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Identification of fatty acid
metabolism–related molecular
subtype biomarkers and
their correlation with
immune checkpoints in
cutaneous melanoma

Yujian Xu1†, Youbai Chen1,2†, Weiqian Jiang1, Xiangye Yin1,
Dongsheng Chen1, Yuan Chi1, Yuting Wang1, Julei Zhang1,
Qixu Zhang2* and Yan Han1*

1Department of Plastic and Reconstructive Surgery, The First Medical Center of Chinese PLA
General Hospital, Beijing, China, 2Department of Plastic Surgery, The University of Texas MD
Anderson Cancer Center, Houston, TX, United States
Purpose: Fatty acid metabolism (FAM) affects the immune phenotype in a

metabolically dynamic tumor microenvironment (TME), but the use of FAM-

related genes (FAMGs) to predict the prognosis and immunotherapy response

of cutaneous melanoma (CM) patients has not been investigated. In this study,

we aimed to construct FAM molecular subtypes and identify key prognostic

biomarkers in CM.

Methods: We used a CM dataset in The Cancer Genome Atlas (TCGA) to

construct FAM molecular subtypes. We performed Kaplan–Meier (K-M)

analysis, gene set enrichment analysis (GSEA), and TME analysis to assess

differences in the prognosis and immune phenotype between subtypes. We

used weighted gene co-expression network analysis (WGCNA) to identify key

biomarkers that regulate tumor metabolism and immunity between the

subtypes. We compared overall survival (OS), progression-free survival (PFS),

and disease-specific survival (DSS) between CM patients with high or low

biomarker expression. We applied univariable and multivariable Cox analyses

to verify the independent prognostic value of the FAM biomarkers. We used

GSEA and TME analysis to investigate the immune-related regulation

mechanism of the FAM subtype biomarker. We evaluated the immune

checkpoint inhibition (ICI) response and chemotherapy sensitivity between

CM patients with high or low biomarker expression. We performed real-time

fluorescent quantitative PCR (qRT-PCR) and semi-quantitative analysis of the

immunohistochemical (IHC) data from the Human Protein Atlas to evaluate the

mRNA and protein expression levels of the FAM biomarkers in CM.

Results: We identified 2 FAM molecular subtypes (cluster 1 and cluster 2). K-M

analysis showed that cluster 2 had better OS and PFS than cluster 1 did. GSEA
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showed that, compared with cluster 1, cluster 2 had significantly upregulated

immune response pathways. The TME analysis indicated that immune cell

subpopulations and immune functions were highly enriched in cluster 2 as

compared with cluster 1. WGCNA identified 6 hub genes (ACSL5, ALOX5AP,

CD1D, CD74, IL4I1, and TBXAS1) as FAM biomarkers. CM patients with high

expression levels of the six biomarkers had better OS, PFS, and DSS than those

with low expression levels of the biomarkers. The Cox regression analyses

verified that the 6 FAM biomarkers can be independent prognostic factors for

CM patients. The single-gene GSEA showed that the high expression levels of

the 6 genes were mainly enriched in T-cell antigen presentation, the PD-1

signaling pathway, and tumor escape. The TME analysis confirmed that the FAM

subtype biomarkers were not only related to immune infiltration but also highly

correlated with immune checkpoints such as PD-1, PD-L1, and CTLA-4. TIDE

scores confirmed that patients with high expression levels of the 6 biomarkers

had worse immunotherapy responses. The 6 genes conveyed significant

sensitivity to some chemotherapy drugs. qRT-PCR and IHC analyses verified

the expression levels of the 6 biomarkers in CM cells.

Conclusion:Our FAM subtypes verify that different FAM reprogramming affects

the function and phenotype of infiltrating immune cells in the CM TME. The

FAM molecular subtype biomarkers can be independent predictors of

prognosis and immunotherapy response in CM patients.
KEYWORDS

cutaneous melanoma, tumor metabolism, fatty acid metabolism, immune infiltration,
immune checkpoint, prognosis, tumor microenvironment
Introduction

Cutaneous melanoma (CM), the most fatal skin cancer,

accounts for less than 5% of skin cancers but greater than 80%

of skin cancer-caused deaths (1). Immunotherapy such as

immune checkpoint inhibition (ICI) can significantly improve

the prognosis of CM patients. However, up to 70% of CM

patients have either innate or acquired ICI resistance, leading to

high rates of recurrence, metastasis, and mortality (2–4). To

provide these patients with evidence-based treatment and

improve their clinical outcomes, we must be able to reliably

predict immunotherapy responses.

