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Toll-like receptor-mediated
innate immunity orchestrates
adaptive immune responses in
HBV infection
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and Mengji Lu2*

1Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Institute for Virology, University Hospital Essen,
University of Duisburg-Essen, Essen, Germany
Chronic hepatitis B virus (HBV) infection remains to be a substantial global

burden, especially for end-stage liver diseases. It is well accepted that HBV-

specific T and B cells are essential for controlling HBV infection. Toll-like

receptors (TLRs) represent one of the major first-line antiviral defenses through

intracellular signaling pathways that induce antiviral inflammatory cytokines

and interferons, thereby shaping adaptive immunity. However, HBV has

evolved strategies to counter TLR responses by suppressing the expression

of TLRs and blocking the downstream signaling pathways, thus limiting HBV-

specific adaptive immunity and facilitating viral persistence. Recent studies

have stated that stimulation of the TLR signaling pathway by different TLR

agonists strengthens host innate immune responses and results in suppression

of HBV replication. In this review, we will discuss how TLR-mediated responses

shape HBV-specific adaptive immunity as demonstrated in different

experimental models. This information may provide important insight for

HBV functional cure based on TLR agonists as immunomodulators.
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1 Introduction

Hepatitis B virus (HBV) infection affects approximately 3.5% of the world’s

population and remains a major cause of end-stage liver disease, such as cirrhosis and

hepatocellular carcinoma (HCC) (1). HBV-specific adaptive immune responses play an

essential role in HBV clearance. During acute HBV infections, vigorous HBV-specific

T-cell responses contribute to viral clearance (2). However, HBV-specific T cells exhibit

quantitative and functional defects accompanied by an exhausted phenotype with

upregulation of several coinhibitory molecules during chronic HBV infection (3). This
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is considered as a major contributing factor to HBV persistence.

Currently available treatment regimens, including pegylated

interferon alpha (Peg-IFN-a) and nucleos(t)ide analogs (NAs),

can effectively suppress HBV replication but rarely achieve a

functional cure. In recent years, various immunotherapeutic

agents that aim to restore HBV-specific immune responses

have been investigated, including anti-PD1 antibodies (4),

CTLA4 inhibitors and pattern recognition receptor (PRR)

agonists (5). However, these novel treatment options are still

under preclinical or early clinical evaluation.

Toll-like receptors (TLRs), members of the evolutionarily

ancient family of PRRs, play a central role in responses to

microbial pathogens by recognizing pathogen-associated

molecular patterns (PAMPs) (6). Twelve and 10 functional

TLRs have been identified in mice and humans, respectively

(7). Based on the cellular localization and the respective PAMP

ligands, TLRs are largely divided into two groups. TLR3, TLR7,

TLR8, and TLR9 are localized in intracellular vesicles, such as

endosomes, endoplasmic reticulum (ER), and lysosomes, and

recognize viral DNA (TLR9) or RNA [double-stranded RNA

(TLR3), single-stranded RNA (TLR7 and TLR8)] (8, 9). TLR1,

TLR2, TLR4, TLR5, and TLR6 are localized in the cell surface

and recognize extracellular bacterial and fungal cell wall

components and some viral proteins, including lipoproteins

(recognized by TLR1, TLR2, and TLR6), lipopolysaccharide

(LPS) (TLR4), and flagellin (TLR5) (8). Upon recognizing

respective PAMPs, TLRs selectively recruit distinct adaptor

molecules, such as TRIF and MyD88, and initiate downstream

signaling events that result in the secretion of type I interferon

(IFN), inflammatory cytokines, and chemokines (9, 10). In this

review, we will discuss the interaction between TLRs and HBV

and how different TLR ligands regulate HBV-specific T-

cell responses.
2 TLR-mediated innate responses to
HBV infection

2.1 Recognition of HBV by TLRs

The recognition of HBV by the innate immune system

involves three types of host cells: hepatocytes, innate immune

cells, such as dendritic cells (DCs) and macrophages, and hepatic

non-parenchymal cells (11). Previously, acute HBV infection has

been reported to only weakly induce the expression of type I IFN

and innate immune genes within the liver of infected animals

(12) and patients (13–15). However, Hösel et al. found that HBV

could be recognized by Kupffer cells (KCs), present in primary

human hepatocytes (PHHs) culture in vitro. This recognition

leads to the activation of the NF-kB signaling pathway and the

subsequent release of proinflammatory cytokines but does not

induce an interferon response in KCs (16). Moreover, a recent
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study also showed that infection of PHHs with HBV induces the

