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Rusan Ali Catar,
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Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It

may occur during the pancytopenia phase following allogeneic hematopoietic

cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal

cells (MSCs) have strong anti-inflammatory effect and first home to the lung

following intravenous infusion. MSCs are safe to infuse and have almost no side

effects. During the Covid-19 pandemic many patients died from ARDS.

Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS.

We report three patients, who were treated with MSCs for ARDS following HCT.

Two were treated with MSCs derived from the bone marrow (BM). The third

patient was treated with MSCs obtained from the placenta, so-called decidua

stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after

infusion of BM-MSCs, but he died from multiorgan failure. The second patient

treated with BM-MSCs died of aspergillus infection. The patient treated with

DSCs had a dramatic response and survived. He is alive after 7 years with a

Karnofsky score of 100%. We also reviewed experimental and clinical studies

using MSCs or DSCs for ARDS. Several positive reports are using MSCs for

sepsis and ARDS in experimental animals. In man, two prospective randomized

placebo-controlled studies used adipose and BM-MSCs, respectively. No

difference in outcome was seen compared to placebo. Some pilot studies

used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical

cord and DSCs however, optimal source of MSCs remains to be elucidated

using randomized trials.

KEYWORDS
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Introduction

Acute respiratory distress syndrome (ARDS) is a life-

threatening lung condition with a mortality rate that ranges

between 25-50% (1–4). ARDS is characterized by acute hypoxic

respiratory failure with bilateral pulmonary infiltrates that may

be caused by septicemia, pneumonia, shock, following aspiration

of gastric contents, or severe trauma (3, 4). ARDS may

independently be caused by blood transfusion (5). ARDS is

characterized by inflammation, neutrophil accumulation, a

systemic and local inflammatory reaction, and alveolar injury.

The damage induces protein-rich pulmonary edema, which

leads to hypoxemia and impaired carbon dioxide (CO2)

elimination. ARDS is classified as mild, moderate, and severe,

based on the degree of hypoxemia. ARDS is used if the patient´s

PaO2/FiO2 was less than 300 mmHg (6).

Diffuse alveolar damage (DAD) leading to high permeability

followed by pulmonary edema is considered the histopathologic

hallmark of ARDS. It usually happens when the patient already

is critically ill or has had significant injuries (7, 8). ARDS causes

the deaths of approximately 75.000 people in the United States

annually (2, 7). In the Scandinavian countries, there are almost

170 patients/million inhabitants/year of ARDS with a mortality

rate of 40% (9). Apart from substantial mortality, ARDS is

associated with high morbidity rate and high costs on health

systems. Patients with ARDS need ventilator support and are

treated in intensive care units (ICUs) which is cumbersome and

costly. Mechanical ventilation is required to keep good

oxygenation and adequate CO2 elimination but may also lead

to lung injury by rupturing healthy alveoli and triggering a

secondary inflammatory response (1, 10).

Standard therapy for ARDS includes mechanical ventilation

and fluid management therapy (11). There is no specific or

targeted therapy against the underlying pathophysiological

process of ARDS shown to be beneficial. For instance, b-2
agonist treatment and simvastatin were used for ARDS with

no beneficial effects (12, 13).

Infection with the novel coronavirus, SARS-CoV-2, causing

the ongoing Covid-19-pandemic, can lead to massive pro-

inflammatory responses contributing to the development of

ARDS and a concomitant cytokine storm reaction (14). The

cytokine storm was studied in more detail however there is no

consensus on a detailed definition (15, 16). Moreover,

coagulopathy in these patients could possibly worsen the

clinical outcome (17). Several ongoing trials investigate

immunomodulatory therapies in Covid-19, including e.g.

interleukin-6 inhibitors.

Various pulmonary problems are common following

allogeneic hematopoietic cell transplantation (HCT) and include

idiopathic pneumonia, viral- bacterial and fungal pneumonia,

obstructive bronchiolitis and alveolar hemorrhage etc (18). ARDS

is rare after HCT but is associated with almost 100% mortality.
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The rationale to use mesenchymal stromal cells (MSCs)

stems from the very potent cellular immunomodulatory and

anti-inflammatory effects (19–21). When MSCs are infused

intravenously, they first home to the lungs (22–25). A study in

mice showed that around 80% of the MSCs were found in the

lungs within a few minutes after injection (26). MSC may not

migrate beyond the lungs after intravenous infusion (27). We

were the first group to treat ARDS using MSCs in a patient in

2004 (28).

In this article, we describe three patients treated with MSCs for

ARDS following HCT and summarizes the immunomodulatory

and anti-inflammatory effects of MSCs. We also review the

experimental and clinical experience of treating ARDS with

MSCs and future perspectives.
Literature overview: Experimental
and clinical experience

Mesenchymal stromal cells

MSCs were first described by Friedenstein et al. (29). They

described an adherent, fibroblast-like cell population in the bone

marrow that could regenerate rudiments of bone in vivo (30, 31).

