
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Tian Li,
Independent Researcher, Xi’an, China

REVIEWED BY

Zhijun Zhou,
University of Oklahoma Health
Sciences Center, United States
Shen Shen,
First Affiliated Hospital of Zhengzhou
University, China
Yang Yingchi,
Affiliated Beijing Friendship Hospital,
Capital Medical University, China

*CORRESPONDENCE

Wei Li
qwer_214@163.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 09 June 2022

ACCEPTED 29 July 2022
PUBLISHED 18 August 2022

CITATION

Zhou R, Peng N and Li W (2022)
Constructing a novel gene signature
derived from oxidative stress specific
subtypes for predicting survival in
stomach adenocarcinoma.
Front. Immunol. 13:964919.
doi: 10.3389/fimmu.2022.964919

COPYRIGHT

© 2022 Zhou, Peng and Li. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 18 August 2022

DOI 10.3389/fimmu.2022.964919
Constructing a novel gene
signature derived from oxidative
stress specific subtypes for
predicting survival in
stomach adenocarcinoma

Renlong Zhou1, Naixiong Peng2 and Wei Li2*

1Department of Blood Transfusion, Shenzhen Longhua District Central Hospital, Shenzhen, China,
2Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, China
Oxidative stress (OS) response is crucial in oncogenesis and progression of

tumor. But the potential prognostic importance of OS-related genes (OSRGs)

in stomach adenocarcinoma (STAD) lacked comprehensive study. STAD clinical

information and transcriptome data were retrieved from the Gene Expression

Omnibus and The Cancer Genome Atlas databases. The prognostic OSRGs

were filtered via the univariate Cox analysis and OSRG-based molecular

subtypes of STAD were developed using consensus clustering. Weighted

gene co-expression network analysis (WGCNA) was subsequently conducted

to filter molecular subtype-associated gene modules. The prognosis-related

genes were screened via univariate and least absolute shrinkage and selection

operator Cox regression analysis were used to construct a prognostic risk

signature. Finally, a decision tree model and nomogram were developed by

integrating risk signature and clinicopathological characteristics to analyze

individual STAD patient’s survival. Four OSRG-based molecular subtypes with

significant diversity were developed based on 36 prognostic OSRGs for STAD,

and an OSRGs-based subtype-specific risk signature with eight genes for

prognostic prediction of STAD was built. Survival analysis revealed a strong

prognostic performance of the risk signature exhibited in predicting STAD

survival. There were significant differences in mutation patterns, chemotherapy

sensitivity, clinicopathological characteristics, response to immunotherapy,

biological functions, immune microenvironment, immune cell infiltration

among different molecular subtypes and risk groups. The risk score and age

were verified as independent risk factors for STAD, and a nomogram integrating

risk score and age was established, which showed superior predictive

performance for STAD prognosis. We developed an OSRG-based molecular

subtype and identified a novel risk signature for prognosis prediction, providing

a useful tool to facilitate individual treatment for patients with STAD.
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Introduction

Stomach adenocarcinoma (STAD) is the most common

histological type (95%) of stomach tumors and on of the top

three causes leading to cancer mortality (1). STAD is highly

metastatic and the majority of STAD patients occur lymph node

metastasis when diagnosed (1). Currently, for STAD patients the

most effective treatment is the integration of radical surgery and

chemotherapy at the early stages. But still, most of STAD patients

are in advanced stagewhen diagnosed, resulting in a loss of optimal

chances for taking surgery (2). In addition, about 40% of STAD

patients will progress to metastasis and recurrence after surgery.

Consequently, despite great advances in therapeutic techniques, the

survival and prognosis of advanced STAD remain unsatisfactory

(3). Hence, to develop novel prognostic and diagnostic biomarkers

for STAD is an urgent task.

Oxidative stress (OS) is caused by an imbalance of synthesis

between oxidants and antioxidants and is accompanied by reactive

oxygen species (ROS) accumulation, participating in

carcinogenesis and cancer development (4). ROS overproduction

can lead to awide spectrumofDNA lesions and genotoxic damage,

eventually resulting in tumorigenesis (5). OS-related genes

(OSRGs) play crucial roles in countering OS and have been

reported to profoundly affect a variety of processes, including

proliferation, differentiation, and angiogenesis (6–8). Studies have

reported that OSRGs are predictive of cancers such as gliomas (9),

bladder cancer (10), and prostate cancer (11). The potential role of

OSRGs in the tumorigenesis and progression of STAD has been

gradually demonstratedbygrowingevidence (12–15).Nonetheless,

limited knowledge is available about the molecular pattern of

OSRGs in STAD and the link of OSRGs with clinical features,

immune landscape, and response to immunotherapy, and

drug sensitivity.

