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The high rate of ovarian cancer recurrence and chemoresistance necessitates
further research into how chemotherapy affects the tumor immune
microenvironment (TIME). While studies have shown that immune infiltrate
increases following neoadjuvant (NACT) chemotherapy, there lacks a
comprehensive understanding of chemotherapy-induced effects on
immunotranscriptomics and cancer-related pathways and their relationship
with immune infiltrate and patient responses. In this study, we performed
NanoString nCounter® PanCancer 10360 analysis of 31 high grade serous
ovarian cancer (HGSOC) patients with matched pre-treatment biopsy and
post-NACT tumor. We observed increases in pro-tumorigenic and
immunoregulatory pathways and immune infiltrate following NACT, with
striking increases in a cohort of genes centered on the transcription factors
ATF3 and EGRI. Using quantitative PCR, we analyzed several of the top
upregulated genes in HGSOC cell lines, noting that two of them, ATF3 and
AREG, were consistently upregulated with chemotherapy exposure and
significantly increased in platinum resistant cells compared to their sensitive
counterparts. Furthermore, we observed that pre-NACT immune infiltrate and
pathway scores were not strikingly related to platinum free interval (PFI), but
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post-NACT immune infiltrate, pathway scores, and gene expression were.
Finally, we found that higher levels of a cohort of proliferative and DNA
damage-related genes was related to shorter PFI. This study underscores the
complex alterations in the ovarian TIME following chemotherapy exposure and
begins to untangle how immunologic factors are involved in mediating
chemotherapy response, which will allow for the future development of
novel immunologic therapies to combat chemoresistance.

KEYWORDS

tumor immune microenvironment, neoadjuvant chemotherapy, ovarian cancer, ATF3,
AREG, NanoString, immune infiltrate, chemoresistance

Introduction

Ovarian cancer accounts for more deaths compared to any
other female reproductive cancer, with 19,880 new cases and 12,810
deaths in 2022 in the United States alone (1). The high lethality of
this malignancy is attributed to the fact that patients are frequently
diagnosed at an advanced stage, and that patients often experience a
recurrence within 12-18 months following an initial successful
frontline chemotherapeutic regimen (2). Furthermore, while many
other cancer subtypes have benefited from the advances made in
immunotherapy research within the last decade, the majority of
ovarian cancer patients have exhibited low response rates to
currently studied immunotherapies (3). Nevertheless, it has been
extensively reported that ovarian tumors demonstrate anti-tumor
immune responses and that cytotoxic CD8+ T cells correlate with
improved survival (4-9). Therefore, it is well established that the
induction of a robust anti-tumor immune response is favorable to
ovarian cancer prognosis.

In addition to intratumoral T cells, recent studies have
shown that immune-related gene expression profiles serve as
predictive markers of response to chemotherapy and clinical
outcomes in solid tumors, including ovarian cancer. Our
previous work uncovered a multi-dimensional immune
signature that identified patients with a long progression free
survival (PFS), and specifically found that higher mRNA levels
for the T cell co-receptors ICOS and LAG-3 in naive to
treatment tumors were predictive of improved patient
outcomes (10). Furthermore, a plethora of studies have
employed computational analysis of tumors with publicly
available gene expression data to better understand the
relationship between tumor immune features and prognosis
(11-15). Taken together, these studies clearly demonstrate that
immune-related genes and cell subsets possess prognostic
capabilities in ovarian cancer.

A handful of studies have begun to characterize the effect of
chemotherapy exposure on the tumor immune microenvironment
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(TIME) in ovarian cancer, however these investigations have
centered largely upon specific immune cell population changes
examined by immunohistochemistry, with many groups reporting
an increase in tumor infiltrating lymphocytes (TILs) following
neoadjuvant chemotherapy (NACT) (16-24). Furthermore, a
recent study by Lodewijk et al. employed immunogenomic
sequencing in pre- and post-NACT ovarian tumors to determine
how molecular heterogeneity and homologous recombination
defects relate to immune infiltration and patient outcomes (17).
While these studies are an important first step in defining how the
landscape of the TIME is altered following NACT in ovarian cancer,
underlying mechanisms driving immune signaling within the
tumor and how chemotherapy-induced immunologic changes
contribute to detrimental tumor adaptations and
chemoresistance and recurrence remains poorly understood. In
this current study we sought to gain an in-depth understanding of
tumor immune signaling, immunotranscriptomic, and immune
infiltrate changes in response to NACT in high grade serous ovarian
cancer (HGSOC), and determine how these responses relate to
platinum free interval (PFI), with the ultimate goal of revealing
novel targetable immune-based genes and signaling networks
following frontline chemotherapy.

Methods
Patient samples

A total of 31 HGSOC patients were included in this
retrospective study. Patients were selected based on pathology
and clinical diagnosis of HGSOC, which by definition refers to
patients with serous pathology with grade 3 disease or greater. In
order to target our investigation further, we focused only on
stage III and IV disease, since HGSOC is most frequently
diagnosed at a late stage. Matched formalin-fixed, paraffin-
embedded (FFPE) tumor tissues from treatment naive biopsies and
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interval debulking surgery following exposure to NACT were
obtained from each patient, with associated clinical information,
for a total of 62 samples. All experiments were performed in
accordance with the relevant guidelines and regulations of the
Women and Infants Hospital Institutional Review Board
committee. All patients received frontline carboplatin and
paclitaxel, although some patients received additional therapies.
Treatment regimens, along with complete patient clinical
information is listed in Table 1.

RNA isolation and NanoString nCounter®
PanCancer 10360

Pre-treatment and post-treatment cases were reviewed to
select an optimal FFPE tissue block for each case. An optimal
pre-treatment block contained maximum tumor cellularity
(minimum of 20%) with no lymph node tissue present. An
optimal post-treatment block contained maximum tumor
cellularity (minimum of 20%) with no lymph node tissue
present, and with evidence of a lymphocytic response. For each
block, ten unstained sections of 4-5 pm thickness were cut and
placed on Avantix uncharged slides. An eleventh slide was cut at
4-5 pm, stained with hematoxylin and eosin, cover-slipped and
reviewed to confirm the appropriate tissue was still present. FFPE
sections were scraped into tubes for RNA isolation using an
RNeasy FFPE Kit (Qiagen, 73504) according to manufacturer’s
instructions. RNA concentration and quality were measured by

TABLE 1 Patient clinical characteristics.