MSCs were found in all tissues of the body and have been

estimated to be 1/10.000 nucleated cells (32–34). Because MSCs

can differentiate into several cells of mesenchymal cell lineages

including bone, cartilage, tendons, cardiomyocytes, bone cells,

and fat, they have raised interest in regenerative medicine (35,

36). There is no specific marker for MSCs, but they stain positive

for CD29, CD73, CD90, CD105 and CD166 (32, 33, 37). They

are negative for hematopoietic markers CD34, CD45, and CD14.

MSCs have immunomodulatory effects and inhibit T-cell

alloreactivity induced in mixed lymphocyte cultures (MLC)

(20). MSCs suppression of alloreactivity is independent of the

HLA system. HLA compatibility between MSCs and target

lymphocytes are not necessary for immunosuppression to

occur. This suggests the possibility to use third-party MSCs

(21). Furthermore, the infusion of MSCs in humans was shown

to be safe (38). Skin allograft survival was prolonged in baboons

(19). These findings inspired us to treat a 9-year-old boy, with

life-threatening grade IV acute graft-versus-host disease

(GVHD), with MSCs. He had a most dramatic response and

MSCs were also used in a pilot study by us including 8 patients

(39, 40). Subsequently, MSCs are used to treat a wide range of

inflammatory and autoimmune disorders such as Crohn’s

disease, ulcerous colitis, multiple sclerosis, and ARDS among

others (41–44).

MSCs have multiple effects on the immune system. MSCs

increase the number of both CD4+ and CD8+ regulatory T cells

and IL-10 production (45–49). MSCs decrease markers for

activated T cells, CD25, CD69 and CD38 (50, 51).
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Furthermore, dendritic cells decrease TNF-a and IL-12 when

co-cultured with MSCs (46). MSCs also increase IL-10 secretion

by LPS-stimulated dendritic cells, and CD4+ cells had decreased

IL-5 secretion.

Type 1 helper T cells (Th1) IFN-g production was significantly
decreased by MSCs. Type 2 helper T cells (Th2) increased IL-4

secretion in the presence of MSCs. MSCs inhibition of

alloreactivity in mixed lymphocyte cultures and subsequent

development of cytotoxic T cells was induced by a soluble

factor. Several immunoinhibitory soluble factors are produced

by MSCs, among them are prostaglandin E2 (46), HLA-G5 (52).

The immunoinhibitory effect byMSCs is augmented by IFN-g (53,
54). MSCs can also be activated by stimulation of their Toll-like

receptors (55). The T-cell inhibitory enzyme indoleamine-2,3

dioxygenase (IDO), is induced by IFN-g, which catalyzes the

conversion from tryptophan to kynurenine and inhibits T cell

responses (56, 57). IDO reduced by MSCs is involved in the

induction of regulatory T cells and the inhibition of T helper 17

(Th17) differentiation (58, 59). IDO-produced MSCs can also

promote the differentiation of macrophages towards the M2

phenotype (60). MSCs have been reported to induce

macrophage reprogramming through an anti-inflammatory/

immunosuppressive profile (61, 62). MSCs may also inhibit

reactivity by T cell inhibitory molecule PD-L1 (60). MSCs may

use adenosine-mediated suppression via CD39 and CD73 to

suppress activated T cells (63). Inhibition and apoptosis of T

cells may also be mediated by galectin induced by MSCs (64). It

has been proposed that MSCs decrease B cell proliferation when

used in a high concentration of MSCs (65). In contrast, lower

doses of MSCs stimulated B cell antibody secretion in human

spleen cells (66). MSCs decreased anti-inflammatory gene 6

protein (TSG-6) also stimulated by human tumor necrosis

factor a (TNF-a), to induce an anti-inflammatory effect (67).

MSCs immunosuppressive activity also involves the engagement

of regulatory T cells (48, 49).

Activated MSCs can modulate adaptive immune cells

through contact-dependent mechanisms. It includes activation

of the PD-1 pathway (60), FAS-mediated T cell apoptosis (68)

engagement of VCAM-1 and ICAM-1 (69), and through

upregulation of CD39 and increasing adenosine production

(63). Direct contact is also important for MSCs induced

immunosuppression in mice (70). In a murine model of

GVHD, it was demonstrated that MSCs are actively induced

to undergo perforin-dependent apoptosis by recipient cytotoxic

T cells and that this process is essential to initiate MSCs-induced

immunosuppression (71). After infusion recipient phagocytes

engulf apoptotic MSCs and produce indoleamine 2,3-dioxinease,

which is necessary for inducing immunosuppression. A recent

study in NSG mice demonstrated that shortly after intravenous

administration, MSC become apoptotic in the lungs and are

eliminated locally by several phagocyte subsets. Efferocytosis by

alveolar macrophages is critical for the therapeutic effect of MSC

(72). In addition, administration of apoptotic human umbilical
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cord blood-derived MSC exerts a beneficial effect in acute lung

injury in rats (73). The importance of MSCs apoptosis and

efferocytosis for MSC immunosuppression was also found by de

Witte et. al (74).

