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E and inhibitor of DNA binding (ID) proteins are involved in various cellular

developmental processes and effector activities in T cells. Recent findings

indicate that E and ID proteins are not only responsible for regulating thymic

T cell development but also modulate the differentiation, function, and fate of

peripheral T cells in multiple immune compartments. Based on the well-

established E and ID protein axis (E-ID axis), it has been recognized that ID

proteins interfere with the dimerization of E proteins, thus restricting their

transcriptional activities. Given this close molecular relationship, the extent of

expression or stability of these two protein families can dynamically affect the

expression of specific target genes involved in multiple aspects of T cell

biology. Therefore, it is essential to understand the endogenous proteins or

extrinsic signaling pathways that can influence the dynamics of the E-ID axis in

a cell-specific and context-dependent manner. Here, we provide an overview

of E and ID proteins and the functional outcomes of the E-ID axis in the

activation and function of multiple peripheral T cell subsets, including effector

and memory T cell populations. Further, we review the mechanisms by which

endogenous proteins and signaling pathways alter the E-ID axis in various T cell

subsets influencing T cell function and fate at steady-state and in pathological

settings. A comprehensive understanding of the functions of E and ID proteins

in T cell biology can be instrumental in T cell-specific targeting of the E-ID axis

to develop novel therapeutic modalities in the context of autoimmunity

and cancer.
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Introduction

A diverse network of transcription factors (TFs) and

modulators regulate the expression of relevant genes involved

in lymphocyte generation and function (1, 2). E and ID proteins

are well-characterized transcriptional regulators that belong to

the helix-loop-helix (HLH) family of proteins (3). They are

widely recognized to play a significant role in developing

lymphocytes, particularly B and T cells (4–9). E and ID

proteins are crucially involved in various stages of thymic T

cell development. For instance, E2A and HEB, which represents

the major E proteins, have been demonstrated to play crucial

roles in the early stages of thymocytes differentiation (10–13).

Several types of E proteins are identified, forming active

homo- and heterodimers within the HLH proteins, binding to

DNA, and regulating the transcription of multiple target genes in

T cells (7, 8). Considerable evidence in mice shows that active E

proteins are primarily engaged in the generation, differentiation,

and effector function of different peripheral CD4 T cell subsets

and CD8 T cell populations. On the other hand, ID proteins,

encoded by four different genes (Id1-Id4), lack DNA binding

activity and, through E-ID heterodimerization, modulate gene

expression primarily by interfering with the DNA binding and

transcription-related activities of E proteins (5). While various

transcription factors regulate the expression of E proteins, the ID

proteins are the only regulators that inhibit the transcription

factor activity of E proteins through a mechanism that interferes

with the formation of dimers within E proteins. Unlike E

proteins, which are ubiquitously expressed in many tissues and

cells, ID proteins are found to be expressed in a tissue- and cell-

specific manner (14). For instance, Id2 and Id3 are

predominantly expressed in T cells compared with Id1 and

Id4. Indeed, Id2 and Id3 are recognized for their crucial roles

in multiple discrete steps of T cell development and the

differentiation and effector function of various CD4 and CD8

T cells. They have also been shown to suppress the generation of

innate-like gd (15) and invariant NKT (iNKT) cells (16),

reinforcing ab CD4 and CD8 T cell development in the thymus.

As E and ID proteins play critical roles in T cells through

well-established molecular dynamics; the balance between these

proteins has the potential to alter the E-ID axis-mediated global

transcriptional program, affecting T cell phenotypes, and

contributing to many aspects of autoimmune diseases,

inflammation, and cancer progression (17). It is becoming

clear that various TFs and extrinsic signaling pathways can

affect the expression and stability of E and ID proteins by

influencing the interactions between them. This review focuses

on a brief overview of E and ID proteins and their molecular

relationship, the interplay between E and ID proteins in the

regulation of peripheral T cell activation, differentiation, and

function, and the mechanisms by which TFs and extrinsic
Frontiers in Immunology 02
signaling pathways act on altering the E-ID axis in a context-

dependent manner to dictate T cell function and fate.
Molecular dissection of E and
ID proteins

For decades, it has been well known that E and ID proteins

interact closely with each other as transcription regulators, and their

structure and mode of interaction are established. This section will

describe the overview of E and ID proteins, highlighting the protein

structure/domains and molecular features of their interaction in the

context of transcription regulation.
E proteins

E proteins are a family of TFs that recognize a consensus

DNA sequence (CANNTG) known as an enhancer box (E-box).