Stage

IIIA

1I1B

IC

v

Frontline Therapy

Carboplatin/Paclitaxel Only

Additional Therapeutic Regimens*:
GOG 3005, Veliparib or placebo
GY007, Ruxolitinib
Tesaro First, (TSR-042) or placebo
Bevacizumab
Atezolizumab

Recurred

Yes

No

Age at Diagnosis

Platinum free interval (PFI)

*Some patients received more than one additional therapeutic regimen.
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NanoDrop and 50 ng RNA was used for analysis with the
nCounter PanCancer 10 360TM Panel (NanoString, XT-CSO-
HIO360-12). The reporter code set and capture probe set tubes
were removed from -80°C and thawed on ice prior to mixing by
tapping and pulse centrifugation. 70 pl hybridization buffer was
added to the tube containing the reporter probe set and mixed by
tapping, followed by pulse centrifugation. 8 pl of the diluted
reporter probe was added to a PCR tube. Each RNA sample was
diluted in water to 25 ng/pl and 2 pl RNA was mixed with 3 pl
water to 5 pl final volume for 50 ng total input per sample. 5 pl
RNA sample was added to each tube containing the reporter
probe set and mixed by tapping, followed by pulse centrifugation.
2 pl capture probe set was added to each tube, mixed by tapping,
and the sample was collected by pulse centrifugation and then
immediately placed in a pre-heated PCR machine, with the lid set
to 70°C and the block set to 65°C. The hybridization was
performed for 18 h at 65°C. Samples were cooled to 4°C and
any condensation was collected by pulse centrifugation. Each
sample was diluted with 18 ul hybridization buffer. An
nCounter Sprint cartridge was calibrated to room temperature
for 15 min prior to injection of 33 pl of each sample into one of the
12 injection ports of the cartridge, followed by the introduction of
an air seal. The sample injection cartridge was sealed with
provided tape and the reagent supply ports were unsealed prior
to loading on the nCounter Sprint profiler. The analysis run was
started immediately after loading. The resulting data file in RCC
format was used for data analysis. RCC files were deposited in
NCBI’s Gene Expression Omnibus (GEO) (25) and are accessible

N (% of total patients)

1 (3%)
3 (10%)
23 (74%)
4 (13%)

14 (45%)

8 (26%)
3 (10%)
2 (6%)
5 (16%)
2 (6%)

27 (87%)

4 (13%)
Median [Range]
63 [46-79]
10 [1-31]
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through GEO Series accession number GSE201600 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201600).

Cell culture

PEA1/PEA2 and PEO1/PEO4 cells were obtained from
Millipore Sigma and cultured in RPMI 1640 supplemented with 2
mM Glutamine, 2 mM Sodium Pyruvate, and 10% Fetal Bovine
Serum (FBS). OVCAR4 cells were also purchased from Millipore
Sigma and cultured in RPMI 1640 supplemented with 2 mM
Glutamine, 0.25 U/ml Insulin (Millipore Sigma, 407709), and
10% FBS. OVCARS cells were originally purchased from
American Type Culture Collection (ATCC) and cultured in
DMEM with 10% FBS. OV90 cells were obtained from ATCC
and cultured in a 1:1 mixture of MCDB 105 medium containing a
final concentration of 1.5 g/L sodium bicarbonate and Medium 199
containing a final concentration of 2.2 g/L sodium bicarbonate,
supplemented with 15% FBS. All cells were cultured in 1%
penicillin/streptomycin and kept in a 37 °C/5% CO, humidified
chamber. All cell lines were treated with 100 uM carboplatin (Santa
Cruz Biotechnology, CAS 4157.5-94-4) and 10 nM paclitaxel (NIH
Developmental Therapeutics Drug Cancer Panel) in combination,
with control cells treated with DMSO (Sigma Aldrich, D54879) for
48 h. For chemotherapy treated cells, cells were spun down in order
to retain detached and detaching cells.

RNA isolation and quantitative PCR

RNA was isolated using Trizol extraction/LiCl high salt
precipitation. Total RNA (500 ng) was reverse transcribed into
cDNA using the iScript cDNA Synthesis Kit (Bio-Rad, 1708890)
according the manufacturer’s protocol. All quantitative PCR was
performed in triplicate by loading 1 ul of cDNA reaction, 5 pM
primers, 10 ul of SYBR Green (New England Biolabs, M3003E), and
5 ul of RN Ase-free water to each well. For validated BioRad primers
a final 1X concentration was used with 10 pl of SYBR green (New
England Biolabs, M3003E), and 8 ul of RN Ase-free water added to
each well. All samples were run on an ABI 7500 Fast-Real Time
PCR System, and data was analyzed using the AA Ct method, with
relative expression levels normalized to 18s rRNA. Validated
primers were purchased from realtimeprimers.com (ATF3,
NFATC2, DUSPI) or Bio-Rad (AREG, SGKI). Custom primer
sequences (Invitrogen) are as follows:

18S rIRNA—F-CCGCGGTTCTATTTTGTTGG

18S rIRNA—R-GGCGCTCCCTCTTAATCATG

Fluorescent immunohistochemistry

FFPE human ovarian cancer tissue slides were baked for 2
hours at 65°C. Slides were then washed in SafeClear xylene
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substitute, 100, 95, 70% ethanol, deoxygenated water, and FTA
Hemagglutination Buffer. Antigen retrieval was performed using
Antigen Retrieval Solution (1X) (Vector Laboratories, H-3300) and
heated to 95°C for 20 min. Slides were then blocked with 5% horse
serum in FTA Hemagglutination buffer and incubated overnight in
primary antibody diluted in FTA buffer with 5% horse serum at 4°C.
Anti-rabbit IgG Dylight 488 secondary antibody (Vector
Laboratories, DI-488, 1:1000) was then applied to slides followed
by incubation in the dark at room temperature for 1 hour. Slides
were washed between each step using FTA Hemagglutination
buffer and cover-slipped with DAPI containing mounting
medium (Vector Laboratories, H-1200). For HGSOC cell lines,
cells were cultured in chamber slides, fixed with 4%
paraformaldehyde for 20 min, permeabilized in 0.1% Triton-X
for 5 min, blocked in phosphate buffered saline-Tween 20 (PBS-T)
with 5% horse serum for 30 min, then incubated overnight with
primary antibody in the same blocking solution. Slides were washed
the next day with PBS then incubated for 1 h with secondary
antibody in PBS-T, washed again, and finally coverslipped with
mounting media with DAPL

Primary antibodies and dilutions used were as follows:

ATF3 (Novus Biologicals, NBP1-85816, [1:50])

AREG (Proteintech, 16036-1-AP, [1:50])

CD8 (Origene, TA802079, [1:50])

Microscopy

Images were obtained from a Zeiss Axio Imager M1 and
were acquired using diode lasers 402, 488, and 561. To obtain
images for CD8+ cell counting, five randomly selected fields per
sample were selected based on DAPI staining and acquired using
a 40x objective. For AREG and ATF3, three randomly selected
fields per sample were selected based on DAPI staining and
acquired using a 20x objective. Each wavelength was acquired
separately and an RGB image was created.