MSCs were thought to be immune-privileged cells (53, 75).

However, in a baboon model, it was shown that alloantibodies

were formed after infusion of allogeneic MSCs (76).

Furthermore, MSCs are rejected in allogeneic mice (77). We

did not detect any anti-HLA antibodies in GVHD patients

treated with MSCs or DSCs in patients who have undergone

HCT (78, 79). However, a small girl diagnosed with

epidermolysis bullosa developed multi-specific anti-HLA

antibodies after repeated infusion of DSCs.

After infusion in human blood, MSCs were susceptible to

complement activation (80), which resulted in cell death (81).

Coagulation factors are activated when MSCs are infused into

the blood (82).

Exosomes and macrovesicles derived from MSCs were

shown to protect from acute kidney injuries (83) myocardial

ischemia (84), and pulmonary hypotension (85) in various

animal models. MSC-derived exosomes have also been used in

ARDS/ALI (86–88).

Infusion of MSCs seems safe and there are few side-effects

reported (89). In a meta-analysis from more than 1000 patients

who were treated for various disorders such as GVHD among

others, the toxicity of allogeneic MSCs were limited to transient

fever (90).

The most commonly used source of MSCs is the bone

marrow (BM) from which it is renewable (38, 91). Adipose

tissue is commonly used as a source of MSCs (92). Other sources

of MSCs include the umbilical cord and placenta (34, 93, 94).

The most common indication for MSCs therapy in HCT

patients is acute GVHD with numerous encouraging pilot

studies (40, 95–98). Other indications following HCT are

chronic GVHD, hemorrhagic cystitis, pneumomediastinum

(99), and in a few patients reported here ARDS. The

immunomodulatory capacity of MSCs has also been used to

treat autoimmune inflammatory disorders such as multiple

sclerosis (100). Other immune disorders treated by MSCs

include rheumatoid arthritis (41), inflammatory bowel

disorders (42), and Systemic Lupus Erythematosus (43). MSCs

are used to repair several mesodermal tissues including bone,

tendon, cartilage, and fat. They were also used to repair cardiac

damage (44). Furthermore, they have been used to prevent

aging (101).
Experimental studies using mesenchymal
stromal cells for sepsis and ARDS

There is no specific treatment for sepsis and ARDS and the

therapy is mainly supportive. However, there is growing

evidence of the potential of cell-based therapies for the
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treatment of sepsis and ARDS. Worldwide more than 5 million

people die every year due to sepsis (102).

Symptomatic therapy for ARDS include low-tidal volume

ventilation (103), neuromuscular blockage (104), prone position

(105), and extracorporeal membrane oxygenation (106).
Experimental studies

For a decade MSCs have been studied in several

experimental models of sepsis and ARDS. In a mouse model,

it was demonstrated that MSCs attenuated septicemia and the

effect was dependent on MSCs-derived prostaglandin E2, which

reprogrammed macrophages in septic lines to produce anti-

inflammatory IL-10 (61). Similarly, MSCs also promote recovery

and repair lung injury in rats (107, 108). In a lung contusion

injury model followed by hemorrhagic shock in rats, MSCs

decreased injury in part by increasing the proportion of

regulatory T cells (109). Human MSCs also reduced

bacteremia and mortality in mice with gram-negative sepsis

(110). In this model, MSCs altered the polarization of alveolar

macrophages to an M2-like anti-inflammatory phenotype. The

phagocytic ability of macrophages was also enhanced by MSCs

in mice who had pneumonia and peritoneal sepsis (111). Similar

effects were also seen in a human lung injury model (112).

Devaney et al. also showed that human MSCs improved lung

injury induced by E.coli in rats by decreasing levels of alveolar

neutrophil inflammation and increased levels of IL-10 and

subsequently enhanced function of macrophages (113).

In a mouse model of endotoxin-induced ALI, it was shown

that intrapulmonary infusion of BM-MSCs improved survival

and attenuated lung injury (114). In mice, it was shown that

MSCs resolution of endotoxin-induced lung injury partly was

mediated by lipoxin-A4, derived from arachidonic acid (115).