E proteins are encoded from three genes, E2A, HEB, and E2-2,

which encode multiple proteins through alternative splicing. The

E2A gene encodes E12 and E47 proteins, while the HEB and E2-

2 genes encode both canonical (HEBcan and E2-2can) and

alternative splice variants (HEBalt and E2-2alt) proteins (5).

These E proteins are ubiquitously expressed and function in

many tissues and cell types. E proteins contain several conserved

domains, including the basic HLH (bHLH) domain and

transcriptional activation domains (AD) (Figure 1A) (18). A

C-terminal bHLH domain consists of approximately 60 amino

acids and has two functionally distinct regions: the basic and

HLH regions. The basic part is essential for initiating or

repressing gene transcription by binding to the E box present

downstream of specific target genes. On the other hand, the

HLH region contains two amphipathic a-helices with a linking

loop and is required for protein-protein interaction with other

HLH proteins. Since the E proteins bind to the E-box of genomic

DNA by forming homo- or heterodimers to initiate the

transcription of target genes, the bHLH domain is an essential

part of these two distinct processes governing the transcriptional

machinery of the E proteins. In addition, E proteins also contain

two transcriptional activation AD domains, AD1 and AD2.

These two domains have been shown to recruit co-

transcriptional activators, such as CBP/p300 and Spt/Ada/

Gcn5 acetyltransferase (SAGA) complex (Figure 1A), to

promote the transcriptional activity of a target gene (19).

Contrary to acting on transcriptional activation, it has been

demonstrated that corepressors, such as ETO family proteins

and leukemogenic AML1-ETO fusion protein, can interact with

AD1 (Figure 1A) (20, 21). These interactions contribute to

transcriptional repression mechanisms of E proteins by

inhibiting the recruitment of coactivators on target genes
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ID proteins

The inhibitor of DNA binding (ID) proteins, Id1-Id4, are

also members of the HLH protein family. Regarding protein

structure/domain and function, all four ID proteins have highly

conserved common domains and similar molecular functions.

Although ID proteins contain the same HLH domain as E

proteins, homodimers or heterodimers between ID proteins

can occur in rare circumstances (22). Interestingly, however,

they can heterodimerize with bHLH proteins, primarily by

inhibiting the formation of DNA-bound bHLH dimers (5).

The lack of a basic region of the HLH domain distinguishes

the ID proteins from the E proteins. Therefore, ID proteins

cannot bind to the promoter regions and directly mediate the

transcriptional regulation of genes. Thus, ID proteins operate as

dominant-negative regulators of bHLH TFs and indirectly

repress transcription of E protein target genes (Figure 1B).

Interestingly, there is also evidence that ID proteins have

functions unrelated to E proteins (23). The exact mechanism

of such ‘non-canonical’ E-protein independent functions of ID

proteins in transcriptional regulation is unknown and requires

further investigation.

ID proteins are expressed in various tissues and cell types,

including neuronal and immune compartments tumors (24–26).

In particular, Id2 and Id3 are dominantly expressed in immune

cells and have been demonstrated to control the expression of

different genes that play critical roles in the development,

differentiation, and function of T cells in steady-state and

pathological conditions. In the following section, therefore, we

will discuss the effects of ID proteins on the activation and

function of T cells through their interaction with E proteins.
Frontiers in Immunology 03
The E-ID axis orchestrates
peripheral T cell differentiation
and function
T cells are one of the key immune cell types that comprise

the adaptive immune system, offering cellular protection against

pathogenic assaults and capable of eliciting a long-lasting

memory response. T cells begin their life cycle as T cell

precursors generated in the bone marrow and migrate to the

thymus, where they undergo successive stages of development

and maturation. During this process, thymic T cell precursors

initiate genetically programmed transcriptional cascades that

rely on precise functional networks of multiple TFs in

response to thymus-related environmental signals (27).