Image analysis

Image processing and analysis was performed using Image J.
Image analysis was performed on grayscale 8-bit images that
were thresholded for specific staining, and mean and maximum
intensity, along with integrated optical density was calculated.
Representative images were taken using a 40x objective.

cBioPortal

The co-expression feature was utilized from U133
microarray (n=310) data obtained from the Ovarian Cancer,
TCGA Firehose Legacy cohort at cBioPortal.org (26, 27).
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Kaplan-Meier plotter

The ovarian cancer Kaplan-Meier plotter was accessed at
https://kmplot.com/analysis/index.php?p=service&cancer=ovar
(28) to determine the association of ATF3 and EGRI with
progression free survival (PFS) in stage III-IV, grade 3 serous
ovarian cancer, using upper quartile as a cutoff. The probe sets
were selected based on the recommended best probe set defined
by Jetset algorithm.

Analysis and statistics

Data was analyzed in nSolver Advanced Analysis Software.
Raw data was uploaded to nSolver for automated normalization,
background subtraction, and quality control (QC) check. All
samples passed QC. Paired pre- and post-NACT samples were
used to construct two groups of patient data to which an unpaired
t-test was run to generate the data in the volcano plot. By
performing the analysis this way the variability seen in patient
data is mitigated and more robust data surrounding differentially
expressed genes linked to post treatment status can be visualized.
Differential expression was determined with p-values and
Benjamini-Yekutieli adjusted p-values. Pathway scores are
generated in nSolver as a summarization of expression level
changes of biologically related groups of genes. Pathway scores
are derived from the first Principle Components Analysis (PCA)
scores (1° eigenvectors) for each sample based on the individual
gene expression levels for all the measured genes within a specific
pathway. Expression levels of multiple genes comprise this first
PC, with some genes having higher weight applied depending on
their contribution to data variability. Cell type profiling scores are
generated for immune cell types using expression levels of cell-
type specific mRNAs as described in the literature (29). The cell
type score itself is calculated as the mean of the log, expression
levels for all the probes included in the final calculation for that
specific cell type. An additional level of quality control is by default
performed, and markers that do not correlate with other cell type
specific markers are discarded from the estimates of abundance.
The software also utilizes a resampling technique to generate a
significance level for confidence in the individual cell type scores,
with lower p-values considered higher confidence. For our
analysis, we excluded T,ey NK cells, and Thl cells since there
was low confidence in the accuracy of those cell type scores.

Pathway scores, cell type scores, and log transformed,
normalized mRNA expression data was exported and utilized
for further analyses in GraphPad Prism. Significant differences
in median pathway and cell type scores between matched pre-
and post-NACT samples were determined using 2-tailed
Wilcoxon matched-pairs signed rank test. Significant
differences in median pathway and cell type scores between
<12 mo PFI and >12 mo PFI were determined using unpaired
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Mann Whitney test. The relationship between PFI and cell types,
pathways, or gene expression was determined in Prism using
Cox proportional hazards regression, with hazard ratios, 95%
confidence intervals, and p-values reported. Pearson r-values
with 2-tailed p-values were also generated in GraphPad Prism.
Pathway and cell type scores do not indicate abundance of one
cell type/pathway relative to another, but changes in scores
between comparison groups can be relatively compared.

Results
Patient clinical characteristics

Thirty-one HGSOC patients were analyzed in this study,
with matched tissue pre- and post-NACT. All patients received
frontline therapy with carboplatin and paclitaxel in the
neoadjuvant setting, and some patients received additional
therapies or were enrolled in clinical trials. Twenty-seven
patients had recurred at time of analysis (4 non-recurrent),
and 17 patients were deceased (14 living), with at least 12
months follow-up time (Table 1).

Analysis of immunoregulatory gene
expression responses to NACT in HGSOC
patient tissue

In order to determine immunologic changes resulting from
NACT exposure, we performed NanoString PanCancer 10360
analysis on patient samples pre- and post-NACT. DUSPI, EGRI,
ATF3, SGK1, NFATC2, NFIL3, DUSP5, CDKNIA, CCL4, and
CCL3/L1 are among the top upregulated differentially expressed
genes (DEGs) post-NACT relative to pre-NACT, while CEP55,
TPII, HMGAI1, RRM2, ANLN, CENPF, MK167, HELLS, H2AFX,
and TNFSF12 are among the top downregulated DEGs post-NACT
relative to pre-NACT (Figures 1A, B; Supplementary Tables 1, 2).
Furthermore, we examined NanoString pathway changes following
NACT, finding significant decreases in “Cell Proliferation”, “DNA
Damage Repair”, and “Epigenetics”, and significant increases in all
other pathways except for “Cytotoxicity” and “Interferon Signaling”
(Figure 1C; Supplementary Table 3).