Condor and colleagues demonstrated in a sepsis-induced multi-

organ failure model that human MSCs increased production of

prostaglandin E2 and IL-10 and improved survival (116). Several

investigators showed in mice models that administration of

human MSCs from various origins i.v. to mice, had positive

effects on ALI such as decreased IL-1b, lung edema, decreased

IL-1b in bronchoalveolar lavage (BAL), reduced inflammation,

and enhanced anti-apoptotic effects (117). Similarly, human

umbilical cord-derived MSCs (UC-MSCs) reduced ARDS in

rats and improved survival (118). In most of these studies,

lung injury was induced by lipopolysaccharide (LPS). Various

strategies were also used to enhance the effects of MSCs in the

treatment of experimental ARDS. In an LPS model of lung injury

in mice, Wang et al. used MSCs overexpressing IL-10 which

increased B- and T-cell production of IL-10 and decreased TNF-

a, and improved survival (119). The toll-like receptor 3 ligands,
Frontiers in Immunology 04
poly (I:C), led to increased prostaglandin E2 production and

enhanced effect by MSCs on macrophage function in a sepsis

model (120). Methods to potentiate the effects of MSCs in

experimental ARDS include overexpressing soluble ST2 via

lentiviral transfection (121), MSCs transfused with the E-

prostanoid 2 receptor (122), overexpression of receptor

tyrosine kinase (ROR2) (123), overexpression of platelet-

derived growth factor receptor (124), overexpression of ANG-

1 (125), overexpression of angiotensin-converting enzyme-2

(126), and overexpression of the gene Angiotensin-converting

enzyme growth factor-2 (127). The sphingosine-1 phosphate

analog FTY720 was affected together with human MSCs in

ARDS in mice (128). Exosomes from MSCs were also

beneficial to treat ARDS in mice (88). However, a study

showed a better response of lung injury using cells as

compared to secretomes (129).
ARDS following hematopoietic
cell transplantation

Pulmonary complications are common in patients, following

HCT (18, 130, 131). Pulmonary disorders following HCT

include, idiopathic pneumonia syndrome, interstitial

pneumonitis, diffuse alveolar hemorrhage, peri-engraftment

ARDS, noncardiogenic capillary leak syndrome, bronchiolitis

obliterans and broncho-pneumonia. ARDS is not so common,

but a severe condition post HCT. In a study including 3920 HCT

patients, 4,5% developed ARDS, with a one-year mortality of

70% (132). At the end stage of respiratory distress syndrome, the

patients may present with hypoxic respiratory failure, meeting

the full criteria for ARDS according to the Berlin definition.

Among 2635 patients following allogeneic or autologous HCT,

133 cases 5,0% developed ARDS (133). One year mortality

was 67%.

Patients who develop ARDS following HCT have a very poor

outcome. In the 1990th mortality approached 100% in the

intubated patients (134). In intubated patients with multiple

organ failure (MOF) after HCT, mortality was 94-100%. With

such a dismal outlook, palliative care was commonly chosen, in

those days.

Improvements in intensive care in more recent years, as

using ventilation in a prone position, restrictive fluid therapy,

new diagnostic methods, and possibility to treat pathogens, have

resulted in improved survival rate in this group. Extracorporeal

membrane oxygenation (ECMO) was used to treat ARDS in 37

adult patients at a median of 147 days after HCT (135). Overall,

7(19%) of the patients survived until discharge. Patients treated

more than 240 days after HCT had a better survival 6/13(46%) as

opposed to 1/24(4%) among those treated early(p<0.001). In
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pediatric patients with ARDS, survival was reported to be 24,6%

(136). MSCs were often used to treat severe acute GVHD

following HCT (98). However, MSCs were rarely used to treat

ARDS after HCT. Therefore, these case reports are of interest.
Clinical experience using mesenchymal
stromal cells for ARDS

There is so far limited experience using MSCs in patients

compared to the multiple studies in experimental models of ALI/

ARDS. Adipose-derived MSCs were used in a small prospective

randomized placebo-controlled study including 12 patients with

ARDS (137). Intravenous Adipose-MSCs 1x106 cells/kg vs

placebo was given and there was no difference in outcome in

patients treated with Adipose-MSCs versus placebo. In a phase I

study, 3 patients each with ARDS received 1x106, 5x106, or

10x106 MSCs/kg as a single intravenous dose for ARDS (138).

