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Mitophagy is suggested to be involved in tumor initiation and development;

however, mitophagy heterogeneity in hepatocellular carcinoma (HCC) and its

association with immune status and prognosis remain unclear. Differentially

expressed genes (DEGs) were identified using expression profiles acquired

from The Cancer Genome Atlas (TCGA). Mitophagy-related subtypes were

identified using the ConsensusClusterPlus software. The differences in

prognosis, clinical characteristics, and immune status, including immune cell

infiltration, immune function, immune-checkpoint gene expression, and

response to immunotherapy, were compared between subtypes. A

mitophagy-related gene signature was constructed by applying least

absolute shrinkage and selection operator regression to the TCGA cohort.

The International Cancer Genome Consortium cohort and the cohort from

Peking Union Medical College Hospital were utilized for validation. Carbonyl

cyanide m-chlorophenylhydrazone was used to induce mitophagy in HCC cell

lines to obtain our own mitophagy signature. Real-time polymerase chain

reaction was used for the experimental validation of the expression of model

genes. Two mitophagy-related subtypes with distinct prognoses, clinical

characteristics, immune states, and biological function patterns were

identified based on the mitophagy-related DEGs. The subtype that showed

higher mitophagy-related DEG expression had worse survival outcomes,

suppressed immune function, higher immune-checkpoint gene expression,

and a better response to immunotherapy, indicating that this subpopulation in

HCC may benefit from immune-checkpoint blockade therapy and other

immunotherapies. A risk model consisting of nine mitophagy-related genes

was constructed and its performance was confirmed in two validation cohorts.

The risk score was an independent risk factor even when age, sex, and tumor
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stage were considered. Our study identified two distinct mitophagy subtypes

and built a mitophagy signature, uncovering mitophagy heterogeneity in HCC

and its association with immune status and prognosis. These findings shed light

on the treatment of HCC, especially with immunotherapy.
KEYWORDS

hepatocellular carcinoma, mitophagy, immune, immune-checkpoint, immuno
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Introduction

Hepatocellular carcinoma (HCC) accounts for the majority

of primary liver cancer cases, which is ranked the fifth in cancer-

related death (1, 2). Despite much progress in the diagnosis and

treatment of HCC, the prognosis of patients with HCC remains

poor, with a median survival time of 9 months (3). For patients

with HCC at early stage, curative treatments such as

radiofrequency ablation and liver section can achieve a 40%-

70% 5-year survival rate; and palliative treatments such as

transarterial chemoembolization has been shown to improve

median OS of intermediate stage HCC to approximately 20

months (4). For HCC at advanced stage or terminal stage,

survival outcomes are still unsatisfactory even with the help of

molecular therapy. Immunotherapies, such as immune-

checkpoint blockade (ICB), have shown strong antitumor

activity and lead to a substantial prolonged survival for

advanced HCC, whereas only a subset of patients can benefit

from these therapies (5). Therefore, there is an urgent need to

explore the underlying molecular mechanisms of HCC and

provide new targets and strategies for treatment.

Major breakthroughs in a mechanism called mitophagy have

recently gained considerable attention (6). Mitophagy, also

known as mitochondrial autophagy, eliminates denatured or

damaged mitochondria, preventing the accumulation of

mitochondrial DNA mutations and maintaining mitochondrial

quality (7). Hence, mitophagy plays a vital role in regulating

energy metabolism and removing excessive cytotoxic reactive

oxygen species (8). Mitophagy plays a dual role in the

development of cancer by suppressing tumors at an early stage

and promoting tumors at an advanced stage (9). The ubiquitin-

dependent PINK1/Parkin pathway is the most common

mitophagy cascade, and some core genes within this pathway,

such as PINK1 and PARK2, can predict prognosis in patients

with papillary renal cell cancer (10, 11). However, the role of

mitophagy-related genes (MRGs) in HCC is not fully

understood. Several studies have reported heterogeneity in

autophagy in other types of cancer (12, 13). As a specific form

of autophagy, the heterogeneity of mitophagy likely influences

the development and prognosis of HCC. Research focused on
02
mitophagy may help to concretize problems. Therefore, we

aimed to investigate the role of MRGs and mitophagy-related

subtypes in HCC, focusing on the association with immune

status and response to immunotherapy, as there has been

massive interest in immunotherapy for HCC (14).

A flowchart of the study design is shown in Figure 1. In this

study, we first screened differentially expressed MRGs (DEMs)

between tumor and normal tissues of patients with HCC. Based

on the expression profile of the DEMs, we classified the patients

into two subtypes and explored their prognoses, clinical

characteristics, immune states, and drug sensitivities.