We next examined gene changes associated with these
individual pathways, which we grouped into three categories:
1) Proliferation and Stress Response (Figure 2A); 2) Pro-
tumorigenic Signaling Pathways (Figure 2B); and 3)
Immunoregulatory Pathways (Figure 2C). Pathways with fewer
gene changes can be seen in Supplementary Figure 1. Each of
these pathways displayed some overlap with other pathways. Of
note, CDKNIA gene, which codes for the tumor suppressor
protein p21, was the top upregulated gene in the “Cell
Proliferation” pathway, while most other proliferation related
genes were downregulated. In addition, mitogen-activated
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FIGURE 1

Chemotherapy promotes anti-proliferative and immunostimulatory responses but also upregulates genes that may impede the efficacy of
chemotherapy. (A) Volcano plot illustrating differential expression of genes post-NACT relative to pre-NACT exposure in matched HGSOC
tumor samples, measured by NanoString Human PanCancer 10360. Genes in red indicate Benjamini-Yekutieli (BY) adjusted p-value <0.05.
(B) Top 40 differentially expressed genes post-NACT relative to pre-NACT, with Benjamini-Yekutieli adjusted p-value shown to the right. Heat
map represents log2 fold-change. (C) NanoString pathway scores pre-NACT versus post-NACT, with symbols representing median scores.
Significance was determined by 2-tailed Wilcoxon matched-pairs signed rank test. **p<0.005; ***p<0.0005; ****p<5e-5; #p<5e-6; ##p<5Se-7;

ns = not significant.

protein kinase (MAPK) signaling genes such as DUSP1/2/5, and
KIT were strongly upregulated, as were Phosphoinositide 3-
kinase (PI3K) signaling genes SGKI and IL6. Finally, in the
Immunoregulatory Pathways category, robust increases were
observed in cytokines such as CCL4, CCL3L1, and IL8, as well
as transcription factors ATF3 and EGRI.

These findings suggest that chemotherapy may introduce
changes that have both immunostimulatory and
immunosuppressive effects. Our data demonstrate that
chemotherapy regulates genes and pathways important for
mediating its cytotoxic effects, such as through regulation of
proliferation and DNA damage, but also demonstrates
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upregulation of genes and pathways that may impede its
efficacy or contribute to the development of chemoresistance,
such as through regulation of pro-tumorigenic pathways. In
addition, we observed that two of the top regulated genes are
EGRI and ATF3, which are both master regulating
transcription factors that may play a key role in mediating
many chemotherapy-induced effects. Interestingly, while both
EGRI and ATF3 are well studied as stress-responsive
transcription factors, ATF3 emerged as a gene of interest
since it is a master transcription factor that regulates
immunity and inflammation, but little is known about its
role in ovarian cancer.
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Chemotherapy downregulates proliferation and enhances immunoregulatory pathways while also upregulating pro-tumorigenic pathways.

(A) Genes involved in proliferation and DNA damage repair pathways are generally reduced while genes involved in metabolic stress and
apoptosis are generally increased following NACT. (B) Genes involved in pro-tumorigenic pathways such as PI3K, MAPK, JAK-STAT, NFkB, and
Wnt are increased following NACT. (C) Genes involved in immunoregulatory pathways including cytokine and chemokine signaling,
costimulatory signaling, antigen presentation, and immune cell migration and adhesion, as well as lymphoid and myeloid compartment genes,
are generally increased following NACT. Heat map represents log2 fold-change of the indicated genes, with Benjamini-Yekutieli (BY) p-value

listed adjacent. The heat map scale bar refers to all plots in figure.

In vitro validation of chemotherapy-
induced changes observed in
human tumors

We examined a subset of top DEGs (ATF3, AREG, DUSPI,
SGKI, and NFATC2) using HGSOC cell lines treated with
carboplatin and paclitaxel chemotherapy for 48 h (Figure 3).
Cell lines examined included the matched platinum-sensitive/
resistant pairs PEA1/PEA2 and PEOI/PEO4, as well as
OVCARS8, OVCAR4, and OV90 cells. Quantitative PCR
revealed consistent increases in ATF3 and AREG mRNA levels
with chemotherapy exposure in all cell lines, except OV90 cells
for AREG. Moreover, PEA2 chemoresistant cells displayed
significantly higher ATF3 and AREG levels than their
chemosensitive counterpart PEA1. DUSPI and SGKI also
displayed increases with chemotherapy exposure in certain cell
lines, although these genes were less consistent than ATF3 and
AREG. Finally, NFATC2 levels were relatively low in all cell lines
except OV90, and the increase in NFATC2 levels observed in
human tumors with chemotherapy exposure was not observed
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in cell lines, which is consistent with its role as a T cell

transcription factor.

ATF3 and AREG protein levels following
NACT exposure

We next validated the increase in ATF3 and AREG genes at
the protein level using fluorescent immunohistochemistry (IHC)
in a subset of patients from our NanoString cohort. Interestingly,
we observed a robust increase in cytoplasmic and nuclear ATF3
in patients’ post-NACT, which was highly regional in occurrence
(Figure 4A). Mean and maximum ATF3 intensity were
significantly increased with NACT exposure (Figures 4B, C).
Maximum ATF3 intensity was furthermore significantly
correlated to NanoString mRNA levels for each patient,
indicating the robustness of the NanoString data (r = 0.49, p =
0.002)(Figure 4D). The regional occurrence of ATF3
upregulation strongly suggests a highly heterogeneous
chemotherapy response, which should be further examined
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Chemotherapy-induced changes observed in human tumors are also evident in HGSOC cell lines and are associated with the chemoresistant
phenotype. ATF3, AREG, DUSP1, SGK1, and NFATCZ2 gene expression in (A) matched platinum-sensitive/resistant PEA1/PEA2 and cells,

(B) matched platinum-sensitive/resistant PEO1/PEO4 cells, (C) OVCARS cells, (D) OVCAR4 cells, and (E) OV90 cells treated with 100 uM
carboplatin and 10 nM paclitaxel for 48 h, measured by qPCR. Significance was determined by 1-tailed, unpaired student t test. *p<0.05;

**p<0.005; ***p<0.0005; #p<5e-6; ns=not significant

using spatial profiling approaches to understand the localized
responses and correlates of chemotherapy response. To further
query the unexpected cytoplasmic staining observed, we
performed fluorescent THC in PEAI and PEA2 HGSOC cell
lines. In PEAI1 cells, we observed the expected nuclear
localization of ATF3, indicating the specificity of the antibody.
However, in PEA2 cells, we observed more strong cytoplasmic
expression, indicating that ATF3 can be found in the cytoplasm
in addition to the nucleus, although the significance of this
finding is not yet known (Supplementary Figure 2).

We also validated the increase in AREG gene expression with
NACT exposure at the protein level using IHC. AREG integrated
optical density (IOD) was significantly increased following
NACT, however this appeared less robust than for ATF3
(Figures 5A, B). AREG mRNA levels and AREG IOD were
also significantly correlated, although the correlation was weaker
and did not reach the level of significance, with an r-value of
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0.2805 (p = 0.09) , which could be due to the fact that it is a
secreted protein (Figure 5C), which could be due to the fact that
it is a secreted protein.

