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Colorectal cancer (CRC) is one of the leading causes of cancer-related death in

the world. Besides genetic causes, colonic inflammation is one of themajor risk

factors for CRC development, which is synergistically regulated by multiple

components, including innate and adaptive immune cells, cytokine signaling,

and microbiota. The complex interaction between CRC and the gut

microbiome has emerged as an important area of current CRC research.

Metagenomic profiling has identified a number of prominent CRC-associated

bacteria that are enriched in CRC patients, linking the microbiota composition

to colitis and cancer development. Some microbiota species have been

reported to promote colitis and CRC development in preclinical models,

while a few others are identified as immune modulators to induce potent

protective immunity against colitis and CRC. Mechanistically, microbiota

regulates the activation of different immune cell populations, inflammation,

and CRC via crosstalk between innate and adaptive immune signaling

pathways, including nuclear factor kappa B (NF-kB), type I interferon, and

inflammasome. In this review, we provide an overview of the potential

interactions between gut microbiota and host immunity and how their

crosstalk could synergistically regulate inflammation and CRC, thus

highlighting the potential roles and mechanisms of gut microbiota in the

development of microbiota-based therapies to prevent or alleviate colitis

and CRC.
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1 Introduction

Colorectal cancer (CRC) is one of the most common cancers

and a major health burden in the world, which accounts for about

10% of all new cancer cases globally and becomes the second

leading cause of cancer-related death (1–3). About half of the

human population will develop at least one benign colonic

adenomatous polyp during their lifetime, with ~3% of these cases

developing into CRC (4). Besides genetic alterations, colonic

inflammation is a major environmental risk factor for CRC

development, as the individuals diagnosed with ulcerative colitis

(UC) and Crohn’s disease (CD), the most common types of

inflammatory bowel diseases (IBDs), have markedly increased

risk of developing CRC (5–7). Although immune cells, cytokines,

and microbiota components contribute to colitis and CRC in a

context-dependent manner (8, 9), the precise mechanisms remain

largely unclear.

The human gut is a complex ecosystem composed of 1013-1014

bacteria, and these microbiota components play critical roles in

controlling digestion and benefiting many aspects of human health.

Some probiotics have been exploited as food supplements to

support the health of the immune and digestive system, and even

as novel therapies for disease treatment. Numerous studies have

demonstrated that the microbiota composition is significantly

altered in both IBD and CRC patients, compared with healthy

people. Recent metagenomic profilings have identified multiple

prominent CRC-associated bacteria enriched in patients,

including the components in genera Fusobacterium ,

Peptostreptococcus, Porphyromonas, Prevotella, Parvimonas,

Bacteroides, and Gemella (10). As most studies link mixed

microbiota composition to disease progression, some species have

been reported to promote colitis and CRC (11–14); however, only a

few bacterial species or strains are identified as immune modulators

that induce potent protective immunity. In this review, we provide

an overview of the crosstalk between gut microbiota and host

immunity and how it regulates inflammation and CRC

development. Importantly, microbiota has been implicated in

cancer immunotherapy. Due to the lack of clinical evidence on

the functions of viruses and fungi, we will mainly focus on bacteria

species, as the major component of microbiota.
2 Genetic risk factors in CRC
development

CRC is a heterogeneous disease associated with a number of

genetic mutations (15), with 10%-20% of all patients possessing

a positive family history (16). Besides traditional methods,

genome-wide sequencing analyses have been performed to

depict the genomic landscape and transcriptome profile, thus

allowing the establishment of key promoting and suppressing

alterations in CRC development (17).
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2.1 Genetic alterations in epithelial cells

Most CRC cases arise from an aberrant crypt on the colonic

epithelium, which gradually develops into an adenoma, and

ultimately adenocarcinoma (18). The genetic alterations in colon

epithelial cells, as the primary site for CRC development, play

critical roles in the disease transformation (19). To date, several

hundred driver genes have been identified to promote neoplastic

transformation by intragenic mutations, with other mutations

being passengers that are not associated with selective growth

advantages (20). It has been widely accepted that mutations in

three major gene clusters, APC, KRAS, and TP53, are sufficient

to initiate CRC (21, 22), while BRAF, PIK3CA, and SMAD4,

which are also listed as the most frequently mutated genes in

CRC (23), are identified as important drivers to promote the

progression (24).

Although similar sets of oncogenes are involved, the genetic

alterations between sporadic and colitis-associated CRC (CAC)

are different in timing and frequency. In sporadic CRC, loss of

APC function is a key event to initiate an adenoma, followed by

the activation of KRAS, COX-2, and other factors; whereas the

abnormality of TP53 usually occurs in the late stage of disease

progression and drug resistance (25, 26). On the contrary, in

CAC that arises from flat dysplastic mucosa, TP53 mutation is

frequently detected in inflamed tissues and is an important step

in early cancer development. APC mutation and Wnt

dysfunction are relatively infrequently in CAC and occur in

the late stage (25, 26).

Interestingly, the pathogenesis and molecular characteristics

of CRC also depend on the anatomical locations of the tumors

(27), particularly between the proximal (right-sided) and distal

(left-sided) colons. Right-sided colon cancer is characterized by

the alterations in BRAF, KRAS, and PIK3CA, and has a higher

rate of deficient mismatch repair; whereas instability pathway-

related APC and TP53 mutations are more frequently observed

in left-sided colon cancer, which has a better response to both

chemotherapies and targeted therapies, thus showing better

prognosis in patients (28, 29). Meanwhile, rectal cancer is

featured by the mutations in all three major genes (APC,

KRAS, and TP53) and HER2 amplification, and has a lower

rate of deficient mismatch repair (29).
2.2 Immune cell-related genetic
alterations in CRC development

Besides alterations in colon epithelia as the primary foci,

aberrant changes in the immune microenvironment also have

profound impacts on the initiation and progression of CRC. One

major evidence is that the risk of CRC development is increased

in IBD (inflammatory bowel disease) patients (5, 6). It has been

demonstrated that the age at diagnosis of IBD-associated CRC is
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https://doi.org/10.3389/fimmu.2022.963819
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xing et al. 10.3389/fimmu.2022.963819
15-20 years earlier compared to sporadic cancers (30, 31), and

CRC accounts for approximately 10%-15% of all deaths in IBD

patients (32).

Given the critical roles of the host immune cells and

cytokines in controlling CRC development, genetic alterations

on immune-related genes or in immune cells, in addition to

colon epithelial cells, are equally important for CRC

pathogenesis. For instance, IL-10 is an immunoregulatory

cytokine that plays a central role in controlling intestinal

inflammation (33). Mice deficient in either IL-10 or its

receptor develop spontaneous colitis, and became one of the

most widely used animal models for studying IBD pathogenesis

(34, 35). Furthermore, deficiency in ubiquitin ligase Itch leads to

spontaneous colitis and increased susceptibility to CRC through

the release of RORgt degradation and excessive production of IL-
17A (36). A study shows that the deficiency of Fam64a in mice

decreases Th17 cells and ameliorates colitis and CRC (37). These

studies indicate that modulation of Th17 cell-related genes has a

significant impact on CRC development, although the pro-

inflammatory or suppressive roles of these Th17 cells are not

validated in detail.

We recently showed that the myeloid-specific deletion of

Tak1 (Tak1flox/flox;Lyz2-Cre+/+) renders complete resistance of

mice to DSS-induced acute colitis and AOM/DSS-induced CRC

(38). Notably, gut microbiota compositions are completely

altered in Tak1flox/flox;Lyz2-Cre+/+ mice, compared to wild-type

mice. Among them, Odoribacter splanchnicus is markedly

accumulated and synergistically cooperated with IL-1b/IL-6
signaling pathways to induce and expand Th17 cells in the

intestine. Depletion of Th17 cells by crossing Tak1flox/flox;Lyz2-

Cre+/+ mice with either Rag1-/- or Rorc-/- mice abolishes the

protection against colitis and CRC (38).