Subsequently, based on the MRG signature, a prognostic

model was constructed and validated in two cohorts.

Moreover, we explored the differences in biological functions

between these subtypes and risk groups. Cell experiment and

qPCR were performed to validate our results. Our findings are

helpful in accurately characterizing HCC and providing

personalized treatment for patients.
Materials and methods

Data acquisition

We obtained two gene sets from public databases by

searching the keyword “mitophagy”: one is Mitophagy-animal

pathway (Entry: hsa04137), which contains 72 genes from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database (https://www.kegg.jp/kegg/pathway.html), the other

one is REACTOME-MITOPHAGY gene sets (source: R-HSA-

5205647), which contains 29 genes from the C2:CP :

REACTOME in Molecular Signatures Database with Gene Set

Enrichment Analysis (GSEA) (http://www.gsea-msigdb.org).

Since 20 genes overlapped in two gene sets, we eventually

acquired a total of 81 MRGs for subsequent analyses. The

RNA-seq and clinical information of HCC samples were

downloaded from the Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/), which included 50 normal

samples and 374 cancer samples. We also acquired two HCC

cohort datasets for validation: one was downloaded from the
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International Cancer Genome Consortium (ICGC) database

(https://dcc.icgc.org/), which included 243 cancer samples; the

other was collected from Peking UnionMedical College Hospital

(PUMCH) and included 20 patients with HCC (Supplementary

Table 1). The cohort from our center was approved by the Ethics

Committee of PUMCH and CAMS (Chinese Academy of

Medical Sciences) & PUMC (Peking Union Medical College),

and written informed consent was obtained from all patients.
Identification and analysis of DEMs

DEMs between tumor tissues and normal tissues in TCGA

were screened using the “limma” R package (15) based on the

following criteria: |log2fold change| > 0.5 and false discovery rate <

0.05. The protein-protein interaction network of DEMs was

obtained from the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database (https://string-db.org), and the

interaction between core genes was visualized using Cytoscape

software (version 3.8.2) (16).
Consensus cluster analysis

We used the ConsensusClusterPlus software (17) of R to

perform unsupervised consensus clustering of TCGA dataset
Frontiers in Immunology 03
based on the expression of DEMs. The optimal cluster number k

was determined by evaluating the delta area, consensus

cumulative distribution function, and consensus matrix.

Principal component analysis was used to verify the results of

the cluster analysis. The correlation between clusters and clinical

variables was tested using Chi-square test.
Immune status analysis

To explore the impact of mitophagy on patient immune

status, two mitophagy-related subtypes were compared in terms

of differences in infiltrating immune cells, immune function,

immune-checkpoint gene expression levels, and response to

immunotherapy. We quantified the relative abundance of

immune cell types and the activity of immune function in each

sample using single sample GSEA algorithms through the R

package “GSVA” (18). The expression levels of immune-

checkpoint genes can reflect the response to ICB treatment;

thus, the following well-known immune-checkpoint genes were

chosen for expression level evaluation in each subtype: CTLA4,

CXCL9, CD8A, TBX2, PDCD1, LAG3, HAVCR2, IFNG, TNF, and

CD274. Moreover, Tumor Immune Dysfunction and Exclusion

(TIDE) scores (19) of each HCC sample were calculated online

(http://tide.dfci.harvard.edu/) and compared between subtypes to

verify the differences in response to immunotherapy.
FIGURE 1

Study flowchart. DEMs, Differentially expressed mitophagy-related genes; ICB, immune-checkepoint blockade.
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Drug sensitivity analysis

To discover potential drugs for patients with different

mitophagy-related subtypes of HCC, we evaluated their

responses to various antitumor drugs using the “pRRophetic”

R package (20), which is based on the Genomics of Drug

Sensitivity in Cancer database.
Construction and validation of
risk model

First, we performed univariate Cox regression analysis on

MRGs to screen for survival-related prognostic genes in the

TCGA cohort. We then obtained genes for model construction

by intersecting prognostic genes with DEMs, followed by least

absolute shrinkage and selection operator (LASSO) regression

using the “glmnet” R package (21) to form the final gene

signature for the risk model. The risk score was formulated as

follows:

risk score  ¼  b1 ñ gene1 expression + b2 ñ gene2 expression +

  …  + bn ñ gene expression

where b represents the coefficient value of each gene.

Patients in the training and validation cohorts were divided

into high- and low-risk groups based on the median risk scores.