The cancer genome atlas and Kaplan-
Meier analysis of ATF3 and EGR1

We next went on to examine ATF3 in the context of other
top DEGs. We utilized The Cancer Genome Atlas (TCGA)
Firehose Legacy ovarian cancer cohort to determine which
genes ATF3 is correlated with in a large HGSOC cohort.
Interestingly, many of the top ATF3 correlated genes in TCGA
were among the top upregulated genes following NACT in our
cohort of human HGSOC, suggesting that ATF3 is coregulated
with these genes or plays a critical role in their transcriptional
regulation. These genes included DUSPI, EGRI, SGKI,
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ATF3 protein displays distinct regional nuclear and cytoplasmic upregulation in human HGSOC tissue post-NACT. (A) Representative IHC images
of ATF3 protein in three different patients pre-NACT and post-NACT. ATF3 = green; DAPI (nuclear) = blue. 2° alone = secondary antibody
control. (B) Quantification of ATF3 maximum intensity pre-NACT and post-NACT. (C) Quantification of ATF3 mean intensity pre-NACT and
post-NACT. Significance was calculated using 1-tailed, unpaired student t test (n=20 patients). ***p<0.0005; ****p<5e-5 (D) Pearson correlation

of ATF3 maximum intensity levels with NanoString RNA values

CDKNIA, NFIL3, AREG, DUSP2, DUSP5, CXCL2, IL6, and
THBD (Figure 6A). Nonetheless, despite their strong
correlations and concordant upregulation with NACT, it is
important to note their potential differing functions, even
among the two top upregulated transcription factors, ATF3
and EGRI. As a point of comparison, we observed the
relationship of gene expression levels of these two
transcription factors with patient PFS using Gene Expression
Omnibus (GEQ) Series (GSE) and TCGA ovarian cancer data in
the KMplotter (28). While ATF3 was significantly associated
with worse PFS in naive to treatment HGSOC tumors, EGRI had
no relationship with PES (Figure 6B). While the role of these
transcription factors in a stress-inducible state likely differs from
their role in untreated tumors, this result demonstrates that
NACT-induced ATF3 and EGRI may also have very different,
unique roles within the tumor microenvironment in a post-
NACT setting as well.
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Analysis of immune cell infiltration
responses to NACT in HGSOC
patient tissue

Next, we went on to examine immune cell infiltration
changes with NACT exposure. NanoString cell type scores for
all immune cell types were significantly increased following
NACT, except for natural killer (NK) CD564;, cells
(Figure 7A, Supplementary Table 4). An examination of
individual patient scores pre- and post-NACT also revealed
increases for all immune cell subsets in most patients
(Figure 7B). A correlation analysis of top DEGs with immune
cell scores revealed that the cytokines CCL4 and CCL3LI were
strongly and significantly correlated with cytotoxic cells, CD8+
cells, exhausted CD8+ cells, macrophages, and mast cells,
suggesting that these cytokines may be key mediators of
immune cell infiltration post-NACT (Figure 7C). Finally, we
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Intratumoral AREG is increased post-NACT. (A) Representative IHC images of AREG protein pre-NACT and post-NACT. AREG = green; DAPI
(nuclear) = blue. 2° alone = secondary antibody control. (B) Quantification of AREG integrated optical density pre-NACT and post-NACT.
Significance was calculated using 1-tailed, unpaired student t test (n=20 patients). *p<0.05. (C) Pearson correlation of ATF3 maximum intensity

levels with NanoString RNA values

validated increases in CD8+ T cells by fluorescent IHC and type scores (Figure 7F). In sum, there is a net increase in immune
found significant increases in CD8+ T cell counts post-NACT cell infiltration with chemotherapy, as others have previously
(Figures 7D, E). We also noted a strong positive correlation reported, and CCL3L1 and CCL4 could play a role in this
between CD8+ T cell counts by IHC and NanoString CD8 cell immune cell recruitment.
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Top differentially expressed genes are associated with each other in The Cancer Genome Atlas (TCGA) but have differential relationships with
patient progression free survival (PFS). (A) Pearson correlation between ATF3 and DUSP1, EGR1, SGK1, CDKN1A, NFIL3, AREG, DUSP2, DUSP5,
CXCL2, IL6, and THBD in cBioPortal TCGA Firehose Legacy ovarian cancer dataset (microarray U133 data, n=310). (B) Kaplan-Meier curves for

ATF3 and EGR1 and PFS in Stage IlI-1V, grade 3 HGSOC, using top quartile cutoff (all datasets at kmplot.com).
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Association of immune cell infiltrate
and pathway scores with platinum free
interval

Next, we performed Cox proportional hazards regression
analysis of immune cell subsets with PFI, using pre- and post-
NACT scores. There were no significant results with pre-
NACT scores, but there was a significantly lower risk of
earlier recurrence in patients with higher levels of post-
NACT exhausted CD8+ cells, dendritic cells, and mast cells,
while NK CD564;, cells trended toward significance
(Figures 8A, B).

When examining pre-NACT pathway scores, only the pathway
“Cytotoxicity” was significantly related to lower risk of earlier
recurrence. In addition, “Interferon Signaling” almost reached
significance for lower risk of recurrence. On the other hand,
several post-NACT pathways were significantly related to PFI.
Higher scores in the categories “Angiogenesis”, “Autophagy”,
Hedgehog Signaling”, “Hypoxia”, “JAK-STAT Signaling”,
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“MAPK Signaling”, “Matrix Remodeling and Metastasis”,
“Metabolic Stress”, “Notch Signaling”, “PI3K-Akt Signaling”,
“Transforming growth factor-beta (TGF-B) Signaling”, and “Wnt
Signaling” were significantly associated with lower risk of
recurrence. Conversely, higher scores in the pathways “Cell
Proliferation” and “Epigenetic Regulation” were associated with a
greater risk of earlier recurrence (Figure 8C).