To comprehensively understand the role of oxidative stress in

STAD development as well as its potential in STAD treatment, we

explored the expressionpatterns ofOSRGsand constructedOSRG-

related molecular subtypes. We assessed the crosstalk between

OSRGs and immune microenvironment, responsiveness to

immunotherapy or chemotherapy based on OSRG-related

molecular subtypes. Furthermore, we built a prognostic risk

signature from the hub gene set associated with OSRG-based

subtypes and established a novel nomogram for STAD

prognostic prediction. Furthermore, the link of immune

landscape, responsiveness to immunotherapy, and drug

sensitivity, clinical characteristics, with the risk signature was

studied. To the best of our knowledge, this was the first STAD

classification based onOSRG signatures and elucidated howOSRG

signatures were intrinsically linked to the response to

chemothe r apy and immuno the r apy and immune

microenvironment in detail. It may provide new insights into the

pathophysiology of STAD, facilitating more tailored treatments

and improving the outcomes for STAD patients.
Frontiers in Immunology 02
Materials and methods

Data collection and preparation

The transcriptome data and clinical information of STAD

patients were obtained from TCGA and GEO databases. The

patients without complete follow-up, status information, or

clinical information of shorter than 30 days were excluded.

Totally 337 TCGA patients were retained as a training cohort,

and 291 patients of the GSE15459 (182 patients) and GSE26901

(109 patients) cohorts were utilized for validation. The median

value was taken as the gene expression value when a gene ID

corresponded to multiple probes in GEO datasets or when

multiple gene symbols existed in the TCGA cohort. The

human OSRGs were obtained from the “GOBP_RESPONSE_

TO_OXIDATIVE_STRESS” pathway in the MSigDB database.
Consensus clustering

The prognostically correlated OSRGs were found via the

univariate Cox regression analysis, to explore the correlation

among mRNA expression of these prognostic OSRGs, and

Spearman correlation analysis was conducted. On the basis of

prognostic OSRGs, the consensus clustering analysis in

“ConsensusClusterPlus” R package was carried out to generate

molecular subtypes (16). “KM” algorithm and “1-Pearson

correlation” was selected as distance for conducting 500 runs of

bootstraps, with each run containing 80% of samples. We chose

Cluster number k from 2 to 10. The optimal number of cluster was

determined by cumulative distribution curve (CDF) and consensus

matrix. To compare the prognosis among the subtypes, Kaplan-

Meier (K-M)analysiswas executed.And theexpressionofprognosis-

related OSRGs among the subtypes was heatmapped and clustered.

Weperformed single-sample gene set enrichment analyses (ssGSEA)

to acquire theOS ssGSEAscores ofmolecular subtypes in “GSVA”R.
WGCNA

WGCNAin the “WGCNA”RpackagewasperformedonTCGA

cohort for the identification of the key module associated with the

molecular subtypes and the underlying molecular connections (17).

The average linkagemethod andPearson’s correlationmatrices were

adopted for all paired genes, and using the absolute value of the

correlation of transcriptional data, a co-expression similarity matrix

was constructed. Next, weighted adjacency matrix based on the co-

expression similarity matrix with appropriate power of b was

calculated. Then the weighted adjacency matrix was converted into

topological overlap matrix (TOM). Dynamic tree cut method was

used for identifying modules, which were clustered then. The

correlations between gene module and OSRG-based subtypes were
frontiersin.org
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calculated to identify the hubmodule, which was selected for further

analysis. We also performed Spearman correlation analysis to

investigate gene significance and its correlation with modules. And

the “clusterprofiler” R package was applied to perform enrichment

analysis (18).
Prognostic signature construction and
efficacy evaluation

The hub module associated with the molecular subtype was

identified using WGCNA analysis. Then, to screen the

prognosis-related genes in the hub module, univariate Cox

regression analysis was adopted, and LASSO regression

analysis was used to build a risk score using the following

formula: risk score = ∑bi× Expi. Where the bi is the coefficient
and Expi is gens’ normalized level of expression. STAD patients

in the TCGA and GEO cohorts were divided into two risk

groups (low and high) by the median risk score value. To explore

the prognostic significance of the risk score in STAD, K-M

survival analysis was conducted with log-rank test, and the risk

signature was evaluated with receiver operating characteristic

(ROC) curve in the survivalROC and timeROC packages (19).
Gene set enrichment analyses (GSEA)

GSEA on TCGA data was carried out to investigate the

biological functions of those selected genes to infer their impact

with GSEA (version 4.0.3). Statistical significance was P-value <

0.05 and the false discovery rate (FDR) < 0.05. In the Hallmark

database all candidate gene sets were used in the GSEA analysis.