secretion of proinflammatory cytokines through TLR2 signaling

but not IFNs (17). Consistent with these findings, another study

showed that mouse B cells could be activated by HBV particles

through the TLR2–MyD88–mTOR axis (18). Furthermore,

HBsAg has been reported to be recognized by TLR4 on

monocytes or myeloid DCs via CD14 and increase the

production of IL-10 (19, 20). These data suggest that host

innate immunity could indeed sense HBV infection, although

it may be weak.

Interestingly, the genetic single-nucleotide polymorphisms

(SNPs) of TLRs have potential effects on the outcome of HBV

infection. The TLR3 (rs3775290, rs3775291) and TLR4

(rs4986790) SNP variants link to a higher risk of chronic HBV

infection and HCC (21, 22), while mutations of rs3804099 and

rs4696480 in TLRs correlate with HBsAg reduction and liver

function improvement (23).
2.2 Impaired expression and function of
TLRs in HBV infection

During chronic infection, HBV modulates TLR response

(24). The impaired expression of TLRs in immune cells from

patients with chronic hepatitis B infection (CHB) has been

reported in several studies. Peripheral blood mononuclear cells

(PBMCs) from CHB patients displayed a significantly reduced

expression of TLR transcripts, including TLR1, 2, 4, and 6 (25).

Similarly, PBMCs from CHB patients showed a reduced

expression of TLR3 (26), TLR8 (27), TLR7, and TLR9 (28, 29)

as well as the TLR signaling molecules IRAK4, TRAF3, and IRF7

(30). Additionally, patients who achieved a complete response

sustained higher TLR8 mRNA levels in PBMCs than non-

responders at week 12 after Peg-IFN-a therapy (27).

Consistent with this finding, partial restoration of TLR2 and

TLR3 expression in PBMCs has been observed in patients with

virological response after treatment (26, 31).

In addition to downregulating TLR expression, HBV

infection also impairs the functional response of TLR

signaling. PBMCs from CHB patients exhibit impaired

cytokine secretion after challenging with TLR2, TLR4 (25, 32),

and TLR 8 ligand (27). Consistent with this finding, PBMCs and

plasmacytoid DCs (pDCs) from CHB patients have shown

significantly decreased IFN-a production in response to TLR7

and TLR9 ligands (33, 34). Indeed, HBV components have been

reported to interrupt the intracellular signaling pathways of

TLRs. HBsAg inhibits IRF7 expression and nuclear

translocation in pDCs (34) and also interferes with the NF-kB
pathway by interacting with the TAK1–TAB2 complex (35).

Moreover, HBeAg has been reported to disrupt homotypic TIR :

TIR interactions and thus suppress TIR-mediated activation of

the NF-kB and IFN-a promoters (36). Furthermore, HBV

polymerase inhibits the activity of IKKs and thereby
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suppresses TLR3- and TLR4-induced NF-kB signaling (37). Wu

et al. showed that supernatant from TLR3-stimulated liver

sinusoidal endothelial cells (LSECs) suppressed HBV

replication in hepatocytes (38). However, HBV components,

such as HBsAg, HBeAg, and HBV virions, suppressed the

activation of IRF-3, NF-kB, MAPK, and ERK 1/2 and

abrogated TLR-induced antiviral activity in LSECs (39, 40).

Taken together, these studies suggest that various HBV

components can interrupt the TLR signaling pathway, which

might explain the impaired function of the TLR signaling

pathway during HBV infection.