The current Tumor Node Metastasis (TNM) classification of

CM reflects primary tumor size and thickness, lymph node

invasion, and distant metastasis based on the American Joint

Committee on Cancer (AJCC)/Union for International Cancer

Control(UICC) (5, 6), but it cannot predict prognosis and

immunotherapy response in CM patients (7). Recent studies

have demonstrated that, compared with the AJCC/UICC TNM

classification system, classification systems that account for the

immune component of the tumor microenvironment (TME)
02
have superior prognostic value for predicting immunotherapy

response (8, 9). For example, “hot” CM may respond well to

immunotherapy, whereas “cold” CM with programmed cell

death protein 1 (PD-1) inhibitor resistance, interferon g
inactivation, and CD8+ T-cell exhaustion may respond poorly

to immunotherapy (10). Therefore, it is urgent to develop a CM

classification system with promising biomarkers that predict the

prognosis and immunotherapy response.

Abnormal metabolism promotes tumorigenesis and disease

progression by disturbing the energy supply and regulating the

TME (11, 12). Some metabolites, such as lactic acid, can inhibit

the cytolytic ability of CD8+ effector T cells and downregulate

immunity components in the TME (13). Tumor metabolic

reprogramming plays a critical role in TME regulation and

immunotherapy resistance (14–16). Metabolomic analyses have

uncovered many novel biomarkers related to the diagnosis,

prognosis, and treatment of many cancers, leading to the

development of several antitumor strategies (17). As one of the

most important intermediate products of lipid metabolism, fatty

acid metabolism (FAM) is essential for many biological activities

and maybe a promising immunotherapy target (18, 19). For
frontiersin.org
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example, Shang et al. (20) found that certain molecules can

promote cervical cancer metastasis by reprogramming FAM.

Ding et al. constructed a FAM signature that identified

molecular subtypes of colorectal cancer and predicted

prognosis and immunotherapy response (21). Zhang et al.

reported that CD8+ tumor-infiltrating lymphocytes enhance

the catabolism of fatty acids to preserve their effector functions

and slow lung cancer progression (22). However, the prognostic

and therapeutic value of FAM-related biomarkers in CM has not

been reported. How CM cells sustain FAM in a metabolically

dynamic TME and how FAM affects the phenotype and function

of immune cells remain unclear.

The four aims of the present study were to 1) identify a FAM-

related molecular subtype that represents the clinicopathological

and immune features of CM; 2) identify and validate FAM-related

genes (FAMGs); 3) unveil the association between FAM

biomarkers and the immune phenotype and function of CM,

and 4) determine the extent to which FAM molecular subtypes

and biomarkers predict immunotherapy response.
Materials and methods

Collection of publicly available data

The analysis process of this study is shown in Figure 1. The

RNA sequencing data and corresponding clinical data of CM

samples were downloaded from The Cancer Genome Atlas

(TCGA) (http://cancergenome.nih.gov/) (23). The RNA

sequencing data of normal skin samples were downloaded

from the Genotype-Tissue Expression (GTEx) database
Frontiers in Immunology 03
(https://gtexportal.org/home/) (24). The expression values of

all genes were publicly available and in level 3 HTseq

fragments per kilobase of exon per million mapped fragments

format. The merged RNA expression profile of the TCGA CM

cohort (471 samples) and GTEx normal skin cohort (234

samples) was normalized, and batch effects between the TCGA

and GTEX data were removed using the limma package in R

(25). GSE65904 (26) and GSE72056 (27) were downloaded from

the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/) and used for molecular subtyping and single-

cell validation. A total of 531 FAMGs were derived from 6

FAMG sets in the Molecular Signatures Database (http://www.

gsea-msigdb.org/gsea/msigdb/) (28) and were listed in

Supplementary Table 1. And the clinical detail of TCGA

samples were listed in Supplementary Table 2
Identification of differentially
expressed FAMGs

To identify differentially expressed FAMGs (DEFAMGs), we

analyzed the gene transcription data of the TCGA and GTEx

cohorts using the limma package in R with a false discovery rate

(FDR) < 0.05 and log2 fold change > 1. We used the pheatmap

package in R to construct heatmaps of DEFAMGs. We used

Gene Ontology (GO) (29) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway (30) analyses to identify pathways in

the Database for Annotation Visualization and Integrated

Discovery associated with DEFAMGs (31). We used

Metascape (https://metascape.org) (32) to verify and visualize

the functional enrichment of the DEFAMGs.
FIGURE 1

Flow chart.
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Identification and differential analysis of
FAM molecular subtypes