Following that, naive T cells matured in the thymus undergo

further proliferation and activation as they migrate to secondary

lymphoid organs. They are activated upon engagement with

peptide-MHC on APC through TCR-CD3 complex molecules

and CD28-mediated co-stimulation. In addition, the cytokine

milieu act as an essential tertiary factor that determines the

differentiation and effector function of specific CD4 T helper cell

(Th) subsets, like Th1, Th2, Th17, induced regulatory T cells

(iTreg), and T follicular helper T cells (Tfh) as well as promotes

the function of cytotoxic CD8 T cells (28). During this process, T

cells that receive these signals activate a network of multiple TFs.

Numerous studies have revealed different molecular pathways

with varied implications on T cell activation, differentiation,

function, proliferation, survival, and memory formation (29).

The E-ID axis is believed to be responsible for regulating the

transcription of several genes involved in the development and
BA

FIGURE 1

Molecular basis of E and ID protein functions. (A) An overview of the key domains of E proteins (E2A, HEB, and E2-2) - transcriptional activation
domains (AD1 and AD2) and basic helix-loop-helix domain (bHLH). The AD1 and AD2 domains enable the E-box sequence (CANNTG) bound E
protein homodimerization. E proteins function as transcriptional activators or repressors through recruitment of coactivators (CBP/p300) or
corepressors (AML1-ETO, acute myeloid leukemia1-eight-twenty one oncoprotein), respectively. The bHLH domain consists of two parts: the
HLH domain for protein-protein interactions and the basic region for DNA binding. (B) The four inhibitors of DNA binding (ID) proteins have one
HLH domain in common. The ID protein interferes with the homo- or heterodimerized E proteins through this domain, inhibiting their DNA
binding and transcription-related activities. This figure was created with BioRender.com.
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function of T cells. In this section, we will discuss the role of the

E-ID axis in determining the differentiation and function in

different peripheral T cell subsets in steady-state and

pathological conditions.
Th1 and Tfh cells

When a viral infection occurs, the immune system induces

naive CD4 T cells to actively differentiate into two lineages: Th1

cells and Tfh cells (30, 31). Th1 cell differentiation drives

inflammatory responses and pathogen clearance, whereas Tfh

cells enhance germinal center (GC) responses for forming high-

affinity antibodies and immunological memory against the virus.

While Th1 and Tfh differentiation occur concurrently, these T

cell identities are mutually exclusive and are governed by T-bet

and Bcl6, which are the master regulators for the differentiation

of Th1 and Tfh cells, respectively (32, 33). In the case of Th1

cells, it has been reported that both Id2 and Id3 promote Th1

differentiation in the context of influenza viruses by promoting

the expression of T-bet, which is negatively regulated by the E

proteins (34). In line with this finding, another study

demonstrated that enhanced Id2 expression promotes Th1

differentiation while suppressing E protein-mediated CXCR5

expression, which is essential for Tfh cell differentiation and

maturation upon lymphocytic choriomeningitis virus (LCMV)
Frontiers in Immunology 04
infection (Figure 2A) (35). Id2, therefore reciprocally modulates

Th1/Tfh cell differentiation in the course of viral infection and

promotes cell-mediated immunity, which does not rely on Tfh

cell-mediated humoral response mechanisms to respond to

virus infection.
Th17 cells

Th17 cells are one of the CD4 T cell subsets that play a

prominent role in maintaining mucosal barrier homeostasis by

contributing to pathogen clearance at mucosal surfaces (36, 37).

Loss of Th17 populations in the gut mucosal sites is directly

associated with increased microbial translocation into the

normal sterile tissues, leading to systemic immune activation

and inflammation. However, excessive or uncontrolled Th17

activation has been linked to several autoimmune diseases,

including multiple sclerosis (MS), arthritis, psoriasis, and lupus

(38, 39). Therefore, it is important to understand the

mechanisms involved in the differentiation and function of

Th17 cells in both homeostatic and pathological settings. Not

surprisingly, E and ID proteins are also involved in Th17

differentiation and function. For example, E2A and HEB were

found to directly induce RORgt and interleukin-17 (IL-17)