Of note, persistent inflammation in CHB patients is also

partly responsible for the impairment of TLR response. For

instance, IFN-a production by pDCs in response to TLR7 or 9

ligands is negatively correlated with alanine aminotransferase

(ALT) levels (41, 42).
3 Regulation of HBV-specific
immune responses by TLR agonists

TLR agonists may directly inhibit HBV replication in

hepatocytes or indirectly suppress HBV replication by antiviral

cytokines produced by other innate immune cells (43, 44). On

the other hand, HBV-specific T- and B-cell responses ultimately
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determine the outcomes of HBV infections. In chronic HBV

infections, HBV-specific T cells display quantitative and

functional defects, a state referred to as T-cell exhaustion (45).

Moreover, exhausted T cells are more susceptible to tumor

necrosis factor-alpha (TNF-a)-related apoptosis-inducing

ligand (TRAIL)-dependent NK-cell-mediated lysis due to the

upregulation of the TRAIL death receptor (46). Therefore,

restoring HBV-specific T-cell responses in CHB patients

represents a promising strategy to achieve HBV functional cure.

Several studies have investigated the effects of TLR agonists

to restore HBV-specific CD8+ T-cell responses. The liver is a

specialized immunological organ with a unique composition of

innate immune cells, including liver resident cells, such as

parenchymal cells, and non-parenchymal cells, that is, LSECs,

KCs, and hepatic stellate cells, and recruited immune cells, such

as DCs, macrophages, and T and B cells. Activation of TLR

signaling in these hepatic cells can induce the production of type

I IFN and a variety of proinflammatory cytokines, such as TNF,

IL-6, IL-12, and IL-18 (47), which play essential roles in

controlling HBV replication (38, 48) but also modulate specific

immune responses (Figure 1). For instance, IL-6 could control

the expression of HBx and suppress HBV replication through

modulating the activity of HBV enhancer I, and it also

participates in the activation of NK cells and cytotoxic T cells

(CTLs) (49). IL-12 and IL-18 could rescue the exhausted CD8 T-
FIGURE 1

TLRs regulate HBV-specific T-cell responses. TLRs are expressed in T cells, hepatocytes, and hepatic non-parenchymal cells, including LSECs,
KCs, and DCs. TLRs may directly shape the T-cell response as costimulatory molecules. Stimulation of TLRs by their ligands leads to the
activation of the downstream MyD88/TRIF-dependent signaling pathway in hepatic non-parenchymal cells and promotes the maturation of
these cells, thus promoting antigen presentation to T cells and the production of IFNs, proinflammatory cytokines, and chemokines. IFNs exert
antiviral effects against HBV in infected hepatocytes. Chemokines and inflammatory cytokines recruit DCs, macrophages, and specific T cells
into the liver and promote HBV-specific T-cell activation and proliferation. Activated CLTs then kill infected hepatocytes. CTL, cytotoxic T cell;
DC, dendritic cell; HBV, hepatitis B virus; IFN, interferon; LSEC, liver sinusoidal endothelial cell; KC, Kupffer cell; TLR, Toll-like receptor.
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cell responses (50) or promote the secretion of IFN-g by T

cells (51).
3.1 TLRs directly shape the
T-cell response

Recent studies have stated that TLRs may serve as

costimulatory molecules on T cells (52, 53). The expression of

TLR2 is detected in activated CD8 T cells on their surface, and

TLR2 stimulation reduces the requirement of costimulatory

signals delivered by antigen-presenting cells (APCs) and

directly promotes their differentiation, proliferation, and

effector function (53–55). A recent study also demonstrated

that the TLR2 agonist P3C could directly enhance TCR-

dependent CD8 T-cell activation by increasing cellular

glycolysis and glutaminolysis (52). Similarly, the TLR7 ligand

also enhanced the effector functions of TCR-dependent CD8 T

cells primed by CD3, and the effects were accompanied by

upregulation of glucose uptake and glycolysis (56). Moreover,

human effector CD8+ T cells constitutively express TLR3 and

TLR9. Stimulation of these TLRs by respective ligands directly

promotes IFN-g production by T cells (57, 58). Overall, these

data suggest that activation of TLR signaling in T cells directly

promotes T-cell activation, proliferation, and effector functions.

