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Visualization of macrophage
subsets in the development
of the fetal human inner ear
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Background: Human inner ear contains macrophages whose functional role in

early development is yet unclear. Recent studies describe inner ear macrophages

act as effector cells of the innate immune system and are often activated following

acoustic trauma or exposure to ototoxic drugs. Few or limited literature describing

the role of macrophages during inner ear development and organogenesis.

Material and Methods:We performed a study combining immunohistochemistry

and immunofluorescence using antibodies against IBA1, CX3CL1, CD168, CD68,

CD45 and CollagenIV. Immune staining and quantification was performed on

human embryonic inner ear sections from gestational week 09 to 17.

Results: The study showed IBA1 and CD45 positive cells in themesenchymal tissue

at GW 09 to GW17. No IBA1 positive macrophages were detected in the sensory

epithelium of the cochlea and vestibulum. Fractalkine (CX3CL1) signalling was

initiated GW10 and parallel chemotactic attraction and migration of macrophages

into the inner ear. Macrophages also migrated into the spiral ganglion, cochlear

nerve, and peripheral nerve fibers and tissue-expressing CX3CL1. Themesenchymal

tissue at all gestational weeks expressed CD163 and CD68.

Conclusion: Expressions of markers for resident and non-resident macrophages

(IBA1, CD45, CD68, and CD163) were identified in the human fetal inner ear. We

speculate that these cells play a role for the development of human inner ear tissue

including shaping of the gracile structures.

KEYWORDS

fetal human inner ear, macrophages, development, IBA-1, CD45, CD68,
CD163, CX3CL1
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.965196/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.965196/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.965196/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.965196&domain=pdf&date_stamp=2022-09-09
mailto:Annelies.Schrott@i-med.ac.at
https://doi.org/10.3389/fimmu.2022.965196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.965196
https://www.frontiersin.org/journals/immunology


Steinacher et al. 10.3389/fimmu.2022.965196
Introduction

The human inner ear has long been regarded as an immune-

privileged region lacking immune responses. Recent studies,

however show that despite a blood-labyrinth barrier, the

human inner ear, including the cochlea, is populated by

macrophages belonging to the innate immune system (1–5).

These macrophages have been shown to play a role in local

cochlear immune response following acoustic trauma or

ototoxicity (3, 6, 7). In the mouse model, after acoustic

overstimulation it was known that monocytes are able switch

to macrophage shapes (8). They can be categorized into tissue

resident and infiltrated macrophages. Monocytes may be

recruited from the blood vessels after inflammatory signals.

These monocytes differentiate in the tissue to so-called

infiltrated macrophages. Resident macrophages live their entire

lifespan in the tissue and can mediate signals to recruit other

immune cells after inflammation or injury (8–10). Increased

macrophages and fibrosis were observed after CI surgery,

suggesting a role in wound healing and restoration (3, 11).

Macrophages seem to play a dualistic role being both

protective but also causing destructive responses leading to cell

damage. Their exact role in the inner ear, during development

and derivation in humans remains somewhat enigmatic. Dong et

al, 2018 showed that in C57BL/6J mice the macrophages

undergo a dynamic rearrangement with a decreasing in their

number during postnatal development of the inner ear (12).

The aim of the present investigation was to analyse the

distribution of macrophages and monocytes in the human inner

ear during the development. It may increase our understanding

of the roles during the complex process of cellular differentiation

and maturation of the sensory organs.

For this purpose, we used different markers (IBA1, CD45,

CD163 and CD68) to analyse the infiltration of macrophages

and monocytes in the human inner ear during maturation and

morphogenesis (13). IBA1, an ionized binding adaptor

molecule1, is a specialized calcium binding protein that binds

specific to the surface of microglia and macrophages. IBA1 is

involved in resident macrophage phagocytosis and aids in

membrane motility. This cytoplasmic marker occurs in

podosomes and small multicellular complexes anchored to the

extracellular matrix (2, 14, 15). The CD68 is a low-density

lipoprotein (LDL) - binding protein and a lysosomal protein

marker. This protein binds to the membrane of lysosomal cells

like, macrophages, microglia and other mononuclear

phagocytes. On the cell membrane CD68 act as a scavenger

protein for oxidizing LDL protein and is a component in the
Abbreviations: CI, Cochlear Implant; CX3CL1, C-X3-C Motif Chemokine