In addition, the gene sets of ferroptosis and autophagy are

obtained from the “WP_FERROPTOSIS” and “GOBP_

REGULATION_OF_AUTOPHAGY” pathways in the MSigDB

database, respectively, and the inflammatory- and angiogenesis-

related gene sets are derived from literature (20, 21).
Assessment of immune landscape

The proportions of 22 immune cell subtypes in the TCGA

cohort were evaluated by CIBERSORT algorithm, a tool for

assessing immune cell infiltration (22), and the stromal and

immune scores were calculated using ESTIMATE algorithm to

further explore tumor microenvironment (TME).
Prediction of responsiveness to
immunotherapy and chemotherapy

The TIDE algorithm is a tool for the prediction of

responsiveness to immune checkpoint inhibitors, and it was
Frontiers in Immunology 03
applied to evaluate the responsiveness to immune checkpoint

inhibitors in the TCGA cohort using the transcriptome data (23).

The TIDE algorithm calculates three scores that limit T cell

infiltration, including the M2 subtype of tumor-associated

macrophages (TAM) score, myeloid-derived suppressor cells

(MDSCs) score, tumor-associated fibroblasts (CAF) score.

Meanwhile, the dysfunction score of tumor-infiltrating cytotoxic

T lymphocytes (CTLs) and the rejection score of CTLs by

immunosuppressive factors were also assessed. Additionally, the

“pRRophetic” in the R calculated estimated biochemical half

maximal inhibitory concentration (IC50) and forecast the

sensitivity of samples to four chemotherapeutic drugs in the

TCGA cohort (24).
Immune checkpoint and single-sample
GSEA (ssGSEA)

Expressions of TCGA immune checkpoint genes were

analyzed and compared according to the molecular subtype

and risk signature. We performed ssGSEA analysis in “GSVA”

R package to evaluate the activities of interested pathways in the

molecular subtypes and different risk groups (25).
Mutation analysis

The TMB was calculated for each sample as somatic

mutation numbers (nonsynonymous mutations) per megabase

in the coding region of tumor genome, and 20 TCGA genes or

from different risk groups with the most frequent mutation were

illustrated and analyzed using the “GenVisR” R package (26). K-

M analysis with log-rank test and GSEA analysis was performed

for the Mutant and wild-type (WT) groups.
Statistical analysis

The R software (v3.6.3) performed all statistical analyses. The

correlation matrices were conducted using Pearson or Spearman

correlation. Wilcoxon test was conducted for two-group

comparisons. Survival differences were compared using K–M

curveswithaLog-rank test. Statistical significancewasP-value<0.05.
Results

The mutation patterns and transcriptome
characteristics of OSRGs in STAD

A total of 436 OSRGs were identified in this study and the

mutations of OSRGs in STADwere analyzed. There are 386 (88.3%)

patients had mutations in OSRGs, among which the top20 OSRGs
frontiersin.org
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were shown in Figure 1A. Among them, the mutation frequency of

TP53 gene was the highest, followed by LRRK2 and PXDN. TCGA

patients were then categorized into the Mutant group and the WT

group according to the mutations in OSRGs. We compared the

biological functions between themutant group and theWTgroup by

Gene Set Variation Analysis (GSVA) enrichment analysis. Tumor-

related gene setssuch as ALLMARK_E2F_TARGETS,

HALLMARK_G2M_CHECKPOINT, HALLMARK_MYC_

TARGETS_V1, HALLMARK_DNA_REPAIR, were enriched in

the mutant group, while in WT group immune-related pathways

were significantly enriched (Figure 1B). This indicated that the

mutation of OSRGs may lead to functional changes and affect the

survival and prognosis of patients with STAD.

Consensus clustering on OSRGs

To understand the OSRGs expression patterns, we identified

36 prognosis-related OSRGs in the TCGA cohort via univariate
Frontiers in Immunology 04
Cox regression analysis (Figure 2A). Here, 34 “risk” OSRGs

contribute to poor prognosis while the rest 2 “protective”OSRGs

were related to a better outcome. The correlation matric of the

expression of the 36 OSRGs was illustrated in Figure 2B, which

showed significant correlations between different OSRGs.