The receiver operating characteristic (ROC) curves in each

cohort were plotted using the R package “timeROC” (22), and

the time-dependent area under the curve values were measured

to evaluate the performance of the model. Univariate and

multivariate Cox regression analyses were used to evaluate

whether the risk score was an independent predictor.
Functional analysis

KEGG and Gene Ontology (GO) enrichment analyses were

utilized for functional annotation of DEMs and differentially

expressed genes (DEGs) between subtypes using the

“ClusterProfiler” R package (23). Significant GO terms and

pathways were selected with a p-value cutoff of < 0.01. The

biological functions enriched in the high- and low-risk groups of

the TCGA cohort were derived by GSEA of KEGG pathways.
Acquisition of mitophagy signature by
inducing mitophagy in HCC cell lines

Human HCC cell line Huh 7 was purchased from Procell

Life Science & Technology Co. Ltd. (Wuhan, China).
Frontiers in Immunology 04
MHCC97H was from the Liver Cancer Institute (Zhongshan

Hospital, Fudan University, China). SNU398 was from ATCC

(Manassas, VA, USA). Huh7 and MHCC97H were cultured in

Dulbecco’s modified Eagle medium, supplemented with 10%

fetal bovine serum and 1% antibiotics in 5% CO2 at 37°C.

SNU398 was routinely cultured in RPMI-1640 medium

supplemented with 10% fetal bovine serum and 1% antibiotics

in 5% CO2 at 37°C. Then three HCC cell lines were treated with

10mM carbonyl cyanide m-chlorophenylhydrazone (CCCP,

selleck,China), which was used to induce mitophagy, for 24

hours (24, 25). RNA sequencing for Huh 7, MHCC97H,

SNU398 cells treated with or without CCCP by Beijing

Auwigene Tech, Ltd (Beijing, China) using the Illumina

second-generation high-throughput PE150 sequencing

platform (Illumina, Inc., CA, United States). Between cell lines

treated with and without CCCP, top 100 differentially expressed

genes ranked by |log2fold change| were considered as mitophagy

signature for validation.
Real-time polymerase chain reaction

Total RNA was extracted from liver tumors and peritumoral

tissues using TRIzol (Invitrogen, Thermo Fisher, Waltham, MA,

USA), following the manufacturer’s instructions. RNA (1 μg)

was reverse transcribed using the Hifair® II 1st Strand cDNA

Synthesis SuperMix for qPCR (gDNA digester plus) (Yeasen

Biotechnology, Shanghai, China) in a 20 ml reaction. After 20-
fold dilution, 4 ml of cDNA was used as a template in a 20 ml real-
time polymerase chain reaction (PCR). For real-time PCR,

amplification was performed for 40 cycles using BlasTaq™ 2X

qPCR MasterMix (Applied Biological Materials Inc., Richmond,

BC, Canada). Primers were designed on exon junctions to

prevent co-amplification of genomic cDNA; the sequences are

presented in the Supplementary Table 2.
Statistical analyses

All statistical analyses were performed using R (version 4.0),

and relevant packages were applied for processing and

visualization. The Wilcoxon test was used to compare

differences in continuous variables. The overall survival was

evaluated using the Kaplan–Meier analysis, and the survival

curve was plotted using the R package “survminer” (http://cran.

r-project.org/). The log-rank test was used to examine the

differences between subtypes or groups. If not specifically

stated, bilateral p < 0.05 was considered statistically significant.
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Results

Profile and functional annotation
of DEMs between tumor and
normal samples

We collected 81 MRGs from the database gene sets, and 51

DEMs were identified between tumor and normal samples from

the TCGA cohort. In order to verify DEMs acquired from one

public database, we performed RNA sequencing on 8 pairs of

HCC samples and peritumoral tissues, and the expression matrix

can be found in Supplementary Table 1. Of 42 DEMs identified

in our own samples, 35 DEMs overlapped with 51 DEMs from

TCGA cohort, and 39 of 40 DEMs identified in ICGC cohort

overlapped with those in TCGA cohort, indicating the reliability

of DEMs identified in TCGA cohort. A heatmap of the 51 DEMs

is shown in Figure 2A. Fifty of the DEMs were upregulated in

tumors, primarily including genes involved in the PINK1/Parkin

pathway (PINK1, PARK2, ATG family, and TOMM family) and

receptor-mediated mitophagy (FUNDC1, PGAM5, and ULK1).

In addition, oncogenes such as TP53, KRAS, andHRAS were also

upregulated, as these genes may be related to hypoxic stress.