There were no MSC infusion-related hemodynamic, or

respiratory adverse events reported. The treatment was well

tolerated and the dose of 10x106 cells/kg was selected for

further study. A randomized phase 2 safety trial using 10x106

BM-MSC/kg showed no statistical difference in survival between

the BM-MSC groups (n=40) and the placebo group (n=20)

(139),. The primary endpoint was safety, and it was shown

that it was safe to infuse 10x106 BM-MSC/kg in patients with

moderate to severe ARDS. There were no MSCs infusion-related

hemodynamic, or respiratory adverse events reported. In a

separate study it was found that compared with placebo, MSC

treatment significantly reduced airspace total protein,

angiopoietin-2 (Ang-2), IL-6, and soluble TNF receptor-1

concentrations (140). In conclusion from these randomized

studies in ARDS patients, adipose or BM-MSCs were safe to

infuse, but did not improve survival compared to placebo.
Mesenchymal stromal cells for COVID-
19-induced ARDS

Several trials are registered to use MSCs to treat Covid-19-

induced ARDS (141). A study showed that MSCs are resistant to

SARS-CoV-2-infection and retain their immunomodulation

potential, supporting their applicability for Covid-19-induced

ARDS (142). Five patients were given 1x106 UC-MSCs/kg for

Covid-19 ARDS. After infusion of UC-MSCs, there was a rise of

PaO2/FiO2 in all patients, three patients survived. In a German

study 5 out of 23 patients with severe Covid-19 were treated with

1x106 MSCs/kg (143). Four of the five BM-MSC-treated patients

got ECMO to support vs 9/18 of the controls. Four of the 5 BM-

MSCs-treated patients survived to discharge compared to 8/18 of

the controls. A study used UC-MSCs in six and placenta-derived
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MSCs in 5 patients (144). The patients received fixed doses,

200x106 MSCs infused every other day for 3 doses. No side

effects were seen and 6 of the 11 patients survived (144). UC-

MSCs were used in a double-blind pilot study including 24

Covid-19 ARDS patients (145). Two fixed doses of 100x106 UC-

MSCs were given to 12 patients. UC-MSCs infusions were safe.

Survival was 91% in the UC-MSC group compared to 42%

among the controls (p=0.015) (145). A Chinese study compared

26 patients treated for Covid-19 for ARDS with 3 doses of MSCs

from menstrual blood with 18 control patients (146). Safety was

the same between the two groups. Mortality was 7.69% in the

MSCs group as opposed to 33.33% among the controls

(p=0.048). During the Covid-19 pandemic several groups

conducted small phase 1 trials using MSCs (147–154). Monsel

et al. did not find an improved outcome following 3 infusions of

UC-MSC compared to the control group (151). Dilogo et al.

randomized 20 patients to UC-MSC and 20 patients to placebo.

10 patients in the UC arm survived compared to 4 patients in the

placebo arm (P<0.05). Length of stay in ICU and ventilator usage

did not differ between the two groups (153). In a prospective

randomized study, enrolling 101 patients, who were given UC-

MSCs or placebo, the UC-MSC group, the UC-MSC group had a

trend for numerically improvement in whole lung lesion volume

on day 28 (P<0.08) (152). Gregoire and colleagues used BM-

MSCs in a phase I/II trial and treated 8 intensive care patients

with Covid-19 induced ARDS with three i.v. infusions at three-

day intervals with 1.5-3x10-6 cells/kg (155). All MSCs treated

patients were alive at 60 days which was significantly higher

compared to 70.8% in 24 well-matched control patients, who

were not given MSCs (p<0.0082).

DSCs were given to l0 ARDS patients with Covid-19 disease

in Tehran (156). Pulmonary infiltrates disappeared in all

patients. Seven patients survived and were discharged. To

conclude, several trials used MSCs from different origin to

treat Covid-19 induced ARDS. Some promising outcomes

were seen using UC-MSCs and DSCs.
Materials and methods

Patients

Following HCT three patients developed ALI/ARDS and

were treated with BM-MSCs in two cases and DSCs in the third

case (28). This is a case study, conducted in an academic setting.

ARDS is defined according to the Berlin criteria (157). ALI have

similar clinical features without fulfilling all ARDS criteria

according to the Berlin definition (158).

The first patient was a 22-year-old male with acute

lymphoblastic leukemia in second remission, who was given a

cord blood graft (Table 1). The second patient was a 13-year-old
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boy with acute lymphoblastic leukemia (ALL) with a graft from

an unrelated donor. A 33-year-old man with chronic myeloid

leukemia, resistant to Nilotinib, received a graft from an HLA-

identical unrelated donor (Table 1). The first two patients were

conditioned before transplant with cyclophosphamide and

fractionated total body irradiation (159). The third patient was

conditioned with cyclophosphamide and busulfan. Prophylaxis

against GVHD was methotrexate and cyclosporine. The

transplantation procedure was previously published in detail

(160, 161) (Table 1).
Cell culture

The culture method and expansion of MSCs and DSCs was

previously published in detail (21, 162). The stromal cells

expressed CD166, CD105, CD73, CD44, and CD29 but not

hematopoietic markers CD34, CD14, and CD45. The cells were

cultured, and control samplings were negative for bacteria,

mycoplasma, and fungi during expansion and before infusion.