Ligand 1; CD, Cluster of Differentiation; ECM, Extra Cellular Matrix; GW,

Gestational Week; IBA1, Ionized Calcium binding adaptor molecule 1; U,

Utricle; Sac, Saccule; SPG, Spiral ganglion.
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antigen-presenting system of immune cells (2). The CD163 is a

specific marker for monocytes, macrophages and microglia cell

of the monocyte lineage. CD163 serves as a transmembrane

protein and acts as an endocytic receptor for the hemoglobin-

haptoglobin complex. It also aids in cytokine assembly as a

reaction to bacterial infection (2, 16). CD68 and CD163 can be

used in combination with transcription factors like pSTAT1

(17), RBP-J (18) and CMAF (16) to discriminate and identify M1

(pro-inflammatory) and M2 (anti-inflammatory) macrophage

polarization in vivo (16, 17, 19–21). The CD45 or leukocyte

common antigen marker is a highly conserved receptor tyrosine

phosphatase. This protein is expressed on leucocytes and

hematopoietic cells like macrophages and dendritic cells. The

protein is essentially involved in the modulation and regulation

of immune cells, like T-cell activation/interaction, lymphocyte

development or macrophage regulation (13, 22–24). In the adult

inner ear CD45 immune reactive mononuclear phagocytes

migrate towards cochlear regions following acoustic

trauma (25).

We also analysed the expression of the chemokine

Fractalkine in the inner ear at different time points. It is a

protein encoded by the CX3CL gene. The membrane bound

glycoprotein serves as a chemokine signal for neuron cells,

microglia, circulating monocytes, dendritic cells and

macrophages. Moreover, it serves as a chemoattractant to

promote the migration of immune cells to injured tissue (4, 7,

9). Fractalkine signalling regulates macrophage activation in

adult human cochlea enabling ganglion neuron and ribbon

synapses survival following acoustic injury (4). The present

study may give us more information about the mechanisms

behind and cellular interplay during macrophage invasion

and activity.
Materials and methods

Ethical approval of fetal specimens

Specimens aged between GW09 and GW12 used in this

study were obtained immediately after legal abortion procedures

according to the Austrian law (§97StGB of the Austrian

Criminal Law as promulgated on 13th November 1998, Federal

Law Gazette I). Cadaver donations to the Division of Clinical

and Functional Anatomy of the Medical University of Innsbruck

for scientific and educational purposes occur only with the

donor’s informed consent collected before death. The donors

declare during their lifetime that their dead bodies are to be

consigned to the anatomical institute for research purposes and

the education and advanced training of medical doctors. All

embryological body and tissue donations (between the

gestational ages 9 to 12) are released to the anatomical

institute by the legally entitled person (mother) accompanied

by written consent.
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In Austria, there is no requirement for a consent of the

parents or relatives for a clinical autopsy performed in a medical

institution § 25 KAKuG Leichenöffnung (Obduktion)

(Krankenanstalten- und Kuranstaltengesetz) (26–28).

Additional specimens (between the gestational weeks 9 and

17) were provided by the UCL London and Newcastle branches

of the HDBR: Joint MRC/Wellcome Trust (grant# MR/R006237/

1) Human Developmental Biology Resource (http://hdbr.org).

Fetal and embryonic tissue was collected, with informed consent,

and distributed to research projects under ethical approval

18/NE/0290 from the North East-Newcastle & North Tyneside

1 Research Ethics committee for HDBR Newcastle, and

18/LO/022 from the Fulham Research Ethics Committee for

HDBR UCL London. Specimens were certified by embryologists

to exhibit no visible malformations and their embryological ages

were differentiated by quantifying characteristics like crown-

rump length, external and internal morphology and the

estimated gynaecological age. All specimens were devoid of

any external or internal congenital defects.
Tissue preparation, histology and
immunohistochemistry on paraffin
sections

Twenty-Six human embryos and foetuses (GW09 x2, GW10

x3, GW11x2, GW12x3, GW13 x3, GW14 x2, GW15 x2, GW16

x3, GW17 x3, GW18 x3 and GW19 x1 as biological/technical

replicates were done via sectioning) were used for this study.