(Figure 2B), which are important for the differentiation and

function of Th17 cells, respectively (40). Interestingly and
B

C D

A

FIGURE 2

Role of E and ID proteins during peripheral CD4 T cell differentiation and function. A-C. E and ID proteins influence Th1 and Tfh cell
differentiation (A), Th17 cell differentiation and function (B), and Treg and effector Treg differentiation and function (C) under steady-state as well
as infectious and autoimmune conditions. (D) Id3 negatively influences the tissue-resident Treg effector function and tissue homing capacity. In
adipose tissue, tissue-resident Treg cells enhanced Id2 expression, which can positively regulate the Treg effector function and survival. This
figure was created with BioRender.com.
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somewhat counterintuitively, Id3-deficient naïve CD4 T cells

exhibit decreased Th17 differentiation relative to wild-type T

cells in vitro. Id3 deficiency leads to increased GATA-3

expression, which suppresses RORgt expression (40). In

another study, Id2 was associated with increased activation

phenotype of CD4 T cells under steady-state conditions, as

well as IL17 production upon experimental autoimmune

encephalomyelitis (EAE), an animal model of MS, induction,

ultimately contributing to severe EAE pathogenesis (Figure 2B)

(41). Mechanistically, increased Id2 in activated T cells

suppresses E protein-mediated expression of Socs3. Socs3 is a

negative regulator of cytokine production through the JAK/

STAT pathway (42). Thus enhanced expression of Id2 results

in restoration of IL-17A production that is otherwise suppressed

by Socs3 (Figure 2B). Taken together, E and ID proteins promote

Th17 cell differentiation and function through different

regulatory mechanisms, respectively.
Treg cells

The functions of E and ID proteins in Treg cells have also

been extensively studied and led to complicated conclusions.

Unlike other T cell subsets, Treg cells are a unique subset of CD4

T cells, indispensable for peripheral tolerance (43). It was

reported that E2A directly promotes the expression of Foxp3,

a well-defined Treg lineage specificity factor, by binding at the

Foxp3 promoter (Figure 2C) (44). In addition, Id3 suppressed

GATA-3 expression, which represses the transcription of Foxp3,

suggesting that E and ID proteins contribute independently of

each other towards optimal Foxp3 expression (Figure 2C). In

another study, however, E2A and HEB were found to negatively

regulate Foxp3 and other effector-related factors in Treg cells

such as IRF4, ICOS, CD103, KLRG-1, and RORgt, and

consequently inhibited effector Treg differentiation and

function (Figure 2C) (45). Based on the conflicting results of E

proteins regulating Foxp3 transcription, the mechanisms by

which E proteins regulate Foxp3 appear to differ, depending

on the effector stages of Treg cells, and therefore require further

investigation. On the other hand, recent studies discovered that

ID proteins play an important role in the differentiation,

function, and survival of tissue-resident Treg cells (Figure 2D).

For instance, Id2 is highly expressed in adipose-resident Treg

cells and is associated with increased expression of the adipose

Treg-related genes Il1rl1 (codes for the IL33 receptor ST2), Ccr2,

Klrg1, and Gata3, but suppresses the apoptosis-related gene, Fas

(46). Another group demonstrated that Id3 is directly associated

with decreased effector function and tissue homing capacity of

tissue-resident Treg cells (47). However, establishing a direct

role of Id3 downregulation in the functional differentiation of

tissue-resident Treg cells requires further investigation. ID

protein-mediated Treg differentiation and function also

contribute to the pathogenicity of autoimmune diseases. In
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systemic lupus erythematosus (SLE) patients, Id3 expression

levels were positively correlated with Treg cell frequencies, and

subsequently, mice in which Id proteins were overexpressed

showed favorable autoimmune responses (48). In contrast,

elevated Id3 expression was found to promote Treg

differentiation in hepatitis B virus infection, thereby reducing

viral clearance and developing a chronic state of infection (49).

Thus, these two independent studies demonstrated that disease

prognosis might differ based on Treg differentiation and

function, suggesting the importance of targeting Id3

expression in Treg cells according to its context.
CD8 T cells

CD8 cytotoxic T cells are well known for anti-viral immune

responses and anti-tumor immunity (50). Currently, there are

two studies on the role of the E proteins in association with the

formation of memory CD8 T cells responding to infection. One

study demonstrated that both E2A and HEB transcriptionally

upregulate the effector-associated genes such as Eomes, Id2, and

Fyb and increase the generation of memory precursor T cells

(51). The other study showed that E2A epigenetically regulates

the accessibility of enhancers of memory-related genes such as

Id3, Ccr7, and Sell, increasing the frequency of memory

precursor effector cells and accelerating memory cell formation

(Figure 3A) (52). As expected, Id2 expression suppressed E

proteins-mediated gene expression, thereby suppressing the

differentiation of memory CD8 T cells (Figure 3A) (53–55).