When we stratified pre- and post-NACT samples by 12-mo
PFI, we found no significant differences in median immune cell type
scores (Figures 9A, B; Supplementary Figures 3A, B), despite the
relationship between PFI and certain immune cell subsets observed
in Figure 8B. Only post-NACT mast cells showed a trend toward
increased levels in patients with PFI >12 mo (p = 0.07). Likewise,
pre-NACT pathway scores were not significantly different between
patients with <12 mo PFI versus >12 mo PFI (Figure 9C;
Supplementary Figure 3C). However, post-NACT pathway scores
were significantly different between patients with <12 mo and >12
mo PFI, namely for “Angiogenesis”, “Autophagy”, “Cell
Proliferation”, “Epigenetic Regulation”, “Metabolic Stress”,
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“TGF-P Signaling”, and “Wnt Signaling”, which agrees with the
results of the Cox proportional hazards regression analysis in
Figure 8D (Figure 9D; Supplementary Figure 3D).

Differential expression of genes post-
NACT in patients with longer platinum
free interval

Finally, we performed differential expression analysis for post-
NACT samples stratified by 12-mo PFI (Figures 10A, B;
Supplementary Table 5). While this analysis did not reveal any
changes that met false discovery rate correction, the genes that were
differentially expressed according to p-value < 0.05 revealed a trend
toward higher levels of proliferation and DNA damage repair genes
in patients with PFI <12 mo (UBE2C, CCNEI, CCNBI, BIRCS,
CENPF, RRM2, ANLN, MK167, CEP55, RAD51, and FANCA), and
lower levels of expression of genes related to adhesion, angiogenesis,
and epithelial-to-mesenchymal transition (ANGPT1, ZEBI, ITGAI,
SNAII, FLTI, CDH5, PDGFRB, ICAM2, PRR5, COL17A1, VEGFC,
PTGS2) in patients with <12 mo PFL. Most of the genes identified

10.3389/fimmu.2022.965331

through differential expression were also found to be related to PFI
according to Cox proportional hazards regression (Figure 10C).

Together, the analysis of patient immune genes/pathways and
cell types with PFI shows that patients with shorter PFI may have
less robust immune infiltration of certain subsets post-NACT,
although the differences are not very striking. More strikingly,
post-NACT pathway scores for several typically pro-tumorigenic
and immunoregulatory pathways were significantly associated with
longer PFI, suggesting that these pathways may actually play a role
in tumor responsiveness to chemotherapy. Finally, the trend
toward higher expression of a cluster of proliferative genes, in
particular UBE2C, CCNEI, and CCNBI, in patients with shorter
PFI demonstrates the importance of chemotherapy-induced
regulation of these genes in mediating responses.

Discussion

In this study, we set out to comprehensively examine
immunotranscriptomic and immune infiltrate changes
resulting from NACT exposure in a large cohort of HGSOC
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type scores stratified by <12 mo PFl and >12 mo PFI. (C, D) Pre-NACT and post-NACT median pathway scores stratified by <12 mo PFl and >12
mo PFI. Significance determined by unpaired Mann-Whitney test. *p<0.05; **p<0.005; ns = not significant. Scores do not indicate abundance of
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patients. Our findings are mostly consistent with previous
studies examining smaller cohorts of matched pre- and post-
NACT tumors that reported increases in immune cell infiltration
and upregulation of specific immunoreactive genes (30, 31). Our
data revealed that in addition to the regulation of genes known
for mediating cytotoxic effects of chemotherapy, chemotherapy
exposure was also accompanied by an upregulation of genes that
could impede its efficacy and/or promote chemoresistance.
Two major genes, ATF3 and AREG, regulating
transcription and signaling, respectively, were among the top
upregulated DEGs following NACT, a finding that was
validated both at the protein level and in vitro. Activating
transcription factor 3 (ATF3) is induced by a variety of stress
signals and regulates apoptosis as well as controls immune
responses and inflammation in cancer. Our analysis derived
from the ovarian TCGA cohort revealed that ATF3 strongly
correlated with many of the top upregulated DEGs from our
NACT cohort, including DUSP1, EGRI, SGK1, CDKNIA, and
AREG, suggesting that ATF3 may play a role in many of these
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genes’ transcriptional upregulation or be coordinately
regulated with these genes. Intriguingly, several studies
support ATF3’s direct regulation of SGKI, EGRI, IL6, and
CDKNIA (32-38). SGKI and another top upregulated DEG,
DUSPI1, have both been implicated in chemoresistance and
apoptosis inhibition in ovarian cancer (39-41), with our own
research showing that a dual inhibitor of DUSP1 and DUSP6
reversed chemoresistance in ovarian cancer cells (42). These
results suggest that ATF3 could regulate the balance of
apoptosis and survival following NACT through
transcriptional regulation of its target genes, which may
include some of these top DEGs regulated by chemotherapy,
although this speculation will need to be tested experimentally.

ATEF3 is known to exhibit dichotomous functions both as an
oncogene and tumor suppressor, depending upon cancer
subtype or context of its upregulation (43). Furthermore, it has
been reported that the differential usage of alternative ATF3
promoters can lead to these dualistic roles (44). While our results
from TCGA and GSE datasets show that higher ATF3 expression
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FIGURE 10

Differential expression of genes post-NACT in patients with longer platinum free interval (PFI). (A) Volcano plot showing differential expression of
genes between patients with <12 mo PFI versus >12 mo PFI. (B) Top 40 differentially expressed genes between patients with <12 mo PFI versus
>12 mo PFI. Heat map shows log?2 fold-change, with p-value shown adjacent. No genes met Benjamini-Yekutieli adjusted p-value threshold.

(C) Forest plot showing Cox proportional hazards regression of post-NACT gene expression and PFl. Log10 hazard ratios are indicated on the x-
axis. Bars indicate 95% confidence interval. *p<0.05; **p<0.005; ***p<0.0005.
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in treatment naive samples is associated with worse survival, its
expression in post-NACT tumors from our dataset revealed no
significant association with PFI, further suggesting that ATF3’s
function is highly contingent upon stress response activation.
Moreover, our data uncovered specific regional upregulation of
ATF3 in HGSOC patient tissue following NACT exposure,
warranting further exploration into how this unique
expression pattern correlates to tumor heterogeneity in
chemotherapy response. Remarkably, there have been very few
studies that have specifically investigated the mechanistic role of
ATF3 in ovarian cancer. One bioinformatic study found that
upregulation of ATF3 was related to enhanced cell mitotic and
heme-related processes (45). Interestingly, protein-protein
interaction network analysis of ATF3 DEGs identified UBE2C
as a central hub gene (45), which we identified from our NACT
dataset as a top DEG in post-NACT patient tumors stratified by
<12 mo and > 12 mo PFI. Overall, in order to precisely
understand implications of chemotherapy-induced ATF3
expression on the ovarian TIME, future in vitro and in vivo
mechanistic studies must be conducted.