According to the expression profiles of the 36 OSRGs, STAD

patients in TCGA were classified into four subtypes (C4, C3, C2,

C1) (Figures 2C–E). Survival analysis revealed significant

prognostic differences among four subtypes (p=0.0073), as

shown in Figure 2F. The C1 subtype exhibited the poorest

prognosis while the C4 subtype showed the best outcome. We

calculated the “OS ssGSEA scores” of each TCGA patient having

STAD, and found that the C4 subtype had the lowest “OS

ssGSEA scores” whereas the C1 subtype has the highest one

(Figure 2G). Additionally, we compared the expression of 36

OSRGs in different molecular subtypes (Figure 2H) and found

that the “risk” gene was high-expressed in C1, while the

“protective” gene was high-expressed in C4.
A

B

FIGURE 1

The mutation patterns and transcriptome characteristics of OSRGs in STAD. (A) Mutation profile of OSRGs in patients with STAD; (B) GSVA
analysis between the mutant group and the WT group.
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Clinicopathological characteristics and
mutation patterns in the different
molecular subtypes

We compared the differences in clinicopathological

characteristics and mutation patterns according to the

molecular subtypes. As shown in Figure 3, our data revealed

that significant differences occurred in the T stage, stage, age,
Frontiers in Immunology 05
and status between different molecular subtypes. Specifically, the

C1 subtype exhibited an advanced grade and a higher mortality

rate. Meanwhile, among different molecular subtypes, OSRGs

with high SNP frequency were different. In the waterfall map, 20

genes, which had the highest mutation rate in the C1, C2, C3,

and C4 subtypes, respectively, were displayed. In addition, four

molecular subtypes also presented different genomic features

including homologous recombination defects, aneuploidy,
A

B

D

E

F
G

H

C

FIGURE 2

Molecular clustering based on OSRGs in the TCGA cohort. (A) Forest plot of OSRGs that correlated with prognosis; (B) Correlation matric of
prognosis-related OSRGs; (C) Consensus cumulative distribution function (CDF) diagram when different k values. (D) Delta area plot for relative
change in the area under CDF curve for k compared to k-1. (E) Consensus matrix when number of groups (k) = 3. In the consensus matrix, white
meant that samples were impossibly clustered together, and dark blue meant that samples were always clustered together. Both rows and columns
of the matrix represented samples. (F) Kaplan-Meier curves for overall survival of four molecular subtypes (number of C1 = 95, C2 = 102, C3 = 62,
and C4 = 78). The survival probabilities were compared with log-rank test. (G) Comparison of OS ssGSEA score among the C1, C2, C3, and C4
subtypes in the TCGA cohort. (H) Clustering analysis of the expression of the 36 prognostic OSRGs. ns, no significance. *P < 0.05, **P < 0.01, ***P
< 0.001, ****P < 0.0001.
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tumor mutation burden, fraction altered, number of segments

(Figure S1A). Furthermore, we obtained the molecular subtypes

of STAD from previous studies (27, 28) and compared the

correlations between our defined molecular subtypes and other

molecular subtypes (Figures S1B, C). C3 and C4 subtypes had

higher proportion of MSI subtypes, consistent with a study in

which cancer patients with MSI demonstrated a more

favorable prognosis.
Immune landscape and responsiveness
to immunotherapy and chemotherapy in
the different molecular subtypes

The infiltration of immune cells of TCGA patients were

assessed. CIBERSORT analysis revealed that a vast majority of
Frontiers in Immunology 06
immune cells showed a different infiltration level among the four

subtypes (Figure 4A). Similar results were also shown in TIMER

analysis (Figure S2A). The immune score in other subtypes were

noticeably lower than the C1 subtype, indicating an elevated

immune infiltration in the C1 subtype (Figure 4B). Significant

differences in the expression level of most immune checkpoint

genes among the four subtypes were detected (P < 0.05,

Figure 4C). Meanwhile, we found that the C4 subtype

presented a lower CAF score, T cell exclusion score, T cell

dysfunction score, TIDE score, and a higher MDSC score than

the other three subtypes (Figure 4D). High TIDE score pointed

to a greater probability of immune escape and a lower

probability to benefit from immunotherapy. Thus, our data

implied that STAD patients of C4 could benefit from

immunotherapy. Drug sensitivity analysis showed that the four

molecular subtypes exerted significantly different responsiveness
A B

D E F

G H

C

FIGURE 3

The clinicopathological and mutation characteristics of molecular subtypes in the TCGA cohort. (A–G) Comparison of T stage, N stage, M stage,
clinical stage, age, gender, and outcome status among different molecular subtypes. (H) Waterfall plots of frequently mutated genes in four
molecular subtypes. *P < 0.05.
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to chemotherapy (Figure 4E). It demonstrated that the C1

subtype was more reactive to 5-fluorouracil than the other

subtypes, while the C4 subtype showed more responsive to

cisplatin and docetaxel than the rest subtypes. Furthermore,

differences were detected to be significant among the four

subtypes in the ssGSEA score of ferroptosis, autophagy,

angiogenesis, and seven inflammation-related genes

(Figures 4F–I).
Frontiers in Immunology 07
Gene modules associated with molecular
subtype derived from WGCNA