Memory T cells are classified into two types according to the

classification of Killer Cell Lectin Like Receptor G1 (KLRG1)

and CD127. First, KLRG1+CD127low cells are classified as short-

lived effector memory cells, and most of them show rapid

effector function and die. Conversely, KLRG1-CD127hi long-

lived memory T cells present a vital protective role during acute

rechallenge with pathogens such as viruses or bacteria.

Interestingly, in the context of LCMV infection, Id2 expression

promoted the differentiation of short-lived effector-memory

CD8 T cells, while Id3 expression demonstrated functional

capability to induce differentiation of long-lived memory

progenitors (Figure 3A) (56). However, the exact underlying

mechanisms by which Id2 and Id3 are involved in the

differentiation process of each memory cell types are yet to be

elucidated. Therefore, it may be beneficial to investigate further

how the expression of Id2 and Id3 is regulated in association

with the signaling pathways that determine each memory T

cell subset.

A recent study found that Id3 inhibits the exhaustion of CD8

T cells in the tumor microenvironment (TME) (Figure 3B) (57).

Further, an elevated population of exhausted CD8 T cells was

correlated with reduced anti-tumor immune response in TME.

In fact, these exhausted CD8 T cells display high levels of Tcf1

and Tox, which are known representative markers of CD8 T cell
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exhaustion, and overexpression of these two factors also directly

induces T cell dysfunction. These data warrants further

investigations to understand whether Id3 can regulate Tcf1 or

Tox expression (Figure 3B), which is implicated in the

differentiation and function of exhausted CD8 T cells in

the TME.
Endogenous factors and cell-
extrinsic signaling pathways impact
the E-ID axis in T cell fate
and function

Recent studies have demonstrated that several endogenous

proteins and extrinsic signaling pathways affect development,

differentiation, function, and memory formation by altering the

E-ID axis under steady-state and pathological conditions. In this

section, we will emphasize some of the major endogenous

proteins and extrinsic signaling pathways that influence the

balance of the E-ID axis by controlling the expression of each

of the E and ID proteins and their protein-protein interactions,

leading to phenotypic changes and functional reprogramming of

T cells in a context-dependent manner (Figure 4).
Endogenous proteins associated with the
E-ID axis

The zinc-finger transcription factor Bcl11b is a critical

regulator of differentiation and survival during T cell
Frontiers in Immunology 06
development in the thymus (58–60). Hosokawa et al.

discovered that Bcl11b, highly expressed at a specific pro-T

cell lineage commitment stage (DN2-DN3), inhibits Id2

expression (61). In addition, the effect of depleting Bcl11b on

gene expression in pro-T cells remarkably overlaps the impact of

depleting E2A, suggesting that Bcl11b and E2A interact very

closely during the pro-T cell development. In agreement with

this finding, another study demonstrated that Bcl11b-dependent

target genes are parallelly regulated by E2A during T cell

development (62), indicating that Bcl11b plays a critical role in

remodeling the E-ID axis through active suppression of Id2

expression. Given the importance of the E-ID axis in T cell

development, further studies are needed to identify other

transcription factors that contribute to the functionalities of

the E-ID axis by regulating E and ID protein expressions.

Two other zinc finger transcription factors, Egr2 and Egr3,

mediate self-tolerance by T lymphocytes and NKT cell

development (63, 64). Miao et al. reported that Egr2 and Egr3

regulate clonal expansion and differentiation of virus-responsive

T cells by directly promoting Id3 expression and other effector

genes (65). Nevertheless, the exact mechanism remains unclear.