In summary, the genetic alterations of key driver genes in

both epithelial cells and immune cells, together with other driver

and passenger factors, are crucial in controlling the

carcinogenesis and progression of CRC.
3 Gut microbiota in CRC
development

In healthy people, colonocytes and their metabolism

maintain the anaerobic condition and a homeostatic

community of commensal bacteria in the gut, which help

consume dietary fiber and produce short-chain fatty acids

(SCFA) that are beneficial to the host (39). The shift in

colonocytes and their metabolism, due to disease, diet, or

other damage, will lead to disordered host-commensal

symbiosis and dysbiotic microbiota (39). It has been reported

that CRC patients have reduced bacterial diversity and richness

than healthy people (40, 41). Whereas Firmicutes, Bacteroidetes,

and Proteobacteria are the most dominant phyla in the human
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large bowel (42), Fusobacterium , Peptostreptococcus ,

Porphyromonas, Prevotella, Parvimonas, Bacteroides, and

Gemella have been indicated as the most prominent CRC-

associated bacteria (10), based on metagenomic sequencing

analyses between CRC patients and healthy donors.

Meanwhile, commensal microbiota has been implicated in

modulating colitis, CRC, and cancer immunotherapy (43–47).

Depending on specific composition, commensal bacteria may

exhibit either promoting or suppressing functions in colitis and

CRC development (48–52). Long-term antibiotic use in early-to-

middle adulthood is associated with an increased risk of colorectal

adenoma (53). Similarly, in a mouse colitis model, depletion of

microbiota exacerbated tissue damage and shortened survival

(54), which is associated with compromised immunity due to

the lack of bacterial stimulation. On the other hand,

administration of a common antimicrobial additive, Triclosan,

alters mouse gut microbiota, increases the severity of colitis

symptoms, and promotes colitis-associated CRC in mouse

disease models (55). Several CRC-associated bacteria have been

identified in cancer patients and animal models (56); however, the

understanding of specific bacterial species or strains that induce

and modulate anti-tumor immunity is still limited. Below we list

the currently identified promoting (Table 1) and inhibiting

(Table 2) microbiota species in colitis and CRC development.
3.1 Cancer-promoting microbiota
species

3.1.1 Fusobacterium nucleatum
Fusobacterium nucleatum is an anaerobic oral commensal.

As a pro-inflammatory species associated with human colitis

(97), it has been widely reported to be positively associated with

human CRC (98, 99). Accompanied by bacterial dysbiosis in the

gut, an infection with this bacteria is prevalent in human

colorectal carcinoma (98). In different clinical reports,

Fusobacterium nucleatum has 8.6% and 13% of colonization in

CRC tissues, and is associated with increased microsatellite

instability (MSI) and impaired immune responses (100, 101).

Furthermore, Fusobacterium nucleatum is implicated in

accelerating CRC in both human patients and animal models,

and is found within metastatic CRC cells in patient biopsies (63,

102). In specific, it adheres to, invades, and induces E-cadherin/

b-catenin signaling-mediated oncogenic and inflammatory

responses to stimulate CRC carcinogenesis (103–105). CRC

cell-resident Fusobacterium nucleatum also promotes the

secretion of pro-inflammatory cytokines IL-8 and CXCL1,

which in turn stimulate the migration and invasion of both

infected and noninfected tumor cells (106). In addition,

Fusobacterium nucleatum promotes chemotherapy resistance

of CRC through TLR4- and MYD88-mediated innate immune

signaling and autophagy pathway (64).
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3.1.2 Escherichia coli
Escherichia coli is a Gram-negative facultative anaerobic

bacterium in the Enterobacteriaceae family, and the adherent-

invasive Escherichia coli species have been associated with human

inflammatory bowel disease (IBD) and CRC (42, 107, 108). Under

host inflammatory conditions, the mono-colonization of

Escherichia coli promotes colitis in Il10−/− mice and invasive

carcinoma in azoxymethane (AOM)-treated Il10−/− mice (60, 61).

Mechanistically, Escherichia coli produces the genotoxin colibactin

through the non-ribosomal peptide synthetase (NRPS)-polyketide

synthase (PKS) hybrid gene cluster (109). Colibactin further

alkylates DNA and induces double-strand breaks, aneuploidy, and

improper division of colonic epithelial cells (60, 109). In this case,

the PKS+ Escherichia coli enhances tumorigenesis in preclinical

CRC models and is enriched in human CRC tissues. Using optical

imaging tools, the massive infiltration of inflammatory cells is also

observed in PKS+ Escherichia coli-infected colon tumors, compared

with the uninfected group (110).
Frontiers in Immunology 04
3.1.3 Enterotoxigenic Bacteroides fragilis
The anaerobic Gram-negative Enterotoxigenic Bacteroides

fragilis (ETBF) is a long-studied human GI pathogen that causes

diarrhea and GI inflammation (111, 112). In preclinical models,

ETBF potentiates colorectal carcinogenesis in ApcMin/+ mice

through STAT3 activation and Th17 cell-dependent colitis

(57). Furthermore, ETBF and Escherichia coli are detected in

biofilms coating human CRCs and precancerous colonic

adenomas (58). Tumor-prone mice co-colonized with

Escherichia coli and ETBF show increased IL-17A level in the

colon and DNA damage in colonic epithelia, with faster tumor

onset and greater mortality, compared to mice with either

bacterial strain alone (58). Similar to Escherichia coli, ETBF

could produce a metalloprotease toxin BFT (Bacteroides fragilis

enterotoxin), which has the proteolytic activity to damage the

intestinal mucosa and induces a pro-carcinogenic signaling

cascade to trigger myeloid-cell-dependent colon tumorigenesis

(59, 113).
TABLE 1 Identified CRC-promoting microbiota species in preclinical/clinical studies.

Microbiota species Functions in colitis/CRC References

Enterotoxigenic Bacteroides fragilis (ETBF) Promotes colitis and CRC (57–59)

PKS+ Escherichia coli Promotes colitis and CRC (60–62)

Fusobacterium nucleatum Promotes colitis, CRC, and chemoresistance to CRC (63, 64)

Campylobacter jejuni Promotes colitis and CRC (65, 66)

Enterococcus faecalis Promotes colitis and CRC (67, 68)

Streptococcus bovis Promotes colitis and CRC (69, 70)

Peptostreptococcus anaerobius Promotes CRC initiation and progression (71, 72)

Helicobacter pylori Induces gastric cancers and positively associates with CRC (73, 74)

Mycobacterium avium Induces IBD and positively associates with CRC (75, 76)

Bilophila wadsworthia Positively associates with CRC and causes inflammation (77, 78)
fr
TABLE 2 Identified CRC-inhibiting microbiota species in preclinical/clinical studies.

Microbiota species Functions in colitis/CRC References

Akkermansia muciniphila Inhibits DSS colitis and CRC (79–81)

Clostridium butyricum Inhibits colitis and CRC (82–84)

Odoribacter splanchnicus Inhibits colitis and CRC (38, 85, 86)

Nontoxigenic Bacteroides fragilis (NTBF) Inhibits colitis and CRC (87)

Bacteroides sp. 4_1_36 Inhibits DSS colitis and negatively associates with CRC (38)

Bacteroides sp. D20 Inhibits DSS colitis and negatively associates with CRC (38)

Bacteroides uniformis Inhibits DSS colitis and negatively associates with CRC (38)

Faecalibacterium prausnitzii Inhibits TNBS colitis and negatively associates with CRC (88)

Holdemanella biformis and Faecalibaculum rodentium Inhibit colitis and CRC (89, 90)

Clostridium immunis Inhibits DSS colitis (11)

Peptostreptococcus russellii Inhibits DSS colitis (12)

Propionibacterium freudenreichii Inhibits DSS colitis and induces in vitro apoptosis of CRC cells (91, 92)

Bifidobacterium bifidum Inhibits CRC (93)

Lactobacillus coryniformis Inhibits CRC (94)

Pediococcus pentosaceus Inhibits CRC (95)

Lactobacillus gasseri Inhibits CRC (96)
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3.1.4 Campylobacter jejuni
Campylobacter jejuni is a Gram-negative microaerophilic

bacterium that has been considered one of the most widespread

infectious diseases in developed countries (114). It produces a

genotoxin, cytolethal distending toxin (CDT), which has DNAse

activity and leads to DNA double-strand breaks (115). The

infection of this species is associated with IBD development in

human patients (116), and induces colitis in mouse models (65).

In germ-free ApcMin/+ mice, Campylobacter jejuni infection

promotes colorectal tumorigenesis through the action of CDT

(66). As a result, CDT mutation and rapamycin treatment could

similarly diminish the tumorigenic capability of Campylobacter

jejuni (66).