Tissue preparation, immunohistochemistry and fluorescence-

based immunohistochemistry procedure on human cochlear

section was described in previous publications (29–32).

Positive controls (e.g., small intestine, brain, and pancreas)

were supplemented to each experiment. Negative controls are

acquired by alternating the primary antibodies with reaction

buffer or substitut ing them with isotype-matching
Frontiers in Immunology 03
immunoglobulins. Immunohistochemistry sections were

digitally examined using a Zeiss AxioVision 4.1 microscope

software coupled to an AxioCam HRc colour camera and an

AxioPlan2 microscope (Zeiss, Jena, Germany). The fluorescence

immunohistochemistry stained sections were digitalized at 40x

and 63x magnifications using a TissueFAXS Plus System coupled

onto a Zeiss® Axio Imager Z2 microscope (Jena, Germany).

Image acquisition was performed using the TissueFAXS

software (TissueGnostics®, Vienna, Austria). The quantitative

analysis of the amount and distribution of macrophages/

monocytes was performed in GraphPad prism 9.
Antibodies

Primary and secondary antibodies used for immunohistochemistry

and fluorescence immunohistochemistry were listed in Table 1.
Results

IBA1 cells in the development of the
human inner ear

IBA1 positive macrophages were present in the mesenchyme

and connective tissue of human embryonic inner ear between

GW09 to GW17 (Figure 1). Macrophage density did not

significantly differ between early GW9 to late GW17 in the

cochlea. Towards GW17, we observed several macrophages

surrounding the inner ear’s otic capsule, which confirm the

future entry of infiltrated macrophages into the sensory

epithelium via the scala vestibuli, lateral wall and basilar

membrane (Figure 1C).

At GW09, macrophages with IBA1 positive staining were

observed around nerve fibre tissues and spiral ganglions

(Figure 2A arrows). By GW13, we saw the first migration into
TABLE 1 The hosts, dilutions, and sources of antibodies utilized in the study.

Antibody Type Host Dilution Producer, Catalog Number

IBA-1 Monoclonal Rabbit 1:400 Abcam. Ab178847

Anti-CD45 (LCA) Monoclonal Mouse pre-diluted dispenser drop Ventana Roche, Cat. 760-2505

CD68 Monoclonal Mouse 1:50 Novus, NB-100-683

CD163 Monoclonal Rabbit 1:500 Abcam, Ab182422

CollagenIV Polyclonal Goat 1:10 EMB Millipore, AB769

CX3CL1 Monoclonal Mouse 1:100 RD System, MAB3651

TUBB3 (b-3 Tubulin) Monoclonal Mouse 8mg/µl RD System, MAB1195

Alexa Fluoro Donkey Anti Rabbit 488 Polyclonal Rabbit 1:200 Invitrogen, A21206

Alexa Fluoro Donkey Anti Rabbit 546 Polyclonal Rabbit 1:200 Invitrogen, A21207

Alexa Fluoro Donkey Anti Mouse 488 Polyclonal Mouse 1:200 Invitrogen, A21202

Alexa Fluoro Donkey Anti Mouse 546 Polyclonal Mouse 1:200 Invitrogen, A10036

Alexa Fluoro Donkey Anti Goat 546 Polyclonal Goat 1:200 Invitrogen, A11056
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FIGURE 1