T cell factor 1 (Tcf1) is the key transcription factor of the

canonical Wnt signaling pathway (66). Tcf1 plays an essential

role in controlling T cell development, the differentiation of

specific CD4 T helper (Th) subsets, and the formation of

memory and stem-cell-like CD8 T cells following various types

of viral infections (67). Tcf1 closely interacts with the E-protein

HEB to establish epigenetic and transcriptional profiles of

double-positive thymocytes (68). Mechanistically, TCF-1

inhibits Notch signaling, which protects HEB from Notch-

induced proteasomal degradation, suggesting that Tcf1 is
B

A

FIGURE 3

E-ID axis in the formation of effector and memory CD8 T cells. E and ID proteins regulate effector and memory CD8 T cell differentiation and
function in infection (A) and cancer (B). This figure was created with BioRender.com.
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involved in the stability of E proteins. In response to acute viral

infection, another study found that Tcf1 maintains T follicular T

helper (Tfh) cell population by suppressing Blimp1, which

promotes Th1-associated effector genes such as T-bet and Id2

expression in Tfh cells (69). Since E protein induces CXCR5,

associated with Tfh cell migration into B cell follicles and

subsequent further differentiation of Tfh cells (70), Tcf1-

mediated Blimp1 repression may serve as a unique mechanism

for maintaining the Tfh population in the context of viral

infection. For CD8 T cells, a recent study discovered that Tcf1

directly modulates the expression of Id3, which is important for

both effector and central memory function of CD8 T cells,

thereby affecting optimal CD8 T cell activity in the context of

viral infection (71). Further, ectopic expression of Tcf1 was

associated with increased expression of Id3 and several key

effector components known to counteract CD8 T cell

exhaustion upon LCMV infection, eventually leading to

reinforced CD8 T cells mediated antiviral response (72).

The histonemethyltransferase Ezh2 is involved in forming CD8

T cell memory precursors and contributes to the antitumor activity

of CD8 memory T cells in the tumor microenvironment. Ezh2 was

found to promote the expression of Id3 for maintaining the
Frontiers in Immunology 07
function of effector and memory CD8 T cells. Interestingly, Ezh2

was found to promote the expression of Id3 by enhancing

H3K4me3 modification on its gene locus, which is distinct from

the well-known repressive H3K27me3 promoting activity of Ezh2

(73). Considering these exciting observations, further studies are

required to clarify the precise roles of various epigenetic modifying

enzymes related to the E-ID axis in CD8 memory T cell formation

and function in tumor microenvironments.

Interestingly, recent studies have demonstrated that the E-

ID axis involved in T cell function is also regulated by factors

whose functions extend beyond transcription regulation. For

example, the de-ubiquitinase Usp1, which is known to stabilize

Id1-Id3, contributes to maintaining stem cell properties in

osteosarcoma and mesenchymal stem cells (74, 75). In

activated T cells, Usp1 interacts with Id2 and Id3, protects the

stability of Id2 protein in the context of viral infection, and

maintains the proliferative potential and memory phenotype

differentiation of virus-specific CD8 effector T cells (76).

Similarly, Jiao et al. demonstrated that DExD/H-box helicase 9

(Dhx9) is required for a proper CD8 T cell response against

acute viral infection. Interestingly, contrary to the well-

established role of Dhx9 as a cytosolic DNA-sensor, Dhx9 was
FIGURE 4

Endogenous factors influence the E-ID axis in T cell fate and function. The roles and mode of action of endogenous proteins that control E and
ID protein expression and affect T cell development, differentiation, and function (Bcl11b, B-cell lymphoma/leukemia 11B; Egr2/Egr3, early
growth response 2/early growth response 3; Ezh2, Enhancer of zeste homolog 2; H3K4me3, histone H3 lysine 4 trimethylation; Tcf1, T cell
factor 1; Blimp1, B-lymphocyte-induced maturation protein 1; Usp1, ubiquitin-specific protease 1; Dhx9, DExH-Box Helicase 9; TE, Effector T
cells; TCM, Central Memory T cells). This figure was created with BioRender.com.
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found to directly increase the transcription level of Id2

expression, thereby affecting the survival and function of viral-

specific CD8 T cells (77). Mechanistically, the authors

discovered that two domains of Dhx9, double-stranded RNA

binding motif (DSRM) and oligonucleotide/oligosaccharide

binding fold (OB_Fold) domain, play an essential role in

directly binding to the Id2 promoter and consequently

regulating the level of Id2 transcription.
Extrinsic signaling pathways associated
with the E-ID axis