3.1.5 Enterococcus faecalis
Enterococcus faecalis is a Gram-positive facultative anaerobic

bacterium that naturally inhabits the human gastrointestinal

tract, and the spread of this bacterium to other organs or tissues

can cause severe infection (117). Unlike most other bacteria, this

species produces reactive oxygen species (ROS), such as

extracellular superoxide (118), thus leading to DNA damage,

chromosomal instability, generation of aneuploidy or

tetraploidy, and eventually transformation and tumorigenesis

of colonic epithelial cells (119, 120). More than half of patients

with Enterococcus faecalis infective endocarditis (EFIE) of an

unidentifiable source are found to have CRC (121). In Il10−/−

mice, Enterococcus faecalis promotes colitis development and

colorectal tumorigenesis (67, 68).

3.1.6 Streptococcus bovis
Streptococcus bovis (also known as Streptococcus gallolyticus)

is a facultative anaerobic Gram-positive bacterium that serves as

a causative agent of septicemia and infective endocarditis (IE) in

elderly and immunocompromised people (122). Clinical studies

have demonstrated a strong association between invasive

infections of Streptococcus bovis and colon neoplasia (123,

124). Consistently, both in vivo and in vitro studies validate

the pro-inflammatory and CRC-promoting functions of

multiple Streptococcus bovis strains (69, 70, 125, 126). Since

Streptococcus bovis is still a normal intestinal tract inhabitant, it

may have both passenger and driver functions in

CRC tumorigenesis.

3.1.7 Peptostreptococcus anaerobius
Peptostreptococcus anaerobius is an anaerobic Gram-positive

bacterium selectively enriched in fecal and mucosal microbiota

of CRC patients (71). Although it can produce tryptophan

metabolite indoleacrylic acid, which may attenuate

inflammatory response and improve barrier function (12), the

direct transfer of Peptostreptococcus anaerobius into AOM-

treated mice significantly increases colon dysplasia (71).
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Similarly, in ApcMin/+ mice, it promotes spontaneous CRC

development (72). Mechanistically, Peptostreptococcus

anaerobius selectively adheres to CRC cells, rather than

normal colonic epithelial cells, through a surface protein

PCWBR2 (putative cell wall binding repeat 2). PCWBR2

stimulates CRC cells to produce pro-inflammatory cytokines,

which in turn mediate the local expansion of tumor-supportive

MDSCs, TAMs, and TANs (72).
3.1.8 Other potential cancer-promoting
microbiota species

Besides the microbiota species that have been validated in

either preclinical or clinical functional studies, several other

species also show strong correlations with colitis and CRC

development and may serve as potential targets for future

investigation on CRC management.

Helicobacter pylori is a Gram-negative capnophile that can

grow in both microaerobic and aerobic conditions. It selectively

colonizes the gastric epithelia, and is considered one of the most

prevalent bacterial pathogens in humans. Helicobacter pylori

induces chronic gastritis and is associated with more than 90% of

gastric cancers (GC) cases (73, 127, 128), making it a class I

carcinogen for GC. Although many reports show that chronic

infection of Helicobacter pylori is associated with a moderately

increased risk of CRC (74, 129, 130), direct evidence from

functional studies is lacking.

Mycobacterium avium is a microaerobic Gram-positive

mycobacterium that is commonly grouped with Mycobacterium

intracellulare during infection, collectively referred to as

Mycobacterium avium complex (MAC). Mycobacterium avium

subspecies paratuberculosis (MAP) has long been proposed as a

cause of IBD (131, 132); it is increased in IBD patients (75) and

can be observed in colon tissues of sporadic CRC patients (76).

However, direct functional study of this species is lacking.

Bilophila wadsworthia is an anaerobic Gram-negative

saccharolytic bacillus that is a major member of sulfidogenic

bacteria in human gut (77). It can produce a genotoxin, hydrogen

sulfide, which triggers inflammation and hyperproliferation (Yazici

et al., 2017). Sulfidogenic bacteria, including Bilophila wadsworthia,

have a race-dependent association with CRC incidence and is

expanded in the population with a higher risk of CRC

development (Yazici et al., 2017). In genetically susceptible Il10-/-

mice, diet-induced blooming of Bilophila wadsworthia promotes

the pro-inflammatory Th1 immune response and an increased

incidence of colitis (Devkota et al., 2012). The direct administration

of Bilophila wadsworthia into specific-pathogen-free (SPF) mice

results in systemic inflammation, with reduced body weight and fat

mass, apparent hepatosplenomegaly, and elevated serum

inflammatory factors (77). However, how Bilophila wadsworthia

mediated inflammation may impact tumorigenesis is

currently unclear.
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3.2 Cancer-inhibiting microbiota species

3.2.1 Akkermansia muciniphila
Akkermansia muciniphila is a strictly anaerobic Gram-

negative bacterium that resides in the mucus layer and plays a

mucin-degrading function in the human intestine (133). It

interplays with the intestinal epithelium for nutrition

management and controls diet-induced obesity through

improved metabolic profiles (134, 135). In preclinical models,

Akkermansia muciniphila is positively associated with the

induction of CRC in mouse recipients of human fecal

transplant (136), and is significantly reduced in CRC-resistant

Tak1flox/flox;Lyz2-Cre+/+ mice (38). In humans, its abundance is

decreased in most colitis patients but increased in CRC patients

(137). Further studies found that Akkermansia muciniphila

preferentially expands and colonizes sites of damaged murine

mucosa in response to local environmental cues (79), which

probably explains the pattern of its distribution and abundance.

Notably, Akkermansia muciniphila stimulates the proliferation

and migration of enterocytes adjacent to the colonic wounds,

through FPR1 (formyl peptide receptor 1) and NOX1 (NADPH

Oxidase 1)-mediated redox signaling in epithelial cells, thus

enhancing the repair of mucosal wounds and protecting mice

from chemically induced colitis (79). A similar protective role is

observed in another DSS-induced colitis model, with an

improved microbial community (80). In AOM/DSS-induced

CAC model, Akkermansia muciniphila treatment could blunt

carcinogenesis by enhancing cytotoxic CD8+ T cells (81).

3.2.2 Clostridium butyricum
Clostridium butyricum is a strictly anaerobic Gram-positive

butyrate-producing bacillus that is a dietary probiotic for healthy

people and an effective approach to IBD treatment (138). In DSS

colitis model, Clostridium butyricum directly triggers TLR2/

MyD88-dependent IL-10 product ion by intes t ina l

macrophages in inflamed mucosa to prevent colitis

development, and this prevention can be negated in

macrophage-specific IL-10-deficient mice (82). In ApcMin/+

mice, Clostridium butyricum inhibits intestinal tumor

development by decreasing b-catenin expression in Wnt

signaling and modulating gut microbiota (83). Similarly, in

AOM/DSS model, Clostridium butyricum regulates gut

microbiota composition and reduces CRC development by

inhibiting the NF-kB pathway and promoting apoptosis (84).

3.2.3 Odoribacter splanchnicus
Odoribacter splanchnicus, a strictly anaerobic Gram-negative

bacterium, is a common member of human intestinal

microbiota. Although it is enriched in colorectal adenoma and

CRC patients (139), recent studies have identified this species as

a CRC-inhibiting and -preventive bacterium. In a preclinical

model, treatment with wild-mice microbiota renders normal
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laboratory mice resistant to CRC, and Odoribacter ranks among

the top increased genera after microbiota reconstruction (13).

Strikingly, a recent report has characterized Odoribacter

splanchnicus as a critical species to protect the host from

colitis and CRC (38). This species is highly abundant in a

CRC-resistant mouse model (Tak1flox/flox;Lyz2-Cre+/+). Oral

transfer of Odoribacter splanchnicus into wild-type (WT) mice

induces development of immune-suppressive intestinal Th17

cells, and confers resistance against colitis and CRC (38),

probably via increased productions of IL-17A and IL-22 (140,

141). Similar results are observed in a separate report, in which

Odoribacter splanchnicus colonization leads to an increase in

Foxp3+/RORgt+ Treg cells, induction of IL-10, and production of
SCFA, thus reducing colitis in mouse models (85). Furthermore,

treatment of Odoribacter splanchnicus supernatant in colon

cancer cell lines induces an anti-tumor activity with enhanced

apoptosis, and peri-tumoral injection of supernatant

significantly decreases CRC formation (86).