Only one gene, JUN, was downregulated. We then performed

protein-protein interaction analysis to determine the
Frontiers in Immunology 05
interactions between DEMs and the core network, as shown in

Figure 2B; the TOMM family, MFN1, VDAC1, PARK2, and

RPS27A were hub genes, and oncogenes such as HRAS, KRAS,

and TP53 participated in the core network of mitophagy. The

KEGG analysis in Figure 2C showed that, besides mitophagy and

autophagy, these DEMs were also enriched in the PD-1/PD-L1

checkpoint pathway, which is related to the response to ICB

treatment of HCC. Pathways involving hepatitis B and apoptosis

were also enriched, and they were shown to be involved in

tumorigenesis and the development of HCC (26, 27).
Subpopulation of HCC on account of
expression pattern of DEMs

Consensus clustering was applied to identify HCC subtypes

based on the expression levels of the DEMs acquired from the

previous step. We determined the k value as 2, at which point the

relative change in area under the cumulative distribution function

reached an approximate maximum and the consensus matrix

showed a clear boundary simultaneously (Figures 3A–C).

Therefore, two clearly distributed subtypes were classified; these

were denoted as cluster 1 (containing 211 samples) and cluster 2

(containing 163 samples). To further verify the clustering result,
A B

C

FIGURE 2

Expression level, interactions and functional enrichment analysis of DEMs between tumor samples and normal samples. (A) Profile of DEMs
based on sample type. Color represents expression level (blue to red). (B) Hub protein-protein interaction network among DEMs. Color
represents confidence (blue to red). (C) KEGG analysis of DEMs. DEMs: Differentially expressed mitophagy-related genes, KEGG: Kyoto
Encyclopedia of Gene and Genome.
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principal component analysis was performed, and the principal

component distribution was in accordance with the consensus

matrix, ensuring the stability of consensus clustering (Figure 3D).

The DEM expression and clinical features of each sample grouped

by cluster are shown in a heat map (Figure 3E). Cluster 2 generally

had higher DEM expression than cluster 1. Tumor stage and grade

were found to be correlated with subtype. Cluster 2 had a higher

proportion of tumors with advanced stage and high grade.

Moreover, the Kaplan–Meier survival analysis showed that the

two subtypes had significant differences in OS (Figure 3F). Cluster

2 tended to have worse outcomes than cluster 1 (p = 2.618e-04),

with 5-year survival rates of 37.6% and 56.0%, respectively. The

difference in prognosis between the two clusters was in accordance

with their differences in tumor stage and grade. These findings

confirm the existence of mitophagy heterogeneity in HCC and its

impact on the development and prognosis of HCC.
Frontiers in Immunology 06
Characterization of immune status and
drug sensitivity affected by mitophagy
heterogeneity in HCC

To compare the immune characteristics of the two

mitophagy-related subtypes, we first estimated immunocyte

infiltration and immune function using single sample GSEA

algorithms. As shown in Figure 4A, compared with cluster 1,

cluster 2 showed higher infiltration of activated dendritic cells

(aDCs), immature dendritic cells (iDCs), macrophages, follicular

helper T cell (Tfh), T helper 2 cell (Th2) and regulatory T cells

(Treg). Regarding immune function in Figure 4B, cytolytic

activity and type II interferon response were increased in

cluster 1, while cluster 2 had strong antigen-presenting cell

(APC) co-stimulation and major histocompatibility complex

(MHC) class I reactions.
A B

D E

F

C

FIGURE 3

Identification of two mitophagy-related HCC subtypes with different prognosis. (A–C) Consensus matrix of HCC samples co-occurrence
proportion for k = 2 (A), relative change in area under the CDF curve for k from 2 to 7 (B), consensus clustering CDF for k from 2 to 7
(C). (D) Principal component analysis of HCC samples grouped by subtype. (E) A heatmap showing the association of mitophagy-related
subtypes with clinical characteristics and expression of DEMs. (F) The Kaplan–Meier plot showing the overall survival differences between the
two subtypes. The asterisks represent the p value (*p < 0.05; **p < 0.01; ***p < 0.001). DEMs, Differentially expressed mitophagy-related genes.
CDF, Cumulative distribution function.
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To explore the effect of mitophagy on the response to ICB

treatment, we compared the expression levels of immune-

checkpoint genes in each subtype. As shown in Figure 4C, all

immune-checkpoint genes were consistently overexpressed in

cluster 2, indicating that cluster 2 tended to be more sensitive to

ICB treatment. Furthermore, we calculated the TIDE score of

every sample and the scores were significantly lower in cluster 2

than in cluster 1, further verifying that patients in cluster 2 may

be more likely to benefit from immunotherapy (Figure 4D). In

contrast, with higher TIDE scores, cluster 1 was more likely to

achieve tumor immune escape and exhibit a lower response rate

to ICB treatment.