We adopted non−negative matrix factorization (NMF)

consensus clustering (33) to divide all TCGA CM patients into

2 molecular subtypes using the R “NMF” package based on

FAMGs expression pattern. Principal component analysis (34)

was used to visualize FAMmolecular subtypes by dimensionality

reduction. Overall survival (OS) and progression-free survival

(PFS) were compared between the FAM molecular subtype

groups. Gene set enrichment analysis (GSEA) (35) was

performed to assess differences in immune-related pathways

between the molecular subtypes. In addition, we used

ESTIMATE (36) and ssGSEA (37) algorithms to compare the

immune cell infiltration and function between the molecular

subtypes. To validate the reliability of the FAM subtypes, we also

performed the abovementioned analyses using a GEO dataset

(GSE65904) as an external verification dataset.

We identified the DEFAMGs between FAM molecular

subtypes in the TCGA and GEO datasets and performed GO

and KEGG analyses. The protein-protein interaction (PPI)

network was built on the intersection of the TCGA and GEO

cohorts using STRING (https://cn.string-db.org/) (38) and

reconstructed in Cytoscape v3.6 (39) to select hub biomarkers.
Weighted gene co-expression
network analysis

The expression profiles of the FAMGs were analyzed using a

weighted gene co-expression network analysis (WGCNA) network

(40) to select gene modules that were highly associated with FAM

molecular subtypes. Among the soft threshold values, the bwith the
highest mean connectivity (b = 3) was chosen. The module

eigengene was associated with molecular subtypes. Modules with

the highest correlation were selected, and the genes in these

modules were identified as genes related to FAM molecular

subtypes. The minimum module size was 25. The module with

the threshold of membership>0.4 and P value <0.05 was identified.
Identification of hub biomarkers of FAM
molecular subtypes

To identify hub biomarkers of FAM molecular subtypes, we

used a Venn plot to identify overlapping PPI genes, WGCNA

module genes, and DEFAMGs with statistical significance in

univariable Cox regressions in both the TCGA and GEO

datasets. We used correlation-based network analysis to

identify interactions among core biomarkers. We analyzed the

prognostic value of the hub biomarkers in predicting OS, PFS,
Frontiers in Immunology 04
and disease-specific survival (DSS) in the TCGA and

GEO cohorts.
GSEA of FAM biomarkers

To assess the immune-related and immune checkpoint–

related pathways of the FAM biomarkers, we divided the

patients in the TCGA CM cohort into groups with either high

or low expression of each biomarker. The median expression

level was used as the cut-off value. GSEA (41) was performed to

identify significantly regulated pathways between the 2 groups.

GSEA software was downloaded from the Broad Institute

(http://www.broadinstitute.org/gsea/index.jsp). The gene sets

of “c2 .cp .kegg . v6 .2 . symbols” ,”BIOCARTA_TCR_

PATHWAY”,”REACTOME_PD_1_SIGNALING”,”LIN_

TUMOR_ESCAPE_FROM_IMMUNE_ATTACK” ,”WP_

CANCER_IMMUNOTHERAPY_BY_PD1_BLOCKADE” and

“WP_FERROPTOSIS” were downloaded from the Molecular

Signatures Database (MSigDB). The normalized enrichment

score (NES) was calculated for each gene set. Statistical

significance was set at |NES| > 1, nominal P value < 0.05, and

FDR q-value < 0.25.
TME analysis

We used the ESTIMATE algorithm to calculate the immune

score, tumor purity, ESTIMATE score, and stromal score for

each CM sample. For each core biomarker, the differences

between the high- and low-expression groups were analyzed

using violin plots. Furthermore, the association between the

expression of FAM biomarkers and immune cell infiltration was

assessed by Pearson correlation analysis. The Tumor Immune

Estimation Resource (TIMER) database (https://cistrome.

shinyapps.io/timer/) (42) was used to identify correlations

between immune cells and FAM biomarkers.
Single-cell sequencing analysis

The GSE72056 single-cell dataset (4,645 single-cell sequencing

samples of Homo sapiens; platform: GPL