We performed WGCNA analysis for the development of co-

expression networks and identification of gene modules related

to molecular subtypes. The results of hierarchical clustering of

the TCGA samples was in Figure 5A. When pointing at values 9,

the research of an adequate soft-threshold verifying converged
A B

D

E

F G IH

C

FIGURE 4

The differences in the immune microenvironment and responsiveness to immunotherapy and chemotherapy among molecular subtypes in the
TCGA cohort. (A) Estimated proportions of 22 immune cells among the four subtypes; (B) Comparison of the stromal score, immune score, and
estimate score in the four subtypes; (C) The expression of immune checkpoints genes in the four subtypes; (D) Differences in TIDE analysis
results between different subtypes; (E) The box plots of the estimated IC50 for cisplatin, paclitaxel, docetaxel and 5-fluorouracil in different
subtypes; (F) The ssGSEA scores of seven inflammation-related gene in different subtypes; (G–I) The ssGSEA scores of ferroptosis, autophagy,
angiogenesis-related gene sets in different subtypes. ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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toward scale-free topology (Figures 5B, C). Firstly, dynamic tree

cut algorithm (Dynamic Module) helped distinguish gene

modules that were then merged (Merged Module) with the

following criterion: r > 0.75, height = 0.3, deepSplit = 2,

minModuleSize = 30, as shown in Figure 5D. Finally, we

identified 20 gene modules in STAD and gene number in each

module was illustrated in Figure 5E. We compared the

correlations between the modules and molecular subtypes, and
Frontiers in Immunology 08
the data demonstrated that the red module was negatively

related to the C4 subtype (r = -0.5, p = 1.26e-22) and

significantly positively associated with the C1 subtype (r =

0.64, p = 1.47e-40) (Figure 5F). The module membership in

the red module was positively linked with the gene significance

(r = 0.88, p < 1e-5) in the C1 subtype, as shown in Figure 5G. The

biological functions of genes in the red module were enriched

and illustrated in Figure S3.
A B

D E

F G

C

FIGURE 5

Identification of gene modules that associated with molecular subtyps by WGCNA analysis in the TCGA cohort. (A) Cluster analysis of samples
of STAD in the TCGA cohort; (B) Analysis of the scale-free fit index for various soft-thresholding powers (b); (C) Analysis of the mean
connectivity for various soft-thresholding powers. (D) Hierarchical clustering dendrogram of co-expressed genes in modules in STAD; (E) The
number of genes in each gene module; (F) Correlation between the module eigenvectors of each module and molecular subtypes; (G) Scatter
diagram for module membership vs. gene significance for C1 subtype in the red module.
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Construction and validation of an
OSRGs-based prognostic signature

To build an OSRG-based prognostic signature, we firstly

screened 908 prognostic OSRGs (p < 0.05) from the red module

via univariate COX regression analysis (Figure 6A), which

consisted of 899 “risk” genes and 9 “protective” genes. According

to the results of the LASSO analysis, eight prognostic OSRGs,

including CCDC178, GABARAPL2, PTPRD, MATN3, CPNE8,

SERPINE1, RAMP1, and FAAH, were further screened out based

on the optimal lambda value (0.0866) (Figures 6B–D).

Each STAD sample (in the TCGA cohort) were categorized

into two risk groups (low, high) by the median risk score

(Figure 7A). High-risk STAD patients showed an favorable

prognostic outcome compared with the low-risk group

(Figure 7B, p < 0.0001). As shown in Figure 7C, AUCs value

for 1-, 2-, and 3-year overall survival of STAD patients in the
Frontiers in Immunology 09
TCGA cohort were 0.67, 0.71, and 0.72, respectively. This was

further validated in the GSE21257 and GSE16091 cohorts

(Figures 7D–G). These data suggested that, the risk model

performed well and was robust in predicting prognosis of

STAD patients.