The stromal cells were cultured and expanded in a good

manufacturing process condition, at the Department of

Clinical Immunology, Karolinska University Hospital,

Huddinge, Sweden.

Initially we used BM-MSCs for immunomodulation in HCT

patients (40, 99). Due to insufficient clinical effect using BM-

MSCs and a better immunomodulatory effect by DSCs, compare

to BM-MSCs, we later switched to DSCs (94, 163, 164).

The MSCs and DSCs were stored in liquid nitrogen, thawed,

and suspended in cliniMACS PBS/EDTA buffer, supplemented

with 10% AB plasma for MSCs and 5% albumin for DSCs. The

cells were washed three times and resuspended in NaCl and 10%

AB-serum (MSCs) or 5% albumin (DSCs) (164, 165). The

infusion solution was then filtered through a 70mM cell
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strainer (BD Bioscience, Franklin Lakrs, NI). It was then

transferred to a heparinized syringe at 2x106 cells/ml. The

MSCs and DSCs were infused i.v. via a central venous line.

Dosing aimed at 1x106 MSCs/kg, due to the number of cells in

frozen vials and following thawing, the final dose given to the

three patients varied from 1.0-1.4 x106 cell/kg in this report. The

line was flushed with 2-5 ml NaCl containing 50 IE heparin/ml

in the two adults and 25 IE heparin/ml in the boy.
Results

Patient 1 underwent HCT in 2004. Following initial acute

gastrointestinal GVHD with diarrhea, he developed

hemorrhagic cystitis and was treated with 0.7x106 MSCs/kg on

day 81 after HCT. A week before MSCs infusion he required 8

units of erythrocyte concentrates, 14 units of fresh frozen

plasma, and 9 platelet transfusions. The week following MSCs

infusion he only required 2 platelet transfusions and no

erythrocyte transfusions. On day +93 he worsened and

developed multiorgan failure. Pulmonary X-ray revealed ALI/

ARDS. On day +96 he was given a second dose of 1.4x106/kg of

HLA haploidentical MSCs from his mother (Table 2). Following

this, a new X-ray was performed and showed clear lungs with no

signs of ALI/ARDS (Table 2). Despite this, the patient

deteriorated and died on day +104 due to multi-organ failure.

Patient developed renal, liver, and cardiac failure, which was the

cause of death (Table 2). Autopsy revealed that the bladder

was healed.

Patient 2 was a thirteen-year-old boy with ALL and

prolonged neutropenia after HCT. Due to this, he was treated

with granulocyte transfusions to treat his bacterial infection.

Following this, he had deteriorated pulmonary function and an

X-ray showed bilateral pulmonary infiltrates (Table 2). This was
frontiersin.org
TABLE 1 Characteristics of three patients, diagnosed with ARDS.

Patient 1 Patient 2 Patient 3

Age 22 13 32

Sex M M M

Diagnose ALL, 2CR ALL, 2CR CML

HLA donor (match) MMUD MUD MUD

Conditioning Cy/fTBI Cy/fTBI Bu/Cy

ATG + + +

Immunosuppression CyA + Pred. CyA + MTX CyA + MTX

Graft source 2 CB PBSC PBSC
M, male; ALL, acute lymphoblastic leukemia; CR, complete remission; CML, chronic myeloid leukemia; MMUD, mismatched unrelated donor; MUD, matched unrelated donor; Cy,
Cyclophosphamide; fTBI, fractionated total body irradiation; Bu, busulfan; ATG, anti-thymocyte globulin; CyA, cyclosporine; MTX, methotrexate; CB, cord blood; PBSC, peripheral blood
stem cells. + means that the patients received ATG.
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thought to be due to granulocyte transfusion. Due to the picture

of ALI/ARDS, he was treated with 1x106 MSCs/kg. Following

this, he required ventilatory assistance and died of massive

aspergillosis pneumonia as found at autopsy (Table 2). The

reason of death was pulmonary failure. The role of BM-MSCs in

exacerbating invasive fungal infection is discussed in the

discussion (second paragraph).

Patient 3 was a thirty-three-year-old man with chronic

myeloid leukemia who underwent a transplant in 2014 and

developed septicemia during the neutropenic phase after HCT.

On day +8 he had a fever (40°C) and was treated with high doses

of piperacillin/tazobactam. Chest radiography was normal.