In contrast to ATF3, the role of Amphiregulin (AREG), which
is a low affinity ligand for epidermal growth factor receptor
(EGFR), has been more established in ovarian cancer. It has
been previously reported that AREG overexpression leads to
enhanced cell proliferation, migration, invasion, cancer
stemness, and drug resistance in ovarian cancer (46, 47), further
supporting the idea that chemotherapy results in the upregulation
of genes with pro-tumorigenic implications. Furthermore, it is
well known that AREG possesses a functional role in immunity
and inflammation. Specifically, AREG in Tig cells acts to mitigate
harmful inflammation, but simultaneously results in the
promotion of tumor growth by creating an immunosuppressive
TIME (48). Taken together, while AREG’s role in ovarian
pathogenesis and chemoresistance has been established, AREG’s
specific effects in the context of the ovarian TIME need to be
elucidated, as unraveling its role in HGSOC tumor immunity
could lead to novel therapeutic insights.

To further characterize immunogenomic changes resulting
from NACT, pathway analysis was employed, revealing that
genes involved in pro-tumorigenic PI3K, MAPK, JAK-STAT,
Nuclear Factor-kappa B (NFkB), and Wnt signaling, as well as
genes involved in immunostimulatory pathways such as
cytokine and chemokine signaling, costimulatory signaling,
antigen presentation, immune cell migration and adhesion,
and lymphoid and myeloid compartment genes, were are all
increased following NACT. Overall, these findings highlight the
multifaceted effects that chemotherapy exerts on the ovarian
TIME, as it can simultaneously produce immunostimulatory
and immunosuppressive consequences. These results highlight
the crucial need to study how the delicate balance of numerous
pathways affect chemotherapy efficacy, and how ultimately the
adaptations made by the TIME may lead to tumor recurrence. A
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review by Liu et al. (2020) cited studies that pointed to the
potential role of the Wnt, Notch, Hedgehog, and PI3K pathways
in promoting ovarian cancer stem cells, which could be key
drivers of recurrence following NACT (49).

In addition to specific gene and pathway changes, we also
observed significant increases in immune infiltration following
NACT, which is well corroborated by previous studies (16, 17,
19, 20, 31, 50). Furthermore, we validated the finding at the
protein level that CD8+ T cells were significantly increased in
post-NACT tumors. Interestingly, mast cells were most
strikingly increased following NACT exposure. In cancer, mast
cells play a vital role in regulating the TIME through their
modulation of cellular proliferation, invasiveness, metastasis,
survival, and angiogenesis (51). Furthermore, a recent study in
HGSOC reported that an increase in stromal tumor infiltrating
mast cells (sTIMs) was correlative to an immunosuppressive
subtype of HGSOC that was characterized by higher levels of
Trege» M2 macrophages, and neutrophils and was linked to poor
prognosis. Furthermore, using an organoid-patient derived
model, they showed that low sTIMs were significantly
associated with an increased response to anti-PD-1 treatment,
indicating that mast cells could represent a novel immune target
in HGSOC (52). As previously mentioned, one limitation of our
study is that not all immune cell subsets could be included in the
analysis, due to low confidence in accuracy of NK cell
quantification and Ty, and the fact that the 10360 panel
does not account for differences in M1/M2 macrophages.
Therefore, follow-up investigations that include the analysis of
these pertinent immune-cell subsets following chemotherapy
exposure would be valuable.

Upon comparison of all top DEGs with immune infiltration,
we discovered that CCL4 (Chemokine (C-C motif) ligand 4) and
CCL3L1 (Chemokine (C-C motif) ligand 3-like 1) were strongly
and significantly correlated with cytotoxic cells, CD8+ cells,
exhausted CD8+ cells, macrophages, and mast cells. CCL4 has
been reported to be involved in the metastasis, angiogenesis, and
leukocyte trafficking of many tumor subtypes, including ovarian
cancer (53). Corroborating our study, an investigation by Zsiros
et al. similarly found a correlation between increased
intratumoral CCL4 and CD8+ T cells in ovarian cancer (54).
Moreover, a study in esophageal cancer reported that CCL4
recruits cytotoxic tumor infiltrating lymphocytes (55). Finally, a
study by Mlynska et al. showed that circulating levels of CCL4
could accurately identify ovarian cancer patients with shorter
recurrence-free and overall survival, but found no significant
association with tumor immune infiltrate (56). However, levels
of CCL4 were only measured in treatment naive serum and not
following chemotherapy exposure, an important distinction
from our study. CCL3L1 is a key proinflammatory mediator
involved in activation of leukocytes, lymphocytes, and
macrophages that has been specifically implicated in
glioblastoma and breast cancer tumorigenesis (57, 58) and
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found to be upregulated in renal cell carcinoma derived
monocytes (59). Furthermore, a pan-cancer study identified
CCL3L1 as one of 20 genes indicative of T, enrichment,
however this investigation only included bladder, lung,
pancreatic, stomach cancer and melanoma TCGA cohorts
(60). Interestingly, there has been one study in HGSOC that
similarly employed a NanoString PanCancer Immune Profiling
Panel to identify CCL3L1 as being highly overexpressed in
patients with chemosensitive disease (61). To the best of our
knowledge, there have been no studies that have previously
reported on CCL3LI’s potential relationship with tumor
immune infiltration. Ultimately, further investigation into both
CCL4 and CCL3L1’s roles in mediating tumor immune
infiltration following NACT exposure is warranted, as it could
potentially lead to original approaches to combat the
immunosuppressive ovarian TIME.