Moreover, we compared our prognostic model with other

four models from previous studies. Here, this study applied the

same methodology for calculating the risk score of other models

in TCGA cohort, and classified samples into two risk groups

based on z-score = 0. ROC analysis and survival analysis were

performed on the four models. Compared to these models, our

model showed the most favorable performance of AUC (0.67,

0.71, and 0.72 for 1, 3, and 5-year prognosis respectively, see

Figures S4A–D). Furthermore, we calculated C-index of the five

models, and our model showed the highest C-index value (0.65),

suggesting the best performance of our model in predicting

prognosis (Figure S4E).
A B

D C

FIGURE 6

The identification of prognostic OSRGs for risk signature in the TCGA cohort. (A) The identification of prognostic OSRGs from the red module
via univariate COX regression analysis. (B) The LASSO analysis was used to identify the prognostic variables and develop the predictive models.
(C) Plots of the produced coefficient distributions for the logarithmic (lambda) series for parameter selection (lambda). (D) The LASSO Cox
coefficients for each OSRGs in the risk signature.
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Clinicopathological characteristics in
different risk groups

The correlations between the clinicopathological

characteristics and the risk signature were analyzed by

stratified analyses. The results showed great differences in the

risk score according to the stratification by M stage, gender, N

stage, status, Stage, age, molecular subtypes, T stage (Figure

S5A). Younger STAD patients (≤ 60 years) showed higher risk

scores as compared with patients over 60 years old. The risk

score was lower in the T1 stage than in the other stages as

stratified by T stage grade. Patients with metastatic STAD had

higher risk scores than those without metastasis. STAD patients
Frontiers in Immunology 10
in early stage had the lowest risk scores than other advanced

clinical stages. The risk scores of deceased samples were

noticeably higher than those who were alive. Meanwhile, the

risk score of C1 was significantly higher, while that of C4 was

lower. In the gender and N stage, no significant differences were

observed. Correspondingly, difference comparison in

clinicopathological characteristics between the two risk groups

(Figure S5B). The results revealed significant differences in

molecular subtypes, age, T stage, outcome status between the

two risk groups. Furthermore, K-M subgroup analysis showed

that the OS of STAD between the two risk groups was noticeably

different based on stratification by age, gender, and clinical stage

(Figure S5C).
A B

D E F G

C

FIGURE 7

The construction of OSRG-based prognostic signature in the TCGA cohort. (A) The distribution of patient longevity status and risk score, and
the expression profiles of nine aging genes in high and low risk group in TGGA cohort. (B, D, F) represent the receiver operating characteristic
curves for forecasting overall survival in the TCGA cohort, GSE21257, and GSE16091 cohort, respectively. (C, E, G) represent the survival curves
for patients with high risk score and low risk score in TCGA cohort.
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Immune infiltration and biological
functions in the different risk groups

To clar i fy the di fferences in pat ients ’ immune

microenvironment of the two risk groups, the relative abundance

of 22 immune cells was compared. There are eight immune cell

subtypes that showed significant differences in infiltration levels in

STAD. In low-risk group, the infiltration levels of the resting NK

cells, activated CD4memory T cell, plasma cells, follicular helper T

cells were higher than high-risk patients, while the infiltration level

of M2 macrophages, resting dendritic cells, resting mast cells,

monocytes in the high-risk group were significantly higher than

the low-risk group (Figure 8A). Similar data were also shown in

TIMER analysis (Figure S2B). In comparison with low-risk

samples, those show of a high risk had a higher immune score,

ESTIMATE score, stromal score (Figure 8B). The correlation

matric found significantly positive correlations between the risk

score and the immune infiltration of monocytes and resting mast

cells. Meanwhile, the risk score was negatively related to the

follicular helper T cells and immune infiltration of activated CD4

memory T cells (Figure 8C). Furthermore, we performed ssGSEA

analysis to reveal the connections between biological functions and

the risk score. Significant correlations were observed between the

risk score and biological functions as well as inflammation-related

genes, as shown inFigures 8D,E. Inaddition,wenoticed that theOS

ssGSEA scorewas positively associatedwith the risk score (r = 0.34,

p = 2.06e-10) (Figure 8F).
Risk signature predicts responsiveness to
immunotherapy and chemotherapy

The majority of immune checkpoint genes in different risk

groups were differently expressed (Figure S6A). Furthermore, the

TIDE analysis revealed a significantly higher CAF score, T cell

exclusion score, T cell dysfunction score, and TIDE score, and a

lowerMDSC score in the high-risk group (Figure S6B). These data

indicated that STADpatientswith low-risk scores aremore likely to

benefit from immunotherapy. Additionally, the risk score was

revealed to be positively related to the CAF, TIDE,T cell

dysfunction, and T cell exclusion scores (Figure S6C). In the

TCGA cohort, patients with a low risk were more sensitive to

cisplatin and docetaxel treatments than high-risk ones (Figure

S6D). These data suggested that the OSRG-based signature

showed a close association with the responsiveness to

immunotherapy and chemotherapy.
Improvement of the prognosticmodel via
integrating risk signature and clinical features