3.2.4 Inhibitory Bacteroides species
Bacteroides species are anaerobic Gram-negative bacilli that

are normally mutualistic, making up the most substantial

portion of commensal microbiota. Some species, such as

ETBF, are reported to promote colitis and CRC, while some

others have been identified as anti-tumor players. In both WT

and CRC mouse models, treatment of nontoxigenic Bacteroides

fragilis (NTBF) reduces bacteria-driven chronic colitis and

tumor development (87). Recently, Bacteroides sp. 4_1_36,

Bacteroides sp. D20, and Bacteroides uniformis are found to

accumulate in a CRC-resistant mouse model and significantly

inhibit the development of DSS-induced colitis (38). While

Bacteroides sp. 4_1_36 and Bacteroides sp. D20 are less

reported, Bacteroides uniformis has a reduced abundance in

CRC patients (142) and is reported to improve immunological

dysfunction and enhance the gut barrier through the production

of butyrate and gamma-aminobutyric acid (143, 144).
3.2.5 Faecalibacterium prausnitzii
Faecalibacterium prausnitzii, a Gram-positive anaerobic

bacterium, is one of the most abundant and important

commensal bacteria in human intestine (145). As a key

butyrate producer, the abundance of this bacterium is

negatively associated with colon tumorigenesis in multiple

scenarios (146–148). In IBD patients, the reduction of

Faecalibacterium prausnitzii is associated with a higher risk of

postoperative recurrence (88). Furthermore, in TNBS (2,4,6-

trinitrobenzenesulphonic acid)-induced mouse colitis model,

both live Faecalibacterium prausnitzii and its supernatant

exhibit anti-inflammatory effects and markedly ameliorate

colitis severity and dysbiosis (88). Mechanistically, metabolites

from this species block NF-kB activation in colon epithelial cells

and switch the cytokine profile (decreased IFN-g and IL-12,
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increased IL-8 and IL-10) (88). However, direct evidence from

functional study is in need to determine the role of this species

in CRC.

3.2.6 Other potential cancer-inhibiting
microbiota species

Holdemanella biformis (formerly Eubacterium biformis) is a

Gram-positive obligately anaerobic bacterium that can release

both short chain fatty acids (SCFAs) and long chain fatty acids

(LCFAs). The abundance of this species and its family

Erysipelotrichaceae are reduced in human patients with colon

adenomas (89). Although Holdemanella biformis is not able to

colonize or survive in the mouse intestine, its mouse homologue,

Faecalibaculum rodentium, exhibits anti-tumorigenic function

in both ApcMin/+ and AOM/DSS models (89). Mechanistically,

both species produce SCFAs that control protein acetylation and

tumor cell proliferation by inhibiting calcineurin and NFATc3

activation (89). Holdemanella biformis can also produce 3-

hydroxyoctadecaenoic acid (C18-3OH), a LCFA that

ameliorates the progression of DSS-induced colitis (90).

Clostridium immunis , an anaerobic Gram-positive

bacterium, is a relatively new species identified in the

Lachnospiraceae family (11). Lachnospiraceae is dramatically

increased in a CRC-resistant mouse model and decreased in

Crohn’s disease patients (38, 149), and negatively correlates with

CRC development in mouse recipients of human fecal transplant

(136). Administration of Clostridium immunis protects formerly

colitis-prone mice from DSS-induced colitis (11). Further

functional and clinical studies are needed to evaluate the

potential of this species as a candidate to control

CRC development.

Peptostreptococcus russellii is a Gram-positive anaerobic

bacterium that naturally exists in healthy people. It has an

enhanced growth rate in the presence of mucin and is thus

identified as a “mucin utilizer” (12), which predicts the potential

of being a health-associated commensal, such as the CRC-

inhibiting Akkermansia muciniphila (133). Oral gavage of

Peptostreptococcus russellii protects mice from DSS-induced

colitis, with significantly ameliorated body mass and

histopathological score (12). It also promotes goblet cell

differentiation in colon and the expression of goblet

cell-specific secreted protein MUC2. Mechanistically,

Peptostreptococcus russellii encodes the phenyllactate gene

cluster and produces tryptophan metabolite indoleacrylic acid,

which promotes intestinal epithelial barrier function and

mitigates inflammatory responses (12).

Propionibacterium freudenreichii is a Gram-positive

aerotolerant anaerobe that selectively stimulates the growth of

probiotic Bifidobacteria through its component DHNA (1.4-

Dihydroxy-2-naphthoic acid) (91). In DSS colitis model, the

treatment of DHNA shows both preventive and therapeutic

effects in disease amelioration (91). A further study shows that
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this species induces intrinsic apoptosis of CRC cells via the

production of SCFA (propionate and acetate), and thus

enhances cytotoxic activity of TRAIL (TNF-Related Apoptosis-

Inducing Ligand)-based therapy in CRC (92). Besides,

Propionibacterium freudenreichii treatment in healthy people

decreases the activity of beta-glucosidase (150), a bacterial

enzyme that contributes to CRC development by generating

carcinogens. However, direct evidence regarding its function in

CRC is lacking.

Recently, the functions of some established natural and

engineered probiotics have been investigated in AOM/DSS-

induced mouse CRC model. Bifidobacterium bifidum

treatment increases the abundance of CRC-inhibiting

microbiota and the production of beneficial metabolites, thus

protecting mice from tumorigenesis (93). Lactobacillus

coryniformis ameliorates CRC by alleviating inflammation,

intestinal microenvironment, and intestinal barrier damage

(94). Pediococcus pentosaceus inhibits tumor growth in

xenograft, and exhibits polyp regression and recovered

taxonomic diversity in CRC mice (95). Lactobacillus gasseri,

accompanied by other prebiotics, reduces the CRC risk via the

regulation of inflammation, carcinogenesis, and compositional

change of gut microbiota (96).. In addition, Lactobacillus and

Bifidobacterium are the most reported probiotics that exert anti-

biofilm activity (151). Strikingly, they can form “probiotic

biofilms” to fight against other “pathogenic biofilms” (151,

152). Although most Lactobacillus strains show an anti-

inflammatory effect in vitro, only Lactobacillus fermentum

NA4 displays a protective effect in vivo (153), suggesting that

the beneficial probiotic properties are strain-dependent.
3.3 Metabolic products of microbiota on
host immunity and CRC

Besides direct interaction, gut microbiota also produces a

diverse metabolite repertoire to trigger specific immune

responses that may harm or benefit the host indirectly.

3.3.1 Short-chain fatty acids
SCFAs, mainly consisting of acetate, propionate, and

butyrate, are a group of organic acids produced by the

anaerobic microbial community from carbohydrate

fermentation of undigested dietary fiber (154). High fiber diet

promotes SCFA production and suppresses CRC development

(155), whereas the removal of dietary carbohydrates alters

microbiota and results in susceptibility to infectious colitis

(156). In general, SCFAs exhibit potential anti-carcinogenic

effects in CRC development, with a decreased gut abundance

in CRC and adenoma patients (157), consistent with the

reduction of butyrate-producing bacteria (158). Loss of FFAR2

(free-fatty acid receptor 2), a SCFA receptor, promotes colon
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tumorigenesis in mice by reducing gut barrier integrity, over-

activating DCs, and promoting CD8+ T cell exhaustion (159).

Butyrate and propionate, but not acetate, have a histone

deacetylase (HDAC)-inhibiting activity and regulate NF-kB and

Wnt signaling in colon epithelial cells. These two SCFAs support

basal crypt proliferation in healthy tissues and maintain colonic

homeostasis, but inhibit cell growth and induce apoptosis in

CRC cell lines (160). Through its receptor GPR109A, butyrate

also promotes IL-18 production in intestinal epithelial cells (161,

162), which is a protective cytokine in CRC mouse model (163).

In innate immune cells, butyrate functions intracellularly as

a histone deacetylase inhibitor to downregulate IL-6 (164). It

inhibits LPS-induced pro-inflammatory mediators in both

macrophages and dendritic cells (164, 165). In DSS colitis

model, butyrate attenuates the intestinal inflammation by

enhancing the M2 macrophage polarization (166). In addition,

butyrate and other SCFAs can promote Treg cell generation in

mice and ameliorate T cell induced colitis (167, 168).