Overview of IBA1 positive macrophages during the development of human inner ear. (A) Macrophages are present around the spiral ganglion
and the A’: mesenchymal tissue at GW09. (B) at GW13 (C0 and at GW17. Macrophages can see along the bony structure around the inner ear
(Arrow and C’). Observations of amoeboid and transitional forms of IBA1 positive cells. (Inlets of A–C upper right).
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the spiral ganglia (Figure 2B). In later gestational weeks, an

aggregation of ramiform and spheroid IBA1 positive

macrophages was observed in and around the nerve tissue

(Figures 2C, D). Before GW13, IBA1 positive macrophages

were restricted to the mesenchyme of the future stria

vascularis. After GW13, we observed the first steps of

macrophage migration from mesenchyme into the stria

vascularis epithelium (Figures 2E–G arrows). This migration

of macrophages continued until GW16 (Figure 2H) when the
Frontiers in Immunology 05
first homing of IBA1 positive macrophage within the stria

vascularis was observed. A direct infiltration of macrophages

in the organ of Corti was not observed in all investigated

developmental stages. Collagen IV and IBA1 co-staining

demonstrated that macrophages were often found near extra

cellular matrix (ECM) regions, blood vessels (Figure 3A) or

nerve tissue (Figure 3B). We were able to localize IBA1 positive

cells adjacent to the blood vessels (Figure 3A’ and 3A’’ arrows)

and nerve cells (Figure 3B’).
FIGURE 2

Macrophages at spiral ganglion and stria vascularis. (A) At early gestational weeks, the macrophages are present around the spiral ganglion
tissue. (B) At GW13 macrophages start to infiltrate the spiral ganglion tissue and are present in and around at later gestational weeks (GW).
(C, D). (E) Macrophages pre-existing in the spiral ligament of the stria vascularis at GW13 and (F) at GW14. (G) First direct contact of
macrophages with the stria vascularis (arrow). (H) and accumulation at later stages.
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In the vestibulum, the localization of IBA1 positive

macrophages was restricted to the connective tissue (Figure 4).

There was not seen a direct interaction with the vestibular

sensory epithelium. Ramiform and spheroid macrophages

accumulated only in mesenchymal tissue of utricle, saccule

(Figures 4A) and the ampulla (Figure 4B, C arrows).
Fractalkine ligand (CX3CL1) expression
during morphogenesis

Surprisingly, the first appearance of the Fractalkine ligand

(CX3CL1) was found at GW9. Cells positive for CX3CL1 were

detected in the same timeframe as IBA1 positive macrophages in

the mesenchymal tissue. IBA1 positive macrophages were in

direct or near contact to CX3CL1 positive cells (Figures 5A–C,

arrows). Cells within the spiral ganglion showed no expression

of CX3CL1 at GW9. The first weak and diffuse distribution of

the CX3CL11 in spiral ganglion cells was seen at GW10

(Figure 5C arrows). At later gestational weeks (GW12 to

GW17), we detected an increase of the staining signal for

CX3CL1 in neuronal cells, especially in spiral ganglion and

cochlea nerve (data not shown). An interaction of CX3CL1

positive cells with IBA1 positive cells were also noted in the

mesenchymal tissue and around nerve tissue of the inner ear in

later gestational stages. Cells within the organ of Corti, stria
Frontiers in Immunology 06
vascularis and spiral ligament were devoid of immune reactivity

of the Fractalkine marker.
CD163 and CD68 positive cells during
development of inner ear

CD163 positive cells were present in the cochlear

mesenchyme (Figure 6A) and vestibulum (Figure 6D). CD163

immuno-positive cells accumulated around the spiral ganglion

at GW12 (Figure 6A’) and under the sensory epithelia of the

utricle (Figure 6A’’). At GW16, we observed infiltration of

CD163 positive cells in the spiral ganglion (Figure 6B). At the

same time point, few CD163 positive macrophages were

observed along the nerve fibre and spiral ligament of stria

vascularis (Figure 6C, arrows).

Macrosialin (CD68) positive macrophages/monocytes resided

in the connective tissue of the cochlea and vestibulum (Figure 7).