However, the fever continued, and the maximum pulse

increased to 155/min. Blood culture showed alpha

streptococci. Hemoglobin decreased from 100 to 60g/l. Weight

increased by 5 kg. On day +10 he was short of breath and chest

radiography suggested ARDS (Table 2). He required oxygen

supply, and this was increased to 15L/min. He was given large

doses of albumin and furosemide. Oxygen saturation varied

between 92-96%. The patient was completely exhausted and

needed ventilatory support. From a compassionate basis and

according to the Declaration of Helsinki, he was given 1x106

DSCs/kg on day +11. Oxygen saturation instantly increased

from 88-92% to 98% (and was thereby stabilized). Oxygen

supply, which was successively decreased, was discontinued

five days later. Chest radiography improved and was normal

on day +22 after HCT when the patient was discharged from the

hospital (Table 2). He had elevated granulocyte colony-

stimulating factor, IL-6, IL-8, and MCP-1 which all decreased

3 hours after DSC infusion and normalized one week after

infusion. The patient is alive and well after 7 years.
Discussion

The reason we used MSCs for the treatment of ARDS was

that these cells first home in the lungs when given i.v (22, 24, 25).
Frontiers in Immunology 07
and they have a very potent immunomodulatory and anti-

inflammatory effect (19, 20, 166). The hope was that they

would turn off the ARDS-induced cytokine storm in the lungs.

Recently Wick KD et al. showed that MSCs infusion locally

decrease the inflammatory cytokine level compared to the

control group (140). In our first patient, the pulmonary

infiltrates cleared (Table 2). However, he suffered from

multiple medical problems and finally died from multi-

organ failure.

The second patient died from invasive aspergillosis. An

invasive fungal infection may be a problem after MSC therapy

(163). This could be due to local immunosuppression following

MSCs infusion, paving the way for invasive fungal infection

(140). We also experienced an increased risk of invasive fungal

infection and death by pneumonia in HCT patients given MSCs

(167). Therefore, antifungal prophylaxis should be considered in

patients treated with MSC following HCT (28).

The third patient responded dramatically to DSCs with a

very rapid recovery. Reasons for this better response compared

to BM-MSCs may be the more potent immunosuppressive and

anti-inflammatory effects by DSCs as opposed to BM-MSCs seen

in vitro and in vivo for the treatment of acute GVHD (94, 164).

Although BM-MSCs and DSCs have similar surface markers,

such as CD105, CD166, CD73, CD90, and CD29, there are

several differences between BM-MSCs and DSCs apart from a

more potent immunosuppressive effect by DSCs (162, 168).

DSCs are half the size of BM-MSCs and do not differentiate

well to fat and cartilage (169).

In the ARDS patient who was successfully treated by DSCs,

cytokines/chemokines G-CSF, IL-6, IL-8, MCP1, and TNF-a all

decreased dramatically in blood. In addition, DSCs also decrease

IFN-g and IL-17 (94). All these cytokines contribute to the

cytokine storm during ARDS (16, 170).

Furthermore, DSCs compared to BM-MSCs, have a stronger

expression of CD49b, a marker for homing to inflamed tissue.

This may be of importance in the context of ARDS. The data

presented here must of course be taken with a lot of caution
TABLE 2 Outcome of three patents, diagnosed with ARDS and treated with MSCs.

Patient 1 Patient 2 Patient 3

ARDS ethology aGVHD, HC (4), Multiple transfusion Granulocyte transfusion Alfa streptococcal septicemia

MSCs source BM BM DSCs

MSC donor Haploidentical Third party Third party

Cell dose x106 MSC/
kg

1.4 1.0 1.0

Effect on ARDS Lungs cleared Progression Lungs cleared

Verification by X-ray X-ray/ventilatory support needed X-ray/discontinued oxygen supply

Outcome Death due to liver, kidney dysfunction; finally, cardiac
arrest

Death due to aspergillus
pneumonia

Recovered, alive and well (for more than 7
years)
ARDS, acute respiratory distress syndrome; aGVHD, acute graft versus host disease; HC, hemorrhagic cystitis [grade 4= life threatening (1)]; MSCs, mesenchymal stromal cells; BM, bone
marrow; DSCs, decidua stromal cells.
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because these are only three anecdotal cases and performed over

ten years. In fact, ARDS is relatively rare following HCT. The

more promising immunomodulatory and anti-inflammatory

response using DSCs as opposed to BM-MSCs includes also

patients treated for acute GVHD (n=38) and hemorrhagic

cystitis (n=11) (164, 171). Although these studies suggest that

DSCs have a better immunosuppressive effect as opposed to BM-

MSCs (164), well-designed prospective randomized trials are

necessary to prove the superior efficacy of DSCs.

In the literature, numerous preclinical studies are supporting

the effects and rationale to use MSCs for sepsis and ARDS, some

of which are referred to in this review, and there are more

published (172–174). Concerning GVHD, MSCs from different

sources do not work very well to reverse this disorder in mice in

contrast to humans (175).