It is becoming clear that extracellular cytokine signaling can

further modulate the E-ID axis dependent transcriptional

reprograms in a T cell lineage-specific and context-dependent

manner, consequently governing T cell phenotypes implicated in

several disease outcomes (Figure 5). Interleukin-7 (IL-7) appears

to be an important determinant in this context. A recent study

discovered that Interleukin-7 (IL-7) signaling promotes Foxo1-

Tcf1-Id3 pathways to maintain memory CD8 T cell

differentiation, survival, and function (78). Although IL-7

signaling is well-established to play an important role in T cell

survival and proliferation (79, 80), before this finding, it was

primarily believed to function by enhancing the expression of
Frontiers in Immunology 08
anti-apoptotic Bcl-2 family of proteins, especially Mcl1 and Bcl-

2 (81). In another study, Han et al. demonstrated that when mice

were administered with the Mycobacterium tuberculosis (M.

tuberculosis) subunit vaccine and adeno-associated virus-

mediated IL-7, Id3 expression was directly upregulated,

contributing to long-term memory CD4 and CD8 T cells

response against M. tuberculosis infection (82). The underlying

mechanism, however, is yet to be elucidated.

Interleukin-21 (IL-21) is an IL-2 family cytokine produced

by activated T cells, mainly by natural killer T (NKT) cells, Th17

cells, and Tfh cells, to regulate immune responses (83, 84).

Elevated amounts of IL-21 have been reported in several

autoimmune diseases (85) such as inflammatory bowel disease

(86), rheumatoid arthritis (87), type 1 diabetes (88), and

systemic lupus erythematosus (89). Interestingly, a recent

study demonstrated that IL-21 signaling directly inhibits Id3

via STAT3, promoting differentiation of hyper-activating Tfh

cells, exacerbating the pathogenesis of Sjogren’s syndrome (90).

Hence, it is evident that IL-21 affects the E-ID axis under specific

inflammatory conditions, thereby influencing the differentiation

and function of disease-related target cells. In addition to IL-21,

Interleukin-2 (IL-2) and Interleukin-15 (IL-15) are also major

cytokines that regulate T cell differentiation, proliferation,

effector function, and memory formation (91, 92). Given that

the E-ID axis is critical for effector T cell function and memory T

cell formation, further investigation is required to determine
FIGURE 5

Extrinsic signaling pathways affect E-ID axis-mediated T cell function in infection, autoimmunity, and cancer. External signaling pathways affect
the expression of E and ID proteins as well as the E-ID axis in various T cell subsets, resulting in changes in the phenotype of T cells and
alleviating or exacerbating diseases (Foxo1, Forkhead Box O1; STAT3, Signal Transducer And Activator Of Transcription 3; IRF4, Interferon
Regulatory Factor 4; BATF, Basic Leucine Zipper ATF-Like Transcription Factor; TGF-b, Transforming growth factor b; HDAC, Histone
deacetylase; TM, Memory T cells; CAR, Chimeric Antigen Receptor). This figure was created with BioRender.com.
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how IL-2 and IL-15 downstream signaling affect the E-ID axis in

this context.

Under the inflammatory milieu in the context of

autoimmune diseases, Treg cells are known to convert into IL-

17 producing cells (93–95). These Treg cells that have lost Foxp3

and become Th17 cells are called “ex-Foxp3 Th17” cells.

Previously, our group demonstrated a unique mechanism by

which the pro-inflammatory cytokines, IL-1b and IL-6, by

altering the E-ID axis, contribute to Treg cell plasticity (96). In

this context, we found that Id2 expression is intrinsically

repressed during Treg cell differentiation, which is likely one

of the reasons why Treg cells stably maintain the expression of

Foxp3 in an E2A-dependent manner. In an inflammatory

set t ing , par t icu lar ly in exper imenta l auto immune

encephalomyelitis (EAE), elevated IL-1b and IL-6 mediated

STAT3/IRF4/BATF signaling cascades promote Id2 activation.

Enhanced Id2 blocks the binding of E2A to the Foxp3 locus and

renders Treg cells into pathogenic ex-Foxp3 Th17 cells, resulting

in exacerbated EAE pathogenesis. Interestingly, in mice bearing

B16-F10 melanoma, artificially promoting the plasticity of Treg

cells upon transient ectopic expression of Id2 effectively

inhibited tumor growth (96). Thus, re-balancing the E-ID axis

in a context-dependent manner may be beneficial in treating

autoimmunity and cancer.