However, the direct effect of TLR ligands on T cells in the

treatment of CHB requires further investigation.
3.2 TLRs indirectly shape the adaptive
immune response through innate
immune cells

3.2.1 TLRs regulate T-cell immunity
through DCs

As professional APCs, DCs exhibit a potent capacity to

prime naïve T cells and induce them to develop into different

subtypes of T cells based on the origin of the maturation signals.

There are two major DC subsets identified in humans: myeloid

DCs (mDCs) and pDCs (59). These cells express different sets of

TLRs. Specifically, pDCs predominantly express TLR7 and

TLR9, while mDCs express a wider range of TLRs, including

TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, and TLR8 (60).

Therefore, pDCs can sense the nucleic acids of viral pathogens

through TLR7 and TLR9 and induce the secretion of type I IFN.

pDCs exhibit a dysfunctional phenotype during chronic HBV

infection, indicated by downregulation of TLR9 (29, 61) and

reduction in antigen-presenting and migration capacity (62) and

decreased production of IFN-a and inflammatory cytokines in

the response to TLR7 and 9 ligands (29, 33, 34, 41, 63). The

functional deficit of DCs might participate in T-cell dysfunction

given the impaired interaction between DCs and T cells,

including failure of DCs to increase HLA-II and costimulatory
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proliferation and cytokine production (64). However, two

studies stated that the ability of pDCs in PBMCs to stimulate

T-cell proliferation was similar between CHB patients and

healthy control (42, 65). Despite these discrepancies,

therapeutic vaccines targeting DC function might represent an

opportunity to improve HBV-specific T-cell responses.

Some studies have investigated TLR agonists as vaccine

adjuvants to improve DC function and thus induce HBV-

specific T-cell responses. Synthetic long peptides (SLPs) are

linear amino acid sequences that are most efficiently presented

by DCs (66). Dou et al. found that the presence of the TLR2

ligand promoted the effects of HBV core protein-derived SLP to

boost CD4 and CD8+ T-cell responses in CHB patients ex vivo

(67). Later, the same group identified that HBV-core SLP that

conjugates with the TLR2 ligand also triggered a functional T-

cell response, but it reduced the cross-presentation efficiency of

the SLP-containing epitope by DC subsets (68). However, the

cross-presentation can be improved by either placing a valine–

citrulline linker between the TLR2 ligand and the long SLP or by

shortening the SLP (68).

3.2.2 TLRs regulate T-cell immunity through
hepatocytes or non-parenchymal liver cells

Murata et al. demonstrated that antigen presentation by

hepatocytes is more efficient than by hematopoietic cells for

inducing HBV-specific CD8+ T-cell responses in the liver (69).

Yan et al. reported that the TLR5 ligand flagellin (SF) could

modulate the intrahepatic CD8+ T-cell response by regulating

the responses of hepatocytes (70). Coculture of SF-treated

primary mouse hepatocytes with splenocytes results in the

activation of CD8+ T cells in the coculture system during anti-

CD3 stimulation or antigen-specific activation (70).

LSECs are liver-resident APCs that have competent capacity in

antigen cross-presentation to CD8+ T cells (71). However, the

antigen-specific interaction of LSECs with CD8+ T cells does not

induce T-cell activation under physiological conditions (72).

Nevertheless, T-cell tolerance induced by LSECs can be regulated

by several factors, such as NOD1 ligand, DAP (73), TLR2 agonist

(74), and combinatorial stimulation of CD28 and IL-12 (75). Liu

et al. illustrated that stimulation of LSECs with the TLR1/2 ligand

promoted the maturation of LSECs and enabled them to further

activate virus-specific CD8+ T cells in mice (74). Mechanistically,

IL-12 produced by LSECs was an essential mediator of LSEC-

mediated CD8+ T-cell immunity (74).