In our analysis of how intratumoral immunotranscriptomics,
pathways, and immune cell types are related to PFI in pre- and
post-NACT tumors, we found significant relationships between
PFI and post-NACT levels of exhausted CD8+ T cells, NK
CD56dim cells, dendritic cells, and mast cells. Interestingly, we
observed no significant relationships between pre-NACT levels
with PFI, which contradicts previous studies that demonstrate a
beneficial prognostic relationship between CD8+ T cells and
survival (4-7). Other studies have also identified stronger
relationships between immune infiltration and chemotherapy
response than we did here. For example, Sun et al. observed
enrichment of specific subsets of immune cells and greater
cytolytic activity in patients with chemosensitive disease when
analyzing publicly available datasets (31). Likewise, Hao et al.
reported better responses in patients with higher immunoscores in
TCGA and OV.AU datasets, although this was not as striking for
TCGA patients (30). However, our results here are in agreement
with several other studies, including one from our own lab, that
demonstrated no prognostic significance of TILs alone in pre-
and/or post-NACT samples (10, 18, 23, 24). Reasons for these
discrepancies could be related to detection method, examination
of localization and specific effector subsets of TILs in different
studies, number of samples analyzed, or biological variability in
patient cohorts. Moreover, despite the importance of specifically
understanding the TIME in ovarian cancer, one caveat to all of
these studies is that they exclude the importance of other
chemotherapy-responsive genes in mediating chemotherapy
resistance, which has been more thoroughly analyzed by Sun
et al. in a large-scale analysis of multiple cell line and tumor
databases, leading to development of a 16-gene expression
signature to predict chemotherapy response (62).

When we examined pathway scores pre- and post-NACT in
relationship with PFI by Cox proportional hazards regression,
we again observed no relationship of pre-NACT pathways with
PFI, but many post-NACT pathway scores were significantly
related to PFI, and many of these were also significantly different
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when post-NACT samples were stratified by 12-mo PFIL. Of note,
while some of these pathways were logically related to
chemotherapy response, such as the downregulation of “Cell
Proliferation”, we also observed that activation of multiple
typically “oncogenic” pathways such as Hedgehog, MAPK,
Notch, PI3K, TGF-B, and Wnt signaling were associated with
longer PFI. These results suggest that the role of these pathways
in ovarian cancer is context dependent and may be required for
mediating chemotherapy response in an acute context but could
have deleterious effects that also contribute to recurrence and
chemotherapy resistance. In addition to these oncogenic
pathways, we also observed a relationship between
“Angiogenesis” and “Matrix Remodeling and Metastasis” with
PFI, suggesting that these components of the TIME are also
important for mediating responses, perhaps affecting how well
chemotherapy is able to perfuse the tumor.

Finally, our examination of differential gene expression
between <12 mo and >12 mo PFI in post-NACT samples
revealed no DEGs that met false discovery rate correction,
which could likely be attributed to biological and treatment
variability among our patient cohort and lack of power to detect
such differences. Importantly, the stratification by 12-mo PFI is
imperfect, as there may be patients in each group at the
threshold cutoff who are more biologically similar to each
other than to either group. Nonetheless, the trends observed
by examining genes with p-value <0.05 were illuminating. Most
prominently, the genes that emerged as more highly expressed in
patients with shorter PFI were involved with cell proliferation
and DNA damage (UBE2C, CCNEI, CCNBI1, BIRC5, CENPF,
RRM2, ANLN, MKI167, CEP55 RAD51, FANCA, MTOR).
Notably, UBE2C depletion has been reported to reduce
platinum resistance in ovarian cancer (63). Furthermore, as
mentioned above, UBE2C was reported as a central hub gene
for ATF3 expression in TCGA (45), suggesting that while
chemotherapy-induced ATF3 itself does not appear to be
related to PFI, it may control a delicate balance of gene
expression post-NACT that could negatively affect patient
outcomes. Further research will be needed to identify
transcriptional targets of ATF3 following chemotherapy
exposure in ovarian cancer.

On the other hand, genes that were more highly expressed
in the longer PFI group were dominated by genes involved in
regulating adhesion, angiogenesis and epithelial-to-
mesenchymal transition (ANGPTI1, ZEBI, ITGAI, SNAII,
FLT1, CDH5, PDGFRB, ICAM2, PRR5, COL17A1, VEGFC,
PTGS2). 1t is unclear what the specific role of many of these
genes are in ovarian cancer in the post-NACT setting, as some
of them have been reported to be pro-tumorigenic in ovarian
or other cancers (64-68), however these results could point to
the benefit of angiogenic factors in order to promote increased
drug delivery to the tumor (69). Furthermore, we noted that
EGRI was also related to longer PFI, which indicates the
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importance of EGRI upregulation in mediating successful
chemotherapy response and aligns with the role of this
transcription factor as a promoter of apoptosis (70). Our
own previous research found that HE4-mediated suppression
of EGRI in ovarian cancer cells led to chemoresistance (71).
Overall, these results could provide a starting point for further
research into the role of many of these genes in ovarian cancer,
particularly in the post-NACT setting.

In conclusion, this current study underscores the complex
alterations in the ovarian TIME following chemotherapy
exposure, as both immunostimulatory and pro-tumorigenic
genes, pathways, and cell subsets were enriched in post-NACT
patient tumors. Results derived from this investigation will
require many further mechanistic studies in order to
determine the role of these identified chemotherapy-induced
transcriptomic and cell population changes in HGSOC, as well
as to elucidate how these changes contribute to TIME
adaptations that result in recurrence. Ultimately, this study
begins to untangle how immunologic factors are involved in
mediating chemotherapy response, which will allow for the
development of novel immunologic therapies to combat
HGSOC chemoresistance in the future.
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SUPPLEMENTARY FIGURE 1

NACT induces gene changes in NanoString pathways. Heat map represents
log2 fold-change of the indicated genes, with Benjamini-Yekutieli (BY) p-
value listed adjacent. The heat map scale bar refers to all plots.

SUPPLEMENTARY FIGURE 2

ATF3 fluorescent immunohistochemistry in PEAL and PEA2 cells. PEAL
and PEA 2 cells were stained for ATF3 (green). PEAL cells were treated with
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DMSO control or 100 uM carboplatin plus 10 nM paclitaxel for 24 h prior
to fixation and staining. DAPI (blue) was used as a nuclear stain. Images
were taken at 20x and 40x magnification. PEA2 cells were also utilized for
a secondary antibody (2°) alone control.

SUPPLEMENTARY FIGURE 3

Individual patient values for pre- and post-NACT cell types (A, B) and pathways (C,
D) stratified by 12-mo PFI. Median shown with red line. Significance calculated
using unpaired Mann-Whitney test. *p<0.05; **p<0.005; ns = not significant.

SUPPLEMENTARY TABLE 1
All differentially expressed genes post-NACT vs. pre-NACT.
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