In terms of promoting the anti-tumor activity of tumor-

infiltrating T cells in association with the E-ID axis, a recent

study showed that ex-vivo stimulation of human T cells with

exogenous transforming growth factor beta (TGFb) leads to the

accumulation of central memory T cells that exhibit relatively

superior antitumor function than effector T cells (97). This is

achieved by upregulating the memory-associated regulatory

factor Id3 and improving the anti-tumor activity of T cells and

chimeric antigen receptor-expressing T cells. However, the role

played by TGFb leading to the upregulation of Id3 and the target

genes regulated downstream of the E-ID axis in this context

requires further investigation.

Moreover, it is worth mentioning that metabolites derived

from intestinal microbes can directly regulate the E-ID axis,

affecting anti-tumor immunity. A recent study demonstrated

butyrate, one of the short-chain fatty acids (SCFAs), to be

directly involved in the upregulation of Id2 expression by

inhibiting histone deacetylase (HDAC) activity (98). Elevated

Id2, interfering with the activity of E2A, restores the expression

of E2A-repressed IL-12R and consequently activates IL-12

signaling, which is important for the cytotoxic activity of CD8

T cells. Curiously enough, this Id2-expression promoting

activity of butyrate appears to be a cell type and

microenvironment-specific phenomenon since, contrary to

CD8 T cells, butyrate is known to promote iTreg induction

from TCR-stimulated CD4 T cells in the presence of TGFb (99,

100), which according to our finding is negatively affected by

enhanced expression of Id2. Thus, it will be interesting to

determine further how specific metabolites of gut microbiota
Frontiers in Immunology 09
associated with cancer and inflammatory diseases affect T cell

differentiation and function within the E-ID axis.
Concluding remarks

In the past few years, several studies have clarified the

functions and mechanisms of the E-ID axis determining T cell

phenotypes in inflammation and cancer; however, further

research is necessary to understand the role of E and ID

proteins in the metabolic reprogramming of T cells in health

and disease. In particular, an integrated mechanistic

understanding of the E-ID axis regulating metabolic pathways

or rate-limiting enzymes in glycolysis or mitochondrial fatty acid

oxidation could provide opportunities for developing effective

therapeutic interventions to promote the anti-cancer function of

tumor-infiltrating T cells. Moreover, interesting areas focused on

improving tumor immunotherapy are the reversal of T cell

exhaustion and the maintenance of stem-like memory T cells,

which have been demonstrated as long-lived, self-renewing T

cell populations important for sustained antitumor immunity in

the TME (101). The ID proteins not only inhibit the

differentiation of exhausted CD8 T cells in the TME but are

also involved in generating diverse memory CD8 T cell subsets

under viral infection conditions. Therefore, understanding the

E-ID axis in this context could contribute to developing new

approaches to improving the bet ter outcomes of

cancer immunotherapy.

Besides T cells, several studies have suggested that ID

proteins in cancer cells play an important role in promoting

tumor progression and metastasis (14, 102). There is increasing

evidence that the functional inhibition of ID proteins by

pharmacological drugs in cancer cells suppresses cancer cell

proliferation under physiological conditions. For example, a

recent study showed that the chemical compound, AK-778-

XXMU, is a potent Id2 antagonist that can be used to treat

gliomas (14, 103). On the contrary, ID protein expression

improves the function of tumor-infiltrating T cells and virus-

reactive T cells. In line with this finding, further preclinical

studies need to be conducted uti l iz ing humanized

immunocompetent mouse models to determine durable

responses of the pharmacological agonists in promoting and

stabilizing ID protein expression in T cells that may prevent

disease progression and/or recurrence in patients.

In this review, we discussed the critical roles of the E-ID axis

in controlling T cell homeostasis and function under steady-state

conditions and various pathological settings. Understanding the

complexities of the multiple factors and extrinsic signaling

pathways associated with the E-ID axis and further defining

the pros and cons of targeting the E-ID axis to affect T cell

responses is likely to emerge as an area of enormous therapeutic

relevance in the future for immune-mediated diseases

and cancer.
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