KCs are resident macrophages in the sinusoids of the liver that

express TLRs and secrete large amounts of inflammatory mediators

that regulate antiviral immunity during HBV infection (76).

Human KCs express TLR2–4, whereas KCs from rats and mice

express TLR1-9 (26). Previous data demonstrated that the TLR2

ligand P3C further strengthens the tolerogenic and suppressive

properties of intrahepatic myeloid-derived cells (iMDCs) in mice.

Mechanistically, the enhanced inhibition of T-cell activation was
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mainly induced by KCs via secreting IL-10 (77). Consistent with

this finding, another group identified that KCs support HBV-

mediated CD8 T-cell exhaustion via the HBV core antigen–TLR2

interaction in mice (78). On the other hand, KCs produce CXCL8

upon HBV exposure (16), which potentially attracts NK and NKT

cells into the liver during the early phase of HBV infection.

Uwatoku et al. found that KCs are crucial for DC recruitment to

the liver through N-acetyl galactosamine-specific C-type lectin

interactions (79). The increased DC recruitment may promote

HBV antigen presentation and thus enhance HBV-specific T-cell

responses. As antigen-presenting cells, mouse KCs also present

antigens to T cells, thus inducing T-cell proliferation and the

production of IFN-g (80, 81). However, the antigen-presenting

function of KCs is much weaker than that of DCs. A recent study

identified a subset of KCs (KC2) that could cross-present

hepatocellular antigens to CD8 T cells upon IL-2 administration

and thus improve the antiviral functions of T cells (82).
3.3 TLR agonists regulate HBV-specific
T-cell immunity by modifying the
intrahepatic immune microenvironment
and recruiting immune cells into
the liver

In a persistent HBV replication mouse model utilizing

hydrodynamic injection (HI) of the pAAV/HBV 1.2 plasmid,

HBV-specific immune responses are primed but do not clear

HBV from the liver (83). Therefore, this model was used to test

the effects of TLR agonists on HBV-specific immune responses.

Previously, our group indicated that intrahepatic application of

TLR3 ligand poly(I:C) after establishment of persistent HBV

replication efficiently recruited CD8+ T cells into the liver,

enhanced HBV-specific T-cell responses, and cleared HBV in an

IFN-g- and CXCR3-dependent manner (84, 85). Later, we

constructed calcium phosphate nanoparticles carrying poly(I:C)

conjugated with F4/80, which promoted liver targeting by

conventional intravenous injection. These nanoparticles exerted a
Frontiers in Immunology 05
similar enhancing effect on HBV-specific T-cell responses like HI of

poly(I:C) (86). However, simultaneous or prior activation of TLR3

signaling by HI of poly(I:C) results in expansion of Tregs, KCs, and

myeloid-derived suppressor cells (MDSCs), all of which impair the

HBV-specific T-cell response and thus inhibit HBV clearance (85).

Consistent with this finding, another study investigated the HBV-

specific T-cell immunity and anti-HBV effect by TLR2 activation

(P3C) in the same model at different time points, which found that

only TLR2 pre-activation could enhance the intrahepatic HBV-

specific T-cell response (87). In detail, pre-activation of TLR2

reduced the number of hepatic F4/80+ macrophages but increased

the number of CD11c+ DCs, which is helpful for the initiation of the

HBV-specific T-cell responses in the following time period (76).

Huang et al. reported that TLR signaling induced intrahepatic

aggregates of myeloid cells that enabled the population expansion

of CTLs during chronic viral liver infection (88). Hepatic CTL

proliferation was restricted to myeloid-cell aggregates for T-cell

population expansion (iMATES) that were composed of

inflammatory monocyte-derived CD11b+ cells (88). These

findings suggest that the application of TLR ligands at the right

time and in the right location can enhance virus-specific T-cell

responses by recruiting immune cells into the liver. Of note, the HI

mouse model is quite different from human beings. Therefore, the

findings in mouse studies should be carefully evaluated and verified

in human research.
4 TLR agonists in clinical research

TLR agonists are potential antiviral agents in chronic HBV

infection. Indeed, several studies have investigated the anti-HBV

effects of TLR ligands in clinical studies (Table 1). An earlier

study tested the efficacy of polyadenylic.polyuridylic acid [poly

(A).poly (U), TLR3 ligand] in CHB patients and found that

normalization of ALT levels and HBeAg seroconversion were

noted in approximately 57.9% of treated patients, suggesting that

poly(A).poly (U) may be effective in the treatment of CHB

patients (89). The safety and efficacy of the TLR7 agonist GS9620
TABLE 1 TLR agonists in clinical studies.

