardized; (2) There may be cases

where only good outcomes are reported, and bad outcomes are

not reported; (3) The publications have limited space, etc. This

prompts us to interpret the safety results of this study cautiously,

and it also suggests that future RCTs should report adverse events

in detail. It is also expected that more RCTs in the future can

publish the detailed data of the trial in the professional clinical trial

database to provide data support for clinical application. In

addition, more standardized RCTs reporting on the treatment

of other types of inflammatory arthritis with probiotics are needed

in the future to further determine the efficacy of probiotics on

various inflammatory arthritis.
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5 Conclusion

Probiotic supplements may improve Hyperuricemia and

gout, Inflammatory bowel disease arthritis, JIA, OA,

Osteoporosis and Osteopenia, Psoriasis, RA, Spondyloarthritis.

However, lack of evidence and heterogeneity of studies do not

allow us to recommend them to patients with inflammatory

arthritis to manage their disease. More randomized controlled

trials are needed in the future to determine the efficacy and

optimal dosing design of probiotics.
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150. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in
immunity and inflammatory disease. Nat Rev Immunol (2013) 13(5):321–35.
doi: 10.1038/nri3430

151. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and
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