To develop a better prognostic model for STAD, we

constructed a decision tree model and multivariate Cox
Frontiers in Immunology 11
regression model via combining the OSRG-based risk

signature and other clinical parameters. Our data showed that

the patients can be stratified into four distinct groups (Lowest,

Low, Mediate, High) using a decision tree on only risk score, age,

and clinical stage (Figure 9A). From survival curves, the overall

survival of STAD among the four defined subgroups showed

significant differences (Figure 9B). Patients in the “Lowest”,

“Low”, and “Mediate” subgroups belong to the OSRG-based

low-risk group, while the “High” subgroup belongs to the

OSRG-based high-risk group (Figure 9C). In addition, C1 and

C2 subtypes occupy more than the C3 subtype in the “Highest”

group (Figure 9D). The risk score was seen as the most

significant independent prognostic factor of STAD (HR = 1.81,

95%CI: 1.51 - 2.16, P = 9.52e-11), followed by age (HR = 1.03,

95%CI: 1.01 - 1.05, P = 0.00111) (Figures 9E, F). Therefore, a

nomogram was then generated using the risk score and age for

the prediction of STAD prognosis (Figure 9G). The nomogram

can effectively forecast the actual survival outcomes, as shown by

calibration curve (Figure 9H). Furthermore, the DCA curve

demonstrated that the nomogram and risk signature had

better prognostic capacity than other clinicopathological

features, as shown in Figure 9I.
Discussion

Although great advances in diagnostic and surgical techniques

in recent years, the overall survival of patients with advanced

STAD remains poor. There is an urgent need to develop novel

prognostic biomarkers of STAD and reveal the mechanisms of

tumor progression. Much evidence has linked OS to

tumorigenesis and progression, and OSRGs, which regulate OS

processes, have been shown to have great potential as biomarkers

and therapeutic targets. Although a recent study reported the

value of OSRGs in STAD prognosis (29), the relationship between

OSRGs characteristics and STAD clinicopathological features,

responsiveness to chemotherapy and immunotherapy, immune

microenvironment remains unclear. In our study, we first

identified 36 OSRGs that are associated with STAD prognosis

and the functions of these genes in STAD have been gradually

elucidated in recent years. For instance, the elevated expression of

the platelet-derived growth factor D (PDGFD) was proved to be

an indicator for a poor prognostic outcome of patients with gastric

cancer (GC) (13), and the PDGFD-related immune-gene

signature was regarded as a moderator to guide immunotherapy

programs. Glutathione peroxidase 3 (GPX3) has been confirmed

to prevent migration and invasion in GC via NF-kB/Wnt5a/JNK

signaling (15). Meanwhile, the hypermethylation of GPX3 in GC

forecasts a shorter tumor recurrence time in patients aged > 60

(14). A recent study demonstrated that CD36 can mediate

palmitate acid-induced metastasis of GC (12). However, the

functions and underlying mechanisms of prognosis-related

OSRGs in STAD need to be further exhaustively investigated.
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According to the best of our knowledge, were are the first to

construct molecular subtypes based on these OSRGs for STAD

and reveal their associations with clinicopathological features,

immune microenvironment, immunotherapy response and

chemosensitivity in STAD patients.
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STAD is a typical heterogeneous malignancy with different

subtypes and clinical behaviors (30). The OSRG-based subtypes

of STAD also exhibited distinct diversity with regard to the

clinicopathological features, immune microenvironment, and

immunotherapy response and chemosensitivity. ROS was
A B
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C

FIGURE 8

The associations between immune infiltration and biological functions in different risk group in the TCGA cohort. (A) The proportion of 22
immune cells between different risk groups; (B) Comparison of the stromal score, immune score, and ESTIMATE score between the high- and
low-risk groups. (C–F) Correlation analysis of the risk score and 22 immune cells, biological functions, inflammation-related genes, as well as
the OS ssGSEA scores. ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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reported to be involved in the regulation of immune

checkpoint genes. An enhanced generation of ROS was able

to promote PD-L1 expression in tumor cells (31), and we also

observed differential expression of immune checkpoint genes

among OSRG-based molecular subtypes. This implicates

possible differences in immunotherapy response of these

subtypes and the potential of these subtypes to aid in the

development of an individual’s immunotherapy strategies.