At GW13, CD68 stained cells surrounded and interacted with

tissue-specific cells like neuronal cells of the spiral ganglion

(Figure 7A arrow). Few CD68 positive cells were found near the

cochlea ducts (GW13, Figure 7B, and arrow) and spiral ganglia

(GW14, Figure 7C). Towards later gestational weeks (GW14, 16,

and 17), few macrophages/monocyte cells were observed along the

nerve fibers of the cochlear ducts (Figure 7D). At GW16, single

CD68 positive cells were located at the basal membrane (Figure 7F,
frontiersin.o
FIGURE 3

Macrophages are existing near blood vessel and nerve tissue. (A) Macrophages (red) are located A’’ near or A’ adjacent to blood vessel (green,
arrow) and (B) in the spiral ganglion that were B’ attached to CollagenIV rich regions.
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FIGURE 4

Macrophages in human foetus vestibulum. (A) IBA1 positive macrophages are present in the mesenchyme of the saccule, utricle and (B) crista
ampullaris. (C and C’) High density of macrophages are found in the mesenchymal tissue of several regions of vestibulum.
FIGURE 5

CX3CL1 ligand and IBA positive macrophages. (A, B) IBA1 macrophages (red) found in contact and near to CX3CL1 (green) positive cells in the
mesenchyme. (C) First and diffuse staining (arrows) of Fraktalkine (CX3CL1) in spiral ganglion at GW10.
Frontiers in Immunology frontiersin.org07
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FIGURE 6

Expression of CD163 the development of human inner ear. (A) CD163 positive cells are found in the mesenchyme of cochlea and vestibulum at
GW12. A’: Accumulation of CD163 cells around the spiral ganglion and A’’ under the sensor epithelium of utricle. (B) Infiltration of cells in the
spiral ganglion (C) CD163 cells are present along the nerve fibre (arrow) and the spiral ligament of stria vascularis (arrow). (D) Staining show a
moderate density of CD163 positive cells in the mesenchyme of vestibulum.
Frontiers in Immunology frontiersin.org08
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FIGURE 7

CD68 expression in developing human inner ear. (A) CD68 positive cells are localize around the spiral ganglion (arrows) at GW13 and (B) in the
mesenchymal tissue of cochlea duct (arrow) and (C) vestibulum. (D–H) No change in expression and localization of CD68 positive cells at
later weeks.
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H). In the vestibulum, CD68 positive cells were found in the

mesenchymal tissue of the ampulla (Figure 7E) and under the

sensory epithelium of the utricle (Figure 7G) and saccule.
CD45 in the foetus human inner ear

The leukocyte common antigen protein CD45 was only

present in the mesenchymal and connective tissue of cochlea

and vestibulum (Figure 8A, B). We detected some cells near the

spiral ganglion. During the investigated gestational weeks, we

found just amoeboid forms (Figure 8 inlet left and right). The
Frontiers in Immunology 10
distribution and number of CD45 positive immune cells were

not significantly different in all developmental stages and

between vestibulum and cochlea (Figure 9B, C). One non-

mesenchymal CD45 cell was found at GW18 in the Reissner’s

membrane (Figure 8C).
Quantification of macrophages and
monocytes in the development

The quantification results in Figure 9A showed a significance

difference between the number of stained cells with CD45 related
FIGURE 8

Expression of CD45 in the human inner ear. (A) CD45 positive cells are seen in the mesenchyme of vestibulum at GW10 with amoeboid forms
(Inlet left). (B) Single cells of CD45 positive immune cells in the mesenchyme of the cochlea at GW18. (C) One CD45 stained cell is present in
the Reissners’membrane at GW18.
B

C

A

FIGURE 9

Quantification of total counts of IBA1, CD163, CD68 and CD45 positive immune cells in the development. (A) Comparison of total amounts of
IBA1, CD163, CD68 and CD45. (B) Median and Standard deviation of counted cells for each developmental stages. (C) Vestibulum and Cochlea
macrophages and monocytes distribution. Statistically significant is denoted by *, **, *** by representing P-value: *<0.05; **<0.01; ***<0.001. ns,
not significant; N.A., not available.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.965196
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Steinacher et al. 10.3389/fimmu.2022.965196
to IBA1, CD163 and CD68. Instead, between IBA, CD163 and