We also evaluated the drug sensitivity of each subtype to

identify potential chemotherapeutic drugs. Lower IC50 values

indicate higher sensitivity. As shown in Figure 5, compared with

cluster 2, cluster 1 was more sensitive to AKT inhibitor III,

epidermal growth factor receptor inhibitors such as erlotinib,

gefitinib, and lapatinib, and vascular endothelial growth factor

receptor inhibitors such as axitinib and sunitinib. Conversely,
Frontiers in Immunology 07
cluster 2 had a higher response rate to AZD8055 (mTOR

inhibitor), bleomycin, cisplatin, etoposide, sorafenib,

and methotrexate.
Functional annotation of DEGs
between subtypes

To reveal the differences in biological functions between the

two subtypes, we conducted GO and KEGG enrichment analysis

on the DEGs between the two subtypes with a cutoff of |log2fold

change|> 1 and false discovery rate < 0.05. A total of 260 DEGs

met the criteria, and the results showed that complement and

coagulation cascades, the peroxisome proliferators-activated

receptors signaling pathway, bile secretion, chemical

carcinogenesis, and drug and compound metabolism were

significantly enriched in the KEGG pathway analysis

(Figure 6A). The results of GO enrichment analysis are shown

in Figure 6B.
A B

DC

FIGURE 4

The comparison of immune status between mitophagy-related subtypes. Box plots showing the differences of infiltrating immunocyte
abundance (A), immune reaction activity (B), expression of immune-checkpoint genes (C) and violin plots showing Tumor Immune dysfunction
and Exclusion (TIDE) score (D). The asterisks represent the p value (*p < 0.05; **p < 0.01; ***p < 0.001). ns, not significant.
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I
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J K L
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FIGURE 5

The difference of chemo drugs sensitivity between subtypes, including metformin (A), sorafenib (B), sunitinib (C), methotrexate
(D), AKT.inhibitor.VIII (E), bleomycin (F), axitinib (G), AZD8055 (H), etoposide (I), lapatinib (J), cisplatin (K), erlotinib (L).
A B

FIGURE 6

Functional enrichment analysis of DEGs between two mitophagy-related subtypes. Bar plots showing the biological function of DEGs using
KEGG (A) and GO (B) enrichment. DEGs, Differentially expressed genes; KEGG, Kyoto encyclopedia of genes and genomes; GO, Gene ontology.
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Constructing prognosis model of MRGs

Defining the TCGA dataset as a training cohort, we

performed univariate Cox regression analysis on 81 MRGs, 35

of which were significantly associated with the OS of patients

with HCC (p < 0.05). After intersection with 51 DEMs, we

obtained 24 genes for model construction (Figure 7A). All 24

genes were risk genes with a hazard ratio of > 1 (Figure 7B). The

LASSO regression model was then utilized, and nine genes were

screened to build the prognostic risk model (Figures 7C, D). The

risk score was calculated using the corresponding coefficients

and gene expression. Finally, the risk score model was

formulated as follows:

ATG9A �  0:2414855  + ATG12 �  0:0294790  

+HRAS �  0:0977971  +MFN1 �  0:1418254  

+ NRAS �  0:2199555  + PGAM5 �  0:2023505 

+ SQSTM1 �  0:1721932  + TOMM22

�  0:1709305  + TOMM5 �  0:1709305
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Additionally, we created a Sankey diagram to show the

connection among mitophagy subtypes, risk scores, and

survival (Figure 7E).
Validation of model efficiency

To verify the performance of the risk model, we performed

Kaplan–Meier survival analysis in the training and validation

cohorts. The survival curves showed that improved survival rates

of low-risk patients continued for nearly 7 years in the TCGA

training cohort (p = 9.707e-04), and this advantage existed in the

ICGC validation cohort (p = 1.749e-04) (Figures 8A, B). In

addition, we used an HCC cohort (n=20) registered in our center

to validate the risk model, and the difference in OS was still

significant (p = 3.924e-02) (Figure 8C). Regarding model

accuracy, the 1-year, 3-year, and 5-year AUC of the model for

OS was 0.781, 0.690, and 0.650, respectively, in the TCGA

training cohort (Figure 8D), and 0.709, 0.749, and 0.716,

respectively, in the ICGC validation cohort (Figure 8E). The

AUC of the model in PUMCH cohort was still satisfactory
A B

D EC

FIGURE 7

Construction of a LASSO regression model and correlation between subtypes and risk groups. (A) Venn diagram showing intersection between
DEMs and prognostic genes. (B) Forest plots showing the results of univariate Cox regression analysis of overlapped genes. (C, D) LASSO
regression analysis of the overlapped genes. (E) The Sankey diagram showing the distribution of patients in mitophagy-related subtypes, risk
groups and survival outcomes. LASSO, Least absolute shrinkage and selection operator.
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(Figure 8F). We ranked the risk scores of patients with HCC in