Subsequent TIDE analysis further revealed differential

immunotherapy responses between subtypes. The OSRG-

based subtype was noticed to be correlated with two subtypes
Frontiers in Immunology 13
(microsatellite instability and Epsterin-Barr virus subtypes),

which have been confirmed to be more likely to benefit from

immune checkpoint blockade (32–34). The chemosensitivity is

thought to be associated with OS in STAD. The cisplatin

resistance in GC cells could be potentiated by mitochondrial

dysfunction by targeting a ROS-activated pathway (35), and

piperlongumine could enhance the antitumor efficacy of

oxaliplatin via inducing ROS in GC cells (36). Our results

demonstrated that the OSRG-based subtypes showed different

chemotherapy sensitivity, implying the potential role of OSRGs

in drug resistance to STAD.
A B D

E

F

G

IH

C

FIGURE 9

Improvement of prognostic model via integrating risk signature and clinical features in the TCGA cohort. (A) Patients with full-scale annotations
including risk score, metastatic, gender and age were used to build a survival decision tree to optimize risk stratification. (B) Comparison of overall
survival of the four subgroup obtained from the decision tree model. (C) Correlations between the four subgroup and the risk signature.
(D) Correlations between the four subgroup and molecular subtypes. (E) Univariate and (F) multivariate Cox analysis of risk score and
clinicopathological characteristics in the TCGA cohort. (G) A nomogram combining risk signature and age was generated in the TCGA cohort. (H)
Comparison of the calibration curve for 1-, 2-, 3- year overall survival of nomogram. (I) Decision curves for the clinical net benefit of each model in
comparison to all or none strategies. The x-axis indicated the threshold probability, and the y-axis indicated the net clinical benefit. *P < 0.05.
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In this study, WGCNA was performed to select the hub gene

module that related to the OSRG-based subtypes, and a novel

risk signature was developed from these hub genes via lasso

regression analysis. This OSRG-based subtype-specific gene

signature was identified as an independent prognostic factor

with a robust prognostic value for STAD, and subsequent

analyses further confirmed that this risk signature has a huge

advantage in the prognostic prediction for patients with STAD.

The nomogram model integrating the risk signature and age

exhibited better inspection efficiency than that of other

clinicopathological features. In addition, our data revealed

significant differences in the clinical features, immune

infiltration, and responsiveness to immunotherapy and

chemotherapy between two risk groups. The risk signature

could be applied to the prognosis treatment and prediction of

STAD patients.

Herein, the OSRG-based subtype-specific risk signature

enrolled eight genes, which is broadly implicated in tumor

progression and initiation. The coiled-coil domain-containing

protein 178 (CCDC178) has been found to be mutated in

hepatocellular carcinoma (HCC) (37) and GC cells (38), and it

was found to promote HCC metastasis by mediating anoikis (39).

GABA type A receptor-associated protein-like 2 (GABARAPL2)

was involved in protein transport andmembrane fusion events and

has been proved to be related to autophagy (40). Protein tyrosine

phosphatase receptor delta (PTPRD) was frequently decreased in

GC and was correlated with worse a higher risk of distant

metastasis, overall survival, advanced stage (41). Previous studies

found that Martrilin-3 (MATN3) was abnormally expressed and

associatedwith the prognosis ofGC (42, 43), and recent studies also

confirmed the diagnostic and prognostic value of MATN3 for GC

from comprehensive data mining (44, 45). Copine 8 (CPNE8) was

preferentially expressed in ovarian CCC compared to HGSC.

However, few studies were conducted to explore the effects of

CPNE8 in tumorigenesis. Serpin family E member 1 (SERPINE1)

encodes plasminogen activator inhibitor 1 (PAI-1),which regulates

extracellular matrix (ECM) remodeling through a direct inhibition

of plasminogen activators (46). SERPINE1 was involved in the

TME remodeling and immune infiltration and its overexpression

was revealed to be associated with poor patient outcome in various

cancers (47, 48). The receptor activity-modifying protein 1

(RAMP1) could promote tumorigenesis in prostate cancer (49).

Fatty acid amide hydrolase (FAAH) hydrolyzes the

endocannabinoid anandamide and other N-acylethanolamines,

which have been reported with anti-cancer effects (50).

However, our study had some limitations. The current

research was conducted using retrospective data from public

databases. Therefore, it should be validated in more prospective

and multi-center STAD cohorts in the future. Secondly, our

results still need in vivo or in vitro experiments to validate our

mechanism analysis. Therefore, further studies are required to

explore the underlying mechanisms of the signature in the

development of STAD.
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Conclusion

In conclusion, this study developed four molecular subtypes

with distinct diversity based on 36 prognostic OSRGs and

constructed a novel prognostic risk signature of STAD. We

further elucidated the immune landscape, biological functions,

drug sensitivity, and immunotherapy response according to the

molecular subtypes and risk groups. The risk signature and age

were identified as independent risk factors of STAD, and a

nomogram combining the novel risk signature and age was

developed. It may serve as a clinical tool for making personalized

therapeutic treatment and forecasting prognosis for patients

with STAD.
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