On the other hand, butyrate may show pro-tumorigenic

roles in a context-dependent manner. It inhibits intestinal stem/

progenitor proliferation (169), which may suppress advanced

cancer but delay tissue damage repair at the early stages of CRC.

Butyrate also induces the production of reactive oxygen species

(ROS), which may have pro- or anti-tumorigenic functions in

different models (170, 171).

3.3.2 Polyamine
Polyamines, such as putrescine, spermidine, spermine, and

cadaverine, are aliphatic amines derived from amino acid

metabolism in both host tissues and commensal microbiota.

They bind to negatively charged macromolecules (DNA, RNA,

protein) and regulate a series of cancer-related physiological

processes, including cell proliferation, differentiation, apoptosis,

angiogenesis, and immune response, etc. (172).

Polyamines are generally considered detrimental metabolites

in CRC development. Activated KRAS significantly increases the

uptake of polyamines by colon cancer cells (173). Consistently,

both polyamines and the key enzyme for polyamine

biosynthesis, ornithine decarboxylase (ODC), are dramatically

increased in CRC tissues (160), while ODC inhibitor alpha-

difluoromethylornithine (DFMO) exhibits promising effects in

colon adenoma patients (174). The polyamine catabolic enzyme

SMO (spermine oxidase) contributes to ETBF-induced colon

tumorigenesis (175), while spermidine directly impacts the

colibactin production from PKS+ Escherichia coli and is

required for genotoxic activity (176). Furthermore, SSAT

(spermidine/spermine N1-acetyltransferase)-mediated

depletion of polyamines inhibits CRC progression and

metastasis through the suppression of AKT, GSK3b, and b-
catenin signaling (177). Besides, polyamines can regulate T cell

activation and macrophage polarization, thus play an important

role in CRC microenvironment (160).
Frontiers in Immunology 08
CRC patients have an altered microbiota that is closely

associated with a higher abundance of polyamines (178).

Bacteria biofilm formation in CRC patients is associated with

increased cancer cell proliferation and enhanced polyamine

metabolism (179, 180), which can be reduced by antibiotic

treatment. Furthermore, CRC-associated microbiota not only

has an enhanced capacity for converting amino acids into

polyamines via putrefaction and fermentation pathways (181),

but also upregulates polyamine production in host cells (154).

3.3.3 Secondary bile acids
Bile acids (BAs) are synthesized in the liver, stored in the

gallbladder, and mostly reabsorbed by ileal epithelial cells during

lipid absorption. The small number of unabsorbed BAs are

converted into secondary BAs by the microbiota, and become

detrimental metabolites to the intestine by contributing to

neonatal necrotizing enteritis, IBD, and CRC (182). In the

African American population who has a higher risk of CRC,

high-fiber low-fat diet suppresses secondary BAs synthesis,

resulting in the reduction of CRC biomarkers (183). In CRC

mouse model, Apc founding mutation leads to a decreased

expression of bile acid apical transporter gene Slc10A2,

reduced BA reabsorption, and increased secondary BAs, which

strongly enhance the gut colonization of CRC-promoting

Streptococcus gallolyticus (184).

Metaproteomic analysis in stools from CRC patients identifies

a heightened oxidative metabolic microenvironment with

increased concentrations of DNA-damaging BAs, especially

deoxycholic acid (DCA) (185). DCA inhibits gut epithelial cell

proliferation via the activation of BA receptor FXR (farnesoid X

receptor), resulting in the inhibition of wound healing and

impaired gut barrier function (186). It also activates the beta-

catenin signaling pathway and increases proliferation and

invasiveness of CRC cells (187). In ApcMin/+ mice, DCA

treatment promotes tumorigenesis with a disrupted intestinal

mucosal barrier, activated NLRP3 inflammasome, and increased

production of inflammatory cytokines (188). Lithocholic acid

(LCA), another typical BA, promotes proliferation and

invasiveness of CRC cells (189, 190). Both DCA and LCA are

reported to induce cancer stemness in colonic epithelial cells (191).

3.3.4 Other cancer-regulating metabolites
Microbial metabolites from healthy colons are reported to

inhibit colon tumorigenesis (192). In specific, Lactobacillus

reuteri and its metabolite reuterin, which are reduced in

mouse and human CRC, could decrease tumor growth and

prolong mouse survival by inducing protein oxidation and

inhibiting ribosomal biogenesis (192).

Malic acid is a speculated anti-tumor agent produced by

Odoribacter splanchnicus, based on the gas chromatography-

mass spectrometry (GC/MS) analysis of the bacteria supernatant,

which induces the apoptosis of colon cancer cells (86).
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Hydrogen Sulfide (H2S), a toxic gas that can be

physiologically produced in the large intestine by commensal

microbiota, shows both beneficial and deleterious effects on the

intestinal mucosa in a dose- and context-dependent manner

(193). In particular, H2S ranges from 0.2 mM to 2.0 mM in the

mammalian large intestine content and fecal materials, the latter

representing the approximate concentration as in the rectum

(193). This concentration is critical for the growth of some

beneficial microbes, such as Lactobacillus (194).

Beneficial AhR ligands: The aryl hydrocarbon receptor (AhR),

a ligand-dependent transcription factor with diverse functions in

inflammation, detoxification, and homeostasis (195), has been

identified as a tumor suppressor in mouse CRCmodels (196, 197).

Ligand-activation of AhR is required for the maintenance of

intestinal immune homeostasis and control of inflammation

(198, 199). Several microbial tryptophan catabolites, such as

indole-3-acetic acid (IAA) and indolepropionic acid (IPA), are

natural AhR ligands that can influence the intestinal epithelial

barrier (200). Furthermore, indole treatment leads to the

repression of inflammation in CRC cell lines, human

duodenum-derived organoids, and mouse models (201).

In summary, CRC-regulating microbiota species mainly

function through: (1) directly adhering to epithelial cells for
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oncogenic or anti-tumor signaling activation; (2) producing

detrimental (such as toxins) or beneficial (such as SCFAs)

metabolites; and (3) inducing tumor-associated or -inhibiting

immune cell populations (Figure 1).

4 Interplay of microbiota and host
immune system in regulating CRC
development

As key components of the tumor microenvironment, various

immune cell populations, particularly tumor-infiltrating immune

cells, play critical roles in mediating promotion or inhibition of

CRC development. Even in patients after radiation therapy,

repopulation of tumor-infiltrating immune cells could be

observed after the initial depletion (202). Microbiota

communicates with the immune system through various

mechanisms, such as Toll-like receptor (TLR) signaling and

inflammasome sensing, and regulates inflammation and cancer

development through nuclear factor kappa B (NF-kB), type I

interferon, and inflammasome pathways (51, 203–205). Local

immune system interacts with gut microbiota to control immune

responses, tissue damage, and cancer development (11–14).
FIGURE 1

Implication of gut microbiota in CRC development. Commensal microbiota plays critical roles in controlling CRC development. Cancer-
promoting microbiota directly adheres to the epithelial cells through MAMPs and adhesins for oncogenic signaling activation (such as Wnt/b-
catenin); produce toxins and detrimental metabolites (such as secondary BAs, polyamines, and H2S); and induce tumor-associated immune cell
populations (such as TAM, TAN, MDSC, and Treg) to regulate the inflammation, tissue damage, cell proliferation and survival, immune evasion,
and drug resistance. On the contrary, CRC-inhibiting microbiota can directly trigger the anti-tumor signaling activation in epithelial cells;
produce beneficial metabolites (such as SCFAs and AhR ligands); and stimulate tumor-preventing and -killing immune cells (such as CD8, Th1,
Th17, and ILC3).
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4.1 Innate immune system

Innate immune system is the first line of host defense against

pathogens that provides microorganism recognition and plays a

critical role in mediating inflammation and cancer development

under the stimulation of specific microbiota components (203).