all cohorts from low to high, and the survival status and time of

each patient were plotted according to the risk score

(Figures 8G–L). The plot revealed that high-risk patients

generally had poorer survival rates than low-risk patients.
Frontiers in Immunology 10
To determine whether the risk score is an independent risk

factor for the prognosis of patients with HCC, we performed

univariate Cox regression on the risk score and clinical variables

(Figure 8M). The results showed that only the stage and risk

scores were significantly associated with OS (p < 0.001). Next,
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FIGURE 8

The risk model performance in training cohort and two validation cohorts. (A–C) Kaplan-Meier curves for the OS of patients in the high- and
low-risk group in the TCGA cohort (A), ICGC cohort (B) and PUMCH cohort (C). (D–F) AUC of time-dependent ROC curves in the TCGA cohort
(D), ICGC cohort (E) and PUMCH cohort (F). (G–I) The distribution and median value of the risk scores in the TCGA cohort (G), ICGC cohort (H)
and PUMCH cohort (I). (J–L) The distributions of risk scores, survival states and survival outcomes in the TCGA cohort (J), ICGC cohort (K) and
PUMCH cohort (L). (M, N) Forest plots showing the univariate (M) and multivariate (N) Cox regression analyses regarding OS in the TCGA
cohort. OS, Overall survival, AUC, area under the curve, ROC, receiver operating characteristic, TCGA, The Cancer Genome Atlas, ICGC,
International Cancer Genome Consortium, PUMCH, Peking Union Medical College Hospital.
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these variables were included in the multivariate Cox regression

analysis. After correction for other confounding factors,

including age, sex, stage, and grade, the risk score was still

significantly associated with OS, implying that the risk score was

an independent risk factor (p < 0.001) (Figure 8N).
Functional enrichment analysis based on
the risk score

We performed GSEA on the TCGA cohort, and the most

significantly enriched KEGG pathways are shown in Figure 9.

The cell cycle, mTOR signaling pathway, NOTCH signaling

pathway, endocytosis, and pathways in cancer were enriched in

the high-risk group. Primary bile acid biosynthesis, drug

metabolism, cytochrome P450, fatty acid metabolism, glycine

serine and threonine metabolism, and linoleic acid metabolism

pathways were enriched in the low-risk group.
Validation of mitophagy heterogeneity
through cell experiment

In order to validate mitophagy-related subtypes obtained

using public mitophagy gene sets, we acquired mitophagy

signature through inducing mitophagy in HCC cell lines for

same analyses in TCGA HCC dataset. The expression matrix of

HCC cell lines before and after mitophagy induction was

demonstrated in Supplementary Table 1 and the expression

levels of mitophagy signature genes were applied for clustering
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of TCGAHCC dataset. As shown in Figure 10A, tumor grade and

stage were still correlated with clusters. And cluster 2 had

significantly worse survival outcome than cluster 1 (p = 0.006)

(Figure 10B). Similar to results in Figure 4A, cluster 2 had higher

infiltration of aDCs, iDCs, macrophages, Tfh, Th2, and Treg than

cluster 1 (Figure 10C). In terms of immune function, type II

interferon response was still suppressed in cluster 2, while check-

point, APC co-stimulation, APC co-inhibition, HLA, MHC class

I, and proinflammation exhibited higher levels in cluster 2

(Figure 10D), which confirmed the association between

mitophagy and immune status in HCC. In addition, regarding

response to ICB treatment, all immune-checkpoint genes except

CXCL9 were significantly overexpressed in cluster 2 (Figure 10E),

and TIDE scores remained lower in cluster 2 than in cluster 1

(Figure 10F), indicating that patients in cluster 2 tended to benefit

from ICB treatment. These findings following cell experiment

further validated our results from using public MRGs.
Validation of expression of model genes
in tissue

To verify the reliability of the results acquired from the

public database, we further validated the expression levels of the

nine genes consisting of the mitophagy signature in five pairs of

HCC tissues and peritumoral tissues. As shown in Figure 11, the

tumor expressed significantly higher mRNA levels of all genes

(ATG9A, ATG12, HRAS, MFN1, NRAS, PGAM5, SQSTM1,

TOMM22, and TOMM5) than peritumoral tissue, which was

consistent with the public database analysis.
FIGURE 9

Gene-set enrichment analysis identifying KEGG pathways enriched in the high- and low-risk group. KEGG, Kyoto Encyclopedia of Gene and Genome.
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Discussion

Emerging immunotherapy, especially ICB treatment, has

become an effective and promising option to treat HCC (28).