In mice BM-MSCs need to be licensed by various methods,

like treatment with IFN-g, insertion of IL-10 promoting genes,

and more, to be effective to reverse acute GVHD. In a similar

way, several methods to enhance the anti-inflammatory effect of

MSCs were also used for ARDS and sepsis in several animal

models. Several of these modalities are previously described in

detail (176).

In the clinic and for manufacturing of MSCs, it may be

somewhat more problematic if gene-manipulation is needed to

make MSCs useful for therapy.

In the limited clinical experience using MSCs, the two

randomized ARDS studies so far, did not show any difference

in outcome comparing MSCs from adipose or BM and placebo

(137, 139). Although there were no significant differences in

survival between the MSC patients and the placebo controls,

there was a numerically increased mortality in the patients in the

MSC group. This was due to the fact that the patients in the MSC

group had numerically higher severity scores. A concern with

this trial may be that viability of the MSC at infusion was rather

poor 36%-85%. In our clinically responding DSC-treated

patients, DSC viability was a median of 95% (164). Although it

has been shown that MSCs immunosuppressive function in the

body comes after apoptosis (71, 72), but it is important that we

inject live cells rather than dead cells. When the cell dies outside

the body, they might not have the same apoptotic or efferocytosis

effects in vivo. The high numbers of BM-MSC 10x106/kg

compared to 1x106 DSC/kg in our DSC-treated patient did not

seem to compensate for poor cell viability.

In all clinical studies so far, it appears safe to inject MSCs

and there were no serious adverse events reported. This is also in

line with two meta-analyses regarding the safety of MSC therapy

(89, 90). MSCs appear safe and side-effects seem to be limited to

a slight fever. There is much less experience with DSCs.

However, safety data in rats and mice as well as from the

clinic suggest that they are as safe to inject as MSCs from BM

(165, 177). In the clinical experience, side-effects were limited to
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three cases at the time of infusion and were spontaneously

reversible without the need for any medical intervention.

Even if there is limited clinical experience using MSC to treat

ALI/ARDS, it is worth pursuing this potentially effective therapy.

As stated in this review and some other reviews, MSC therapy is

demonstrated to be effective in several preclinical models of

sepsis and ARDS (108, 172–174). In the clinic, several questions

need to be addressed before we have an optimal stromal cell

therapy for ARDS. What is the optimal source, bone marrow,

adipose, UC, or placenta-derived? What is the optimal dose, and

what is the best route of administration, i.v. or intratracheal?

Intramuscular is probably less effective for ARDS because you

want to shut off the cytokine storm in the lung. Are soluble

factors and exosomes more or less useful than stromal cells

(178)? Will priming with e.g., IFN-g, TNF-a, IL-1a or -b or IL-

17A be beneficial (176)? There are several unanswered questions

to be studied before this promising therapy can move forward

and be an established therapy for sepsis and ARDS. Technically

allogeneic MSCs should be used for ARDS, because they can be

prepared and taken “off the shelf”. Autologous MSCs in not an

option because it takes several weeks to expand them to a

meaningful number for clinical use.

With the global threats of the new coronavirus, Covid-19

pandemic, mortality noted in 3.7% of the infected patients seems

to be due to ARDS in most (88%) of the patients (179). Many of

the COVID-19 patients are in a hypercoagulable procoagulant

state and at high risk for disseminated intravascular coagulation,

thromboembolism, and thrombotic multi-organ failure (17).

When choosing a therapeutic approach with or without cell

based therapy we should consider this condition.

Therefore, it is an urgent need for effective therapy of ARDS.

The burden of ARDS patients needing ventilator assistance is

tremendous, and hopefully, stromal cell therapy may be used

successful ly to limit the burden on intensive care

units worldwide.

In ARDS induced by bacterial sepsis, there are most effective

antibiotics to be used, like in our HCT case treated for ARDS by

DSCs. For Covid-19, there is no effective drug to inhibit viral

replication and subsequent dissemination to the heart, kidneys,

and intestine. In some cases, it may be sufficient to turn off the

cytokine storm and the alveolar damage. In others, this may not

be enough. There is limited clinical experience using various

sources of MSCs for Covid-19-induced ARDS. So far, MSCs

from UC and DCSs hold some promise (145, 156).

In conclusion, MSCs from various tissues, like BM, adipose,

UC, and placental tissues, have taken the step from experimental

animals to clinical trials. We have added three rare HCT cases to

the so far limited clinical experience. One of them had a most

dramatic clinical response to DSCs treatment. There are too few

HCT patients with ARDS, so large prospective studies have to be

performed in other patients’ groups. There are increasing
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numbers of pilot studies reporting on the use of various sources

of MSCs for Covid-19-induced ARDS. Well-designed

prospective placebo-controlled studies are needed to

prove efficacy.
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