Compounds Target Clinical phase Patients
chosen

Effects on ALT and HBV Effects on host immunity Ref

poly(A).poly(U) TLR3
ligand

Phase I HBeAg-positive
chronic hepatitis

73.7% normalization of ALT, 57.9%
HBeAg seroconversion, 63.1% loss of
HBV-DNA

No data available (89)

Vesatolimod
(GS-9620)

TLR7
ligand

Phase II (number:
GS-US-283-1059,
NCT 02166047)

Virally suppressed
patients

No significant decline of HBsAg Dose-dependent induction of ISG15,
increased T-cell and NK-cell responses, and
reduced ability of NK cells to suppress T cells

(90, 93)

Vesatolimod
(GS-9620)

TLR7
ligand

Phase II (number:
NCT 02579382)

Patients who are
not currently on
antiviral treatment

No significant reduction in HBsAg Dose-dependent induction of ISG15 (91)

Selgantolimod
(GS-9688)

TLR8
ligand

Preclinical study PBMCs from CHB
patients

Reduction of viral markers in HBV-
infected PHH treated with media from
PBMCs stimulated with GS-9688

Induced cytokines that activate antiviral
effector function

(95, 96)
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have been assessed in CHB patients (90–92). GS9620 promoted

ISG-15 expression, HBV-specific T-cell responses, and NK-cell

activation and function and reduced the ability of NK cells to

lysis T cells. However, HBsAg levels are not significantly reduced

in the treated patients (90, 91, 93). Another study used different

TLR agonists to stimulate mononuclear cells derived from

chronic HBV- or HCV-infected livers and found that the

TLR8 ligand ssRNA40 could induce the production of IFN-g
in chronic HBV- or HCV-infected livers by mucosal-associated

invariant T cells (MAIT) and NK cells (94). Media from PBMCs

that were stimulated with the TLR8 agonist GS-9688 reduced

HBV replication in HBV-infected PHHs (95). A recent study

found that GS-9688 could activate antiviral effector function in

PBMCs from CHB patients by multiple immune mediators

(HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK

cells, and MAIT) (96). Similarly, TLR8 agonists enhance HBV-

specific B-cell responses via improving monocyte-mediated

follicular helper T-cell function in CHB patients (97). Taken

together, the agonists of TLR3, 7, and 8 may serve as potential

antiviral agents against chronic HBV infections, but further

investigation is needed to evaluate their toxicity, tolerated

range, and efficacy when used alone or applied together with

current antiviral drugs.
5 Conclusion

Despite the availability of an effective prophylactic vaccine,

HBV infection remains a major challenge worldwide. During

chronic HBV infection, HBV suppresses the expression of TLRs

and downstream cytokines through various HBV components

and thus limits HBV-specific adaptive immunity and suppresses

virus clearance. Thus, restoration of HBV-specific immune

responses may be essential for sustained viral control.

Accumulated studies suggest that TLR-mediated innate

immune responses could enhance HBV-specific responses and

thus suppress HBV replication and expression. To achieve a

functional cure of CHB, a combined strategy with current

antiviral treatment, activation of TLR-mediated immunity, and

restoration of HBV adaptive immunity should be investigated in
Frontiers in Immunology 06
future studies in both animal models and clinical trials. It will

be useful to understand the various underlying mechanisms

how TLRs mediate immune activations and identify those

contributing to HBV-specific immune control. It is also

important to find a way to direct immune cells to the liver and

to let those to exert antiviral functions.
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