However, only a portion of patients respond to immunotherapy;

thus, it is important to determine which groups of patients can

benefit from immunotherapy, facilitating the progress of

personalized treatment. Recently, mitophagy has attracted the

attention of researchers as a potential therapeutic target for

cancer. Hence, this study aimed to investigate mitophagy

heterogeneity in HCC and its association with immune status,

identify two mitophagy subtypes with distinct clinical and

immune characteristics, and offer more detailed insights into

immunotherapy or combination therapy for HCC.
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HCC has been confirmed to exhibit high molecular

heterogeneity (29). We identified two mitophagy subtypes in

TCGA HCC samples based on the expression levels of DEMs,

showing that these two subtypes with different mitophagy

patterns were characterized by significantly different tumor

stages and prognoses. This verified that mitophagy

heterogeneity is associated with HCC development and has

prognostic value in HCC, although the underlying

mechanisms are still not well understood. Mitophagy appears

to be tumor-promoting or tumor-suppressive, depending on the

tumor type and intrinsic stage (30). For instance, PARK2, which

encodes a core mitophagy protein, Parkin, was found to be

inactivated in colon and lung cancer (31). Parkin-null mice are

susceptible to spontaneous HCC (32). In contrast, upregulation
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FIGURE 10

The validation of mitophagy-related HCC subtypes using mitophagy signature obtained from cell experiment. (A) A heatmap showing
association between subtypes and clinical characteristics. (B) The Kaplan–Meier plot showing distinct prognosis between two subtypes.
(C–E) Box plots showing the differences of infiltrating immunocyte abundance (C), immune reaction activity (D), and expression of immune-
checkpoint genes (E) between two subtypes. (F) Violin plots comparing the Tumor Immune dysfunction and Exclusion (TIDE) score of each
subtype. The asterisks represent the p value (*p < 0.05; **p < 0.01; ***p < 0.001). ns, not significant.
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of the mitochondrial inner membrane protein STOML2 can

amplify PINK1/Parkin-mediated mitophagy and facilitate the

migration and invasion of HCC cells, thus promoting HCC

growth and metastasis (33). Previous studies have also found

that hyperactivated mitophagy can induce sorafenib resistance

in HCC under hypoxic stress (34). Therefore, the dual role of

mitophagy may be involved in HCC heterogeneity. In our study,

nearly all DEMs were upregulated in HCC samples compared

with normal tissues, and cluster 2 had generally higher

expression levels of DEMs but worse prognosis than cluster 1.

Based on the above evidence, cluster 2 is likely to be

characterized by higher mitophagy activity, which results in a

more advanced tumor and worse survival outcome.

Furthermore, regulation of various mitophagy pathways, such

as PINK1/Parkin-mediated mitophagy and BNIP3/BNIP3L/

FUNDC1-mediated mitophagy, may also be involved in HCC

heterogeneity, which warrants further study.

To determine whether mitophagy heterogeneity has an

impact on the tumor immune microenvironment, we

evaluated the differences in immune characteristics between
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the two subtypes. Immune cell infiltration is closely related to

clinical outcomes, and immune cells can serve as an

immunotherapy target (35). Our single sample GSEA results

indicated that cluster 2 had a higher abundance of regulatory T

cells and macrophages, which are considered to be HCC

promoting (36). Moreover, cluster 2 was characterized by

higher expression levels of immune-checkpoint genes.

Overexpression of immune-checkpoint genes can suppress the

antitumor immune response so that tumor cells can easily evade

immune surveillance. These findings explain the poor survival

outcomes of cluster 2.

ICB therapy can restore dysfunctional immune system and

has achieved remarkable results in cancer treatment. ICB agents

against programmed cell death protein 1 (PD-1) and cytotoxic T

lymphocyte antigen 4 (CTLA-4) have been approved for HCC

by the FDA (37). However, the limited response rate makes it

important to screen patients who are sensitive to ICB therapy.