4.1.1 Innate immune signaling
Toll-like receptors (TLRs) are well-defined pattern

recognition receptors responsible for pathogen recognition and

induction of innate immune responses (204). The densely

populated microbiota in the intestinal tract could generate

various molecules that can be recognized by TLRs, which leads

to NF-kB signaling activation and transcription of multiple

cytokines (206). Multiple microbial taxa, particularly some

pathogenic bacteria, have been reported to activate TLRs,

including PSA-producing Bacteroides fragilis, flagellin-

producing SFB, Yersinia enterocolitica, Salmonella enterica,

Helicobacter hepaticus, Citrobacter rodentium, and LPS-

producing Serratia marcescens and Escherichia coli (206, 207).

In steady-state, constant recognition of microbiota by TLR4 and

TLR1/2 could lead to IL-6, IL-10, and TGF-b production, which

is critical for the integrity of intestinal epithelial cells barrier by

promoting the expression of tight junction proteins (ZO-1,

claudin-1, occludin) and maintaining their proliferation (206).

However, aberrant TLR signaling activation in immune cells

beneath the IECs could lead to the release of pro-inflammatory

cytokines, resulting in acute or chronic intestinal inflammation

(204). Therefore, stringent and precise regulation of TLR

signaling pathways is essential to maintaining immune balance

in the host (204). Particularly, several negative regulators, such

as NLRX1, NLRC5, NLRP11, and LRRC25 (208–212), have been

identified to control TLR-induced NF-kB signaling pathways at

multiple levels, which might be critical for maintaining the

delicate balance between bacterial composition, the mucosal

immune system, and the intact epithelial barrier.

DNA and RNA sensors: Microbial antigens and potential

pathogens are sensed by the host germline-encoded pattern

recognition receptors (PRRs) that recognize specific pathogen-

associated molecular patterns (PAMPs). As the genetic material,

microbial nucleic acids have been identified as the major target for

innate immune recognition (213). PRRs that sense intracellular

pathogen-derived nucleic acids could mainly divide into three sets,

including endosomally localized transmembrane TLRs that sense

microbial DNA and RNA in the endolysosomes (214), retinoic

acid-inducible gene I (RIG-I)-like receptors (RLRs) that detect

pathogen-derived RNA in the cytosol, and cyclic GMP-AMP

(cGAMP) synthase (cGAS) and absent in melanoma 2 (AIM2)

(215). Type-I interferon (IFN-I) signaling is a major immune

signaling initiated by the nucleic acid sensors upon detecting

invading pathogens. Double-stranded RNA of one major

commensal species, lactic acid bacteria (LAB) is shown to trigger
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TLR3-mediated interferon-b production by DCs in the gut, which is
beneficial in the protection from infection and colitis (216). Besides,

LAB could also induce the production of IFN-I through cGAS and

RLRs (215). The initiation of IFN-I system by the gut microbiota is

shown to be mediated by tonic activation of the cGAS-STING

signaling, which is also crucial for innate resistance to DNA and

RNA viruses. Further study suggests that activation of cGAS-

STING signaling is triggered by membrane vesicle-mediated

dispatch of bacterial DNA (217), and is required to link DNA

sensing to immune responses (218). Meanwhile, IFN-I signaling

may also show a detrimental role in the course of infection with

intracellular bacteria. Deficiency of IFN-I signaling through either

the genetic deficiency of IFN or IFNAR results increases resistance

to oral infection of Salmonella typhimurium (219, 220). Therefore,

activation of IFN-I signaling mediated by DNA and RNA sensors

must be under tight control to maintain a steady intestinal mucosal

state in response to pathogen infection and colitis. In the past

decade, multiple important regulators have been identified in

controlling the IFN-I signaling, such as NLRC5, USP3, USP38,

TRIM14, and LRRC25 (209, 212, 221–224). These negative

regulators may have potential benefits in maintaining the

homeostasis of the gut mucosal system during infections, thus

regulating colitis and CRC development.
4.1.2 Innate immune cells
Neutrophils: Regulated by TGF-b and IFN-b signaling,

neutrophils may have both tumor-suppressive and -supportive

functions (225). Besides the canonical role in mediating the cell

phagocytosis and enhancing cytotoxicity, the tumor-associated

neutrophils (TANs) can also secrete immunoregulatory and

angiogenic factors (225). In CRC, neutrophils are increased

with tumor progression (226), and suppress the activity of

tumor-infiltrating T cells through the activation of TGFb
(227). Although conflicting results are observed regarding the

correlation between neutrophils and survival of CRC patients

(228, 229), the high ratio of neutrophils to CD8 T cells is

associated with a poor prognosis (230, 231).

Macrophages: In specific conditions, macrophages may

differentiate into two distinct types: pro-inflammatory M1 and

anti-inflammatory M2 macrophages (232). While total

macrophages are increased in CRC with tumor progression

(226), M2-type TAMs (tumor-associated macrophages) could

promote tumor invasion and angiogenesis, and impair the anti-

tumor capacity of T cells (233, 234). Although some studies find

that high levels of macrophages are associated with improved

prognosis in CRC patients (235, 236), the correlation is opposite

in metastatic CRC (237), particularly in elderly patients (202).

MDSCs (myeloid-derived suppressor cells): Characterized

by the ability to inhibit both innate and adaptive immune

responses, MDSCs are a heterogeneous population of myeloid

cells that typically express the common myeloid markers (such

as CD33 and CD11b) but lack markers of mature myeloid cells
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(such as HLA-DR) (238). In both CRC patients and animal

models, MDSCs are massively accumulated in the blood, lymph

nodes, bone marrow, and tumor sites, particularly in the late

stage of cancer (239, 240). An increased MDSC level is correlated

with advanced tumor stage and metastasis in CRC patients (241,

242), as well as a shorter survival on chemotherapy (243).

Innate lymphoid cells (ILCs), mainly consisting of natural killer

(NK) cells, ILC1, ILC2, and ILC3, are considered the innate

counterpart of the T lymphocytes (244). Intestinal ILCs play

important roles in controlling epithelial protection, metabolic

homeostasis, and development of adaptive immune responses

(245–247), and show both pro- and anti-tumor functions in

balancing CRC development (248). NK cells have been known

for their anti-tumor effects for decades, via targeting NCR (natural

cytotoxicity receptor) ligands on CRC stem cells and cancer-

initiating cells (249). However, developed tumor cells may evade

this process by reducing the expression of NCR ligands and

upregulating MHC (major histocompatibility complex) class I to

suppress NK cell activation (249). Similar to Th1 cells, ILC1s

express the transcription factor T-bet and produce IFN-g and

cytotoxic molecules in response to IL-12 and IL-15 for anti-

tumor immunity (250). But ILC1-induced inflammation may

have negative effects on colitis-associated CRC. ILC2s are rare in

the adult human intestine, but are increased in IBD patients (251).

Triggered by tumor-derived IL-33, the frequency of IL-13+ ILC2s

also increases in colorectal tumors (252). Through the production of

IL-4, IL-5, and IL-13, ILC2s exhibit context-dependent roles in CRC

development (248). ILC3s are frequently accumulated in the

intestine and activated by IL-23 for differentiation and production

of IL-17A and IL-22 (253). Due to the context-dependent functions

of these cytokines (140, 254–263), ILC3s may also present both pro-

and anti-tumor functions in CRC development. Notably, the ILCs

temper the expansion of bacterial species and protect the gut

epithelium in early life (264). After the maturation of adaptive

immune system, transient activation of ILC3s by microbial

colonization can be extinguished by CD4 T cells (264), indicating

that innate and adaptive lymphocytes operate sequentially and in

distinct ways during normal development to establish steady-state

commensalism and tissue homeostasis. Meanwhile, the loss of ILCs,

which express MHC class II for microbial antigen presentation, is

associated with dysregulated adaptive immune cell responses

against commensal bacteria (246).

The commensal microbiota can regulate the innate immune

system through multiple approaches. It may release microorganism-

associated molecular patterns (MAMPs), such as flagellin, elongation

factor-Tu (EF-Tu), and lipopolysaccharides (LPS), that can be

recognized by PRRs on innate immune cells for direct manipulation

of functions (265). It may also indirectly influence the innate immune

system by metabolites or triggered productions from colon epithelial

cells for manipulating the expansion and recruitment of these cells.

Several CRC-associated examples are listed.