CD68 were no statistical differences in the total counts. In detail

of the total amount for each gestational week, we saw no

different amount between vestibulum and cochlear region

(Figure 9B). Figure 9C also showed no significant difference in

the staining of IBA1, CD163, CD68 and CD45 between

vestibulum and cochlea in the developing human inner ear.
Discussion

To the best of our knowledge, this is the first systematic

analysis of the distribution of macrophages at various

developmental stages of the human inner ear (Overview

Table 2). The first analyses using macrophage markers in the

human adult inner ear was performed by O’Malley et al. in 2016

(2). Primary antibodies used against CD163, IBA1, CD45 and

CD68 specific for macrophages/microglia to analyse paraffin-

embedded human temporal bones. These cells were often closely

associated with the neurons and at times, with the sensory cell

areas of the auditory and vestibular epithelium (2, 3).

Macrophage processes extend in different shapes throughout

the labyrinth, including the endolymphatic duct and sac.

Macrophages may be involved in phagocytosis of waste

material in the endolymphatic duct and sac. They also aid in

the digestion of luminal glycoproteins and immune reactions.

Macrophages are part of the innate immune system but can

also initiate specific immune reactions harmful to the vulnerable

inner ear. Therefore, the cells can be regarded as both saviours

and foes depending on their activation mode (5). The human

cochlea was recently shown to be endowed with immune cells

such as CD4 and CD8 cells (33).

Macrophages may serve several functions and can even be

found in the organ of Corti after acoustic damage. Macrophage-

like perivascular resident melanocytes have been described in the

mouse stria vascularis that were believed to influence fluid
Frontiers in Immunology 11
homeostasis in the cochlea via the intrastrial blood/labyrinth

barrier (34). Studies reported that dendritic cells may reside

within the human cochlea where they are engaged in tissue

healing and cell preservation, maintaining the integrity of the

fluid compartments (4, 35).

The present study shows that the human inner ear receives

macrophages at an early stage suggesting that they play a key

role in organ formation and cell differentiation. This incursion

was correlated with the expression of Fractalkine, which is the

ligand for a receptor expressed on the cell surface of the

macrophages. Noteworthy was the infiltration of IBA1

positive cells in the spiral ganglion. IBA1, a known ionized

calcium-binding adaptor molecule 1, is involved in membrane

ruffling in phagocytes (2). Super-resolution microscopy (SR-

SIM) have disclosed remarkable variants of IBA1 cells

associated with the spiral ganglion cells. They are endowed

with slender processes , can extend “synapse- l ike”

specializations, migrate and support the surveillance of

damaged cells, and give possible neurotrophic supply. Results

suggested that the human auditory nerve is under stimulation

of the resident macrophage system. The non-myelinated nerve

soma may alleviate it. During embryonic development, the

IBA1 positive cells may serve additional purposes such as waste

disposal, stimulation of nerve generation and maturation.

Transitional and amoeboid forms of macrophages were

present around the spiral ganglion in mesenchymal tissue at

GW09 and GW13. This coincided with the expression of

Fractalkine, a chemoattractant protein, expressed on

neuronal cells for promoting immune cell migration (7, 9)

that observed as early as GW9 in the spiral ganglion. The

macrophages may play a particular role in the human lateral

wall where they infiltrate the stria vascularis and surround the

blood vessels . Here , they express MHCII a major

histocompatibility complex normally found on professional

antigen-presenting cells. These cells may form a protective

layer around the vessels to arrest antigen complexes from
TABLE 2 Overview of summarized findings of immune cell distribution related to inner ear morphology and developmental stage in non-
syndromic inner ear tissue.

Antibody Overview

IBA1 • Between GW9 and GW17 Macrophages/Monocytes found in the mesenchyme and connective tissue with an accumulation around spiral ganglia
• First infiltration at GW13 into spiral ganglion
• Between GW9 and GW17 no direct infiltration of macrophages and monocytes into the Organ of Corti
• Start of GW13 few macrophages observed in the spiral ligament near the fibrocytes with migration to stria vascularis region
• In vestibulum macrophages and monocytes found in mesenchyme and connective tissue

CD163 • Mainly in the mesenchymal and connective tissue of cochlea and vestibulum