Cluster 2 showed higher expression levels of immune check-

point genes, indicating a better response to ICB treatment. The

TIDE algorithm is believed to perform better than the expression
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FIGURE 11

The experimental validation of nine genes consisting the risk model using Real-Time PCR, including TOMM5 (A), SQSTM1 (B), TOMM2
(C), PGAM5 (D), NRAS (E), MFN1 (F), ATG9A (G), ATG12 (H), HRAS (I). The asterisks represent the p value (*: p < 0.05; **: p < 0.01; ***: p < 0.001).
PCR, polymerase chain reaction.
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level of immune check-points in predicting the survival outcome

of cancer patients treated with ICB agents (19). Corresponding

to the prediction based on immune-checkpoint expression, the

TIDE results revealed that cluster 2 was more likely to respond

to ICB treatment. Therefore, ICB treatment may help reverse the

poor prognosis of cluster 2. Taken together, mitophagy

heterogeneity in HCC may influence immune status and can

predict the response rate to ICB agents, revealing the association

between mitophagy and immunity. This result enhanced our

understanding of the heterogeneity of HCC, promoting

personalized therapy in clinical practice and inspiring

immunotherapy development in scientific research and trials.

Furthermore, our study explored potential drugs for

subpopulations with different mitophagy patterns, providing

ideas for synergistic combination of ICB agents and targeted

therapies. Systemic therapy in HCC should be explored to

improve clinical efficacy (38).

To more precisely predict the prognosis of patients with

HCC, we constructed a risk model based on a mitophagy

signature. Notably, all nine genes were risk factors for HCC.

Of these genes, ATG9A and ATG12 are core regulators of

autophagy (39). MFN1, also known as mitofusin-1, was

analyzed both in vivo and in vitro and its effects on HCC

metastasis were revealed (40). PGAM5 is an atypical

mi tochondr ia l s e r ine / threon ine phosphatase tha t

dephosphorylates FUNDC1 to activate mitophagy. Previous

studies have reported that depleting PGAM5 inhibits tumor

development and enhances the 5-fluorouracil sensitivity of

HCC cells (41, 42). The TOMM complex (translocase of the

outer mitochondrial membrane) imports nearly all

mitochondrial proteins from the cytoplasm into the

mitochondria, and TOMM22 functions as a central receptor

(43). Although no significant increase in the expression of

TOMM genes was observed in prostate cancer compared to

normal tissues, our results demonstrated that this protein was

elevated in HCC and may be a good candidate biomarker; this

requires validation (44). Through ROC analysis in different

cohorts, we found that our risk model showed better efficacy

in predicting prognosis compared to models constructed based

on other gene signatures, such as pyroptosis in HCC (45).

Remarkably, the performance of the model was consistently

stable and even better in the validation cohort of ICGC and our

own cohort than in the training cohort, which verifies the

robustness of our risk model.

Functional analyses revealed that various metabolic

pathways were enriched in the mitophagy subgroups and risk

groups. Metabolic reprogramming is a hallmark of tumor

growth and progression (46). Mitophagy plays a critical role in

the metabolic adaptation of cancer cells so that these cells can

survive under stress factors produced in the tumor

microenvironment, and these adaptions are closely related to
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the acquisition of metastatic potential and chemoresistance (47).

Therefore, some metabolic regulators or pathways related to

mitophagy may serve as new therapeutic targets for cancer.

Additionally, metabolic pathway regulation can affect immune

cell function and fate, leading to a connection to the immune

microenvironment (48). This crosstalk between metabolic

reprogramming and the immune microenvironment adds

further layers to the search for novel therapeutic strategies,

regardless of forthcoming challenges. Combining existing

evidence and our results, we hypothesize that a metabolism-

mitophagy-immunity network exists in HCC, which needs to be

explored and validated in future studies.

Nevertheless, our study has several limitations. First, our

study focused on the expression of genes, lacking multi-omics

data, such as copy number variations and DNA methylation.

Second, the study was conducted retrospectively based on data

from a public database rather than using a prospective cohort.

Furthermore, HCC cell lines and our own HCC cohort used for

validation had limited sample sizes, though the results are still

reliable. Finally, the mechanisms underlying mitophagy,

metabolism, and immunity in tumors warrant further study.
Conclusion

In summary, we identified two prognostically and clinically

relevant mitophagy subtypes in HCC. These two subtypes

differed in multiple aspects, including immune characteristics,

responses to immunotherapy, and biological functions. We also

constructed a mitophagy-related risk model that exhibited stable

efficiency and performed better than models based on other

signatures. The expression of these model genes was

subsequently validated using laboratory results. These findings

suggest mitophagy as a potential treatment target and shed new

light on the strategy of immunotherapy in HCC.
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