Prevotella intermedia, which is associated with a higher risk of

developing CRC (266), evades innate immune control by disabling
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and killing tissue-infiltrating neutrophils in endodontic infection

(267). Lactobacillus rhamnosus triggers the anti-inflammatory

effects in macrophages and suppresses TNF production through

granulocyte-colony stimulating factor (G-CSF)-induced inhibition

of c-Jun-N-terminal kinases (JNKs) (268). Bifidobacterium lactis

attenuates macrophage senescence and induces M2 macrophage

polarization (269). Importantly, certain Lactobacilli and

Bifidobacteria species are able to produce butyrate, which in turn

control the programming of macrophage for an anti-inflammatory

phenotype (270, 271). Clostridium butyricum triggers IL-10

production from intestinal macrophages via the TLR2/MyD88

signaling pathway and prevents mice from DSS-induced colitis

(82). Fusobacterium nucleatum administration in mice triggers the

increase in tumor-infiltrated immunosuppressive myeloid cells,

including MDSCs, TAMs, TANs, and dendritic cells (63). It can

also act in a cytokine-independent manner and directly inhibit the

cytotoxicity of NK cells against tumors (272). ETBF and

Peptostreptococcus anaerobius are also reported to trigger the

secretion of chemokines that recruit immunosuppressive MDSCs,

TAMs, and TANs (59, 72). In addition, Clostridia bacteria are

reported to modulate the balance of retinoic acid and retinyl esters

in intestinal epithelial cells, which further regulates the development

of IL-22-producing ILC3s (273, 274).
4.2 Adaptive immune system

CD8 T cells are the most potent cytolytic population. Triggered

by CRC-derived modulators (such as IL-18) (275), CD8 T cells

produce pro-inflammatory cytokines (such as IFN-g) and cytotoxic
molecules for cancer cell clearance (276). Numerous studies have

demonstrated the positive association between tumor-infiltrating

CD8 T cells with the patients’ prognosis and survival (202, 277).

Whereas CD8 cells accumulated at the tumor margin have no effect

on survival (278), the ratio of CD8 T cells and Treg cells is a critical

determinant of prognosis (279).

CD4 T cells: Different CD4 T helper (Th) cells have distinct

roles in regulating CRC development. The cytotoxic Th1 cells are

similar to cytolytic CD8 T cells in terms of functions and

molecular productions (276), and are positively associated with

prolonged survival of CRC patients (280). Treg population plays

an immune-suppressive function on multiple immune cell

populations through the key cytokines IL-10 and TGF-b (281,

282), but its association with CRC prognosis is controversial (283).

Treg infiltration is low in healthy colon, significantly increased in

early-stage CRC, but decreased in metastatic cancer (284); and

stromal Treg infiltration is 5 times higher than epithelial

infiltration in CRC. Further studies find intra-tumoral Treg

cells, but not stromal, are associated with increased disease-free

survival (285, 286), indicating that the roles of Treg cells may be

related to their distribution and immune microenvironment.

Th17 cells are constitutively present in the intestinal lamina

propria (LP) due to the activation by microbial flora, such as SFB
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(segmented filamentous bacteria) (253, 287, 288). Although

exhibiting a pro-inflammatory role in autoimmune diseases

and host defense against bacteria and fungi (289, 290), Th17

cells in the intestine have an immune-suppressive function

(291). In CRC patients, Th17 cells are increased in the tumor

and peripheral blood compared with healthy people (292); and

the high amount of Th17 cells is associated with tumor

progression and a poor prognosis (280, 293). However, the

presence of intraepithelial, but not stromal Th17 cells,

positively correlates with improved survival (294). The

context-dependent function of Th17 population is probably

related to the following mechanisms: (1) CRC types. Th17

cells are pathogenic in sporadic CRC models (57, 254–256)

but inhibit most CAC models (257–259). (2) Disease stages.

Th17 cells may act through altered signaling pathways (such as

STAT3) and show distinct roles between the intact epithelial

cells in the cancer-initiating stage and the developed tumor cells

(295). (3) Differentiation strategies. With the presence of IL-23

or serum amyloid A proteins, Th17 cells could acquire a

pathogenic pro-inflammatory phenotype, compared with non-

pathogenic Th17 cells induced by IL-6 and TGF-b (296, 297).
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The commensal microbiota may regulate the adaptive

immune system through multiple approaches. One major aspect

is to stimulate and direct the differentiation of several T cell

populations in the intestine, particularly Th17 and Treg cells

(Table 3). Although dispensable for the induction of peripheral

Treg cells (313), microbiota tightly controls the development of

gut Treg cells. Bacteroides fragilis directs Treg development in the

gut through its unique immunomodulatory molecule,

polysaccharide A (PSA), which mediates the conversion of

CD4+ T cells into Foxp3+ Treg cells that produce IL-10 (302).

Further studies illustrate that the antigenic peptides derived from

Akkermansia muciniphila, Helicobacter hepaticus, and several

other species induce differentiation of Treg cells in colon and

ameliorate intestinal inflammation (303, 304). Similarly, Th17 cell

differentiation is mainly directed by specific microbiota strains

(49), and some bacteria species have been identified, such as SFB

and Bacteroides fragilis (57, 87, 287, 314). Recently, Odoribacter

splanchnicus has been reported to induce the development of

immune-suppressive intestinal Th17 cells (38) and Foxp3+/

RORgt+ regulatory T cells (85), both of which limit colitis

development in mouse models. Furthermore, microbiota
TABLE 3 Microbiota species in the activation and development of T helper subsets.

Microbiota species Functions in T helper development References

Segmented Filamentous Bacteria Promotes Th17 cells (287, 288)

Bacteroides fragilis Promotes Th17 cells (57, 87)

Odoribacter splanchnicus Promotes Th17 cells (38)

Citrobacter rodentium Promotes Th17 cells (288, 298)

Escherichia coli Promotes Th17 cells (288)

Candida albicans Promotes Th17 cells (299)

Bifidobacterium adolescentis Promotes Th17 cells (300)

Bifidobacterium breve Promotes Th17 cells (14)

Candidatus Arthromitus Promotes Th17 cells (14)

Staphylococcus epidermidis Promotes Th17 cells (301)

Bacteroides fragilis Promotes Treg cells (302)

Helicobacter hepaticus Promotes Treg cells (303)

Akkermansia muciniphila Promotes Treg cells (304)

Odoribacter splanchnicus Promotes Treg cells (85)

Parabacteroides distasonis Promotes Treg cells (14, 305, 306)

Bifidobacterium infantis Promotes Treg cells (307)

Bacteroides intestinalis Promotes Treg cells (305)

Bacteroides caccae Promotes Treg cells (305)

Bacteroides thetaiotaomicron Promotes Treg cells (305)

Bacteroides massiliensis Promotes Treg cells (305)

Bacteroides vulgatus Promotes Treg cells (305)

Escherichia coli Promotes Treg cells (305)

Clostridium ramosum Promotes Treg cells (308)

Fusobacterium nucleatum Promotes Treg cells (308, 309)

Lactobacillus reuteri Promotes Treg cells (310)

Lactobacillus murinus Promotes Treg cells (311)

Faecalibacterium prausnitzii Promotes Treg cells (312)
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regulates the antigen recognition and tumor-killing function of

cytotoxic T cells, such as CD8 and Th1 cells, thus controlling the

efficacy of cancer immunotherapy (45, 46, 315, 316).

In summary, as crucial aspects of the tumormicroenvironment,

immune cells interplay with the gut microbiota to mediate immune

cell functions and control inflammation, anti-tumor immunity, and

disease progression (Figure 2). Besides the key innate and adaptive

immune populations discussed above, functions of other immune

cells in CRC development have been previously reviewed in detail

(160, 317, 318).
5 Gut microbiota in CRC
immunotherapy

Microbiota has been identified as a key modulator of cancer

immunotherapy (319, 320). Early studies have established the roles

of gut microbiota in supporting the CpG-oligonucleotide
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immunotherapy and the anti-tumor immune responses to

cyclophosphamide (CTX) chemotherapy (321, 322). Following

research further identified multiple microbiota taxa in enhancing

immunomodulatory therapies and controlling tumor-killing

efficacy of cytotoxic T cells. Bifidobacterium promotes anti-

tumor efficacy of anti-PD-L1 therapy by enhancing CD8+ T cell

priming and accumulation in the tumor microenvironment (45).