CD68 • Distinct macrophage population during all the stages examined in the mesenchyme and connective tissue of cochlea and vestibulum
• At GW16 single cells are present at the basilar membrane

CD45 • Single cells with CD45 expression in the mesenchyme of cochlea and vestibulum.
• At GW18 one CD45 positive cell in the Reissner’s membrane

CX3CL1 • At GW9 expression in the mesenchymal tissue of cochlea
• At GW10 diffuse and weak expression in the spiral ganglion tissue
frontiersin.org

https://doi.org/10.3389/fimmu.2022.965196
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Steinacher et al. 10.3389/fimmu.2022.965196
entering the tissue but they may also influence the fluid

homeostasis and regulate ion content in the cochlear fluids,

especially during a critical development. We hypothesize that a

sudden increase in resident macrophage population positive

for IBA1 during development is due to the cochlear blood

vessels serving as a delivery system for these macrophages for

the otherwise closed adult inner ear (36). The present study

showed the essential periods for the invasion of macrophages

in the stria vascularis. At GW16, macrophages made first

contact and at GW17, IBA1 positive macrophages reached

the epithelial cells of the future stria vascularis. By using

CollagenIV staining it was also possible to relate the

macrophages to the basal lamina of the blood capillaries as

well as in the ganglion cells surrounding satellite cells. Thereby

it was possible to detect their close relationship verifying the

previous reports in the mature human cochlea demonstrating

the close relationship and the large number of thin projections

contacting the cell bodies as well as individual axons (5, 15).

There was also an early invasion of IBA1 cells after GW12 and

14 under the sensory epithelium of the saccule, utricle and

crista in the vestibular organ. However, after GW16 there was a

heavy invasion suggesting that, at this time point, these cells

play a particular role in cellular development and maturation

of the vestibular epithelia.

The CD68 lysosomal marker (37, 38) and the human

homolog of mouse Macrosialin may play a role as the

scavenger of oxidized LDL and is essential for the antigen-

presenting system (2). At GW13 CD68 expressing cells localized

in and around the spiral ganglion and mesenchymal tissue below

the cochlear duct. CD68 staining is also present in the

mesenchymal tissue of vestibulum. Same staining pattern of

CD68 was seen until gestational week 16/17 in vestibulum and

cochlea in GW14.

The scavenger receptor molecule CD163, marker of

monocytes, macrophages, and microglia, linked to cytokine

production and innate sensor for bacteria (2, 13). CD163

positive cells appeared in the cochlear duct and vestibular

organ as early as GW12. Cells were seen around the spiral

ganglion and under the sensor epithelium of the utricle.

Infiltration of CD163 positive cells were seen in the spiral

ganglion at GW16. CD163 cells were also seen along the nerve

fibre and in the spiral ligament of stria vascularis at GW16

suggesting that the cells play a similar role for the cellular

organ development.

The CD45 common leucocyte antigen marker may be

involved in cochlear repair to help to remove the cellular

debris with antigen-induced immune response and tissue

regeneration after acoustic trauma (39, 40). These suggest that

CD45 could help to recruit other immune cells to obtain the

homeostasis during morphological changes in the inner ear.
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The present study shows the early invasion of macrophages

in the human inner ear during development. It has become clear

that these cells act not only as scavenger cells during

development but can also protect by eliminating foreign

substances. This also includes immune surveillance, inborn

immunity, tissue repair and homeostasis (14, 41, 42).

Furthermore, macrophages can help to remove cellular debris

during the development, like supernumerary glial cells of nerve

tissue. An abnormal number of nerve cells can lead to a

deformation in the auditory nerve system, resulting in hearing

dysfunction, as reported in mouse model studies (1, 43).

Evidently, macrophages are of different sources such as bone

marrow and other embryonic precursors. Their possible role as

inflammatory mediators in the development of various disorders

is beginning to arise (42). Studies on mouse and human adult

cochlea indicates that macrophages and microglia are widely

excluded from healthy inner ear tissue and/or help to obtain the

homeostasis with housing in the specialized regions (9).

Therefore, we should look even further into these fascinating

cells housed in the human inner ear.
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