Similarly, Bacteroides fragilis enhances the efficacy of anti-CTLA-4

therapy by triggering a Th1 response and promoting dendritic cell

maturation (46). Furthermore, microbiota components from

immunotherapy-responding patients lead to improved tumor

control, augmented T cell responses, and greater efficacy of

immunotherapy in animal models (323, 324). Particularly,

Akkermansia muciniphila restores the efficacy of PD-1 blockade

in non-responders by recruiting CCR9+CXCR3+CD4+ T cells

(325). During CTX treatment, the translocation of Enterococcus

hirae from the intestine to secondary lymphoid organs stimulates

IFN-producing CD8+ T cells and increases the intratumoral CD8/
FIGURE 2

Role of host immune system on CRC. In the host intestine, local immune cells are directly or indirectly stimulated by gut microbiota for
activation, proliferation, and differentiation. Meanwhile, the microbiota composition is exquisitely modulated by the immune system. This
interplay is important for maintaining homeostasis and plays critical roles in regulating inflammation responses, tissue damage, and CRC
development. Through cytokine production and other mechanisms, CRC-promoting immune cells facilitate inflammation, tissue damage, cell
proliferation, angiogenesis, tumor invasion, and immune evasion. On the contrary, CRC-inhibiting immune cells enhance epithelial barrier
integrity, suppress local inflammation, and eliminate cancer-initiating cells and developed tumors through cytokines, cytotoxic molecules, and
other mechanisms. Notably, some immune populations play context-dependent functions in CRC development, based on the disease types,
stages, and microenvironment.
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Treg ratio (315). In addition to the single species, a combination of

11 bacterial strains is reported to improve the anti-tumor efficacy

of checkpoint inhibitors with increased tumor antigen-specific

CD8+/IFN-g+ T cells (316). Microbiota-derived metabolites, such

as inosine, could also modulate the response to cancer

immunotherapy (326).

Besides traditional and targeted therapies, immunotherapy in

CRC treatment has not been widely utilized. Classic vaccination

strategies and chimeric antigen receptor (CAR) T cells have

shown great clinical benefits, but are accompanied by severe

toxicity (327–330). Meanwhile, with the discovery of new

druggable immune checkpoints (331), checkpoint blockade

therapies have shown good responses in several types of CRC,

particularly when combined with chemotherapy (43, 332, 333),

but have not been widely investigated. In this case, microbiota-

related therapies, particularly with previously identified or even

FDA-approved probiotics, may provide novel strategies for CRC

treatment. Development of microbiota-related therapies may

include: (1) specific elimination of detrimental species by

antibiotics or targeted bacteriophage therapy; (2) neutralization

of harmful metabolites such as bacterial toxins; (3) supplementary

administration of anti-tumorigenic species; (4) fecal

transplantation of whole microbiota from healthy donors

(particularly for antibiotics-treated patients); (5) diet-driven

transition of microbiota or metabolites. While promising results

are obtained from increasing clinical trials (334–337), more is

needed to validate the efficacy and safety of these strategies. Due to

the complexity of microbiota and the numerous effects one species

may have on host biology, prudent consideration of any

therapeutic approach is necessary based on the host microbiota

profile, disease stage, and status of the immune system.
6 Gut microbiota and lifestyle risk
factors in CRC development

6.1 Diet

Dietary factors play important roles in modulating the gut

microbiota, which in turn regulates colon inflammation, genotoxic

metabolite production, and eventually CRC development (338).

On the other hand, gut microbiota composition can influence the

physiological effects of dietary components. For example,

trimethylamine-N-oxide (TMAO) is a microbiota-dependent

metabolite from protein, in particular red meat (339), and an

elevated TMAO level is associated with a higher risk of CRC (340).

While Firmicutes species may contribute to TMAO production

(341), Eubacterium limosum has the potential to metabolize TMA

precursors and reduce TMAO level in gut (342). In addition,

dietary carbohydrates, as main fuel sources of the body, have great

impacts on the gut microbiota composition andmicrobiota-related

diseases (343). It has been widely reported that the dietary fibers
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contribute to the reduction of CRC risk (344), mainly through the

enhanced production of microbial metabolite SCFAs (345). In this

case, specific gut microbiota species, such as Faecalibacterium

prausnitzii, Eubacterium rectale, Roseburia faecis, and

Eubacterium halli, play important roles in the dietary fiber

fermentation and SCFA production (346). The abundances of

these bacteria are consistently reduced in the gut microbiota of

colorectal adenoma patients (347).
6.2 Obesity

Lipid metabolism plays an essential role in health

management, weight control, and risks to cancers and other

infectious diseases (348, 349). Obesity has been reported as an

important risk factor of CRC that contributes to approximately 5%

of incident cases (348), and gut microbiota is one of the leading

factors accompanying and pathogenetically contributing to obesity

and its metabolic associates, such as diabetes and cardiovascular

diseases (350). The gut microbiota in obese people represents a

decreased diversity in phyla and an increased ratio of Firmicutes :

Bacteroidetes (351), whereas bariatric surgery can reverse these

microbial abnormalities (352), associated with changes on dietary

habits and macronutrients consumption. In animal models, high-

fat diet diminishes the beneficial gut microbiota, such as

Actinobacteria, Bifidobacterium, Lactobacillus, and Akkermansia

(353–356), thus induces gut inflammation, barrier impairment,

and an increased risk of CRC development. On the contrary,

several well-established probiotics, including Lactobacillus

acidophilus, Bifidobacterium lactis, and Akkermansia muciniphila,

show an anti-obesity effect (357). The fecal microbiota

transplantation from healthy donors, as a promising approach

for the treatment of obesity (358), may also be used to control the

risk of CRC development.
6.3 Alcohol

Alcohol consumption, particularly chronic and moderate to

heavy alcohol intake, has been recognized as an important risk

factor for CRC, and is closely related to the metastasis and poor

prognosis in CRC patients (359). The metabolism of alcohol is

actively modulated by the gut microbiota, which regulates

ethanol conversion into its metabolites that exert carcinogenic

effects in the colon (360). For example, Enterobacteriaceae

Ruminococcus, and Bifidobacterium mediate the production of

carcinogenic acetaldehyde from ethanol (361, 362), which

accumulates in the colon and greatly contribute to CRC

development as ethanol consumption increases. Furthermore,

the gut microbiota in alcoholic people is diminished in dominant

obligate anaerobes (such as Bacteroides and Bifidobacterium)

and enriched in Streptococcus (363), which in turn contribute to
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CRC development according to their cancer-inhibiting or

-promoting functions as discussed in Section 3.
6.4 Tobacco

Cigarette smoking has long been identified as a risk factor for

CRC development, which is attributed to the synergistic effect of

multiple carcinogens, including nicotine, aldehydes, polycyclic

aromatic hydrocarbons, heavy metals, volatile organic

compounds, and toxic gases (364). The long-term exposure to

tobacco smoke induces gut microbial dysbiosis and altered

metabolites, and promotes CRC development (365). In

specific, cigarette smoke toxicants induce the increases of

Helicobacter, Streptococci, Firmicutes, Peptococcaceae; as well as

the loss of Bacteroidetes, Lachnospiraceae, and Lactobacillaceae

(366). Some representative species of these bacterial taxa have

been discussed in Section 3 for their CRC-promoting and

-inhibiting functions. The increased Firmicutes : Bacteroidetes

ratio in tobacco users is also associated with obesity, microbial

metabolites, and CRC development.
7 Conclusions

In the past decade, microbiota has been identified as a

critical regulator in maintaining homeostasis, while its

imbalance triggers numerous pathological conditions,

including CRC. Microbiota may regulate CRC development in

multiple approaches: directly by tissue invasion, indirectly by

producing metabolites, or by triggering host immune responses.

Alteration in the microbiota composition is frequently observed

in multiple diseases, while the identification of functional species

and strains is limited. In this review, we provide an extensive

overview of CRC-regulating microbiota species and how they

crosstalk with local enterocytes and the host immune system in

controlling disease development, thus offering new insights into

our understanding and the development of microbiota-based
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therapies. Based on their functions, different microbiota species

may serve as probiotic supplements or therapeutic targets in the

prevention and better treatment of colitis and CRC. The

profiling of gut microbiota and metabolites may also serve as

novel diagnostic markers to evaluate the CRC risk and prognosis

in healthy people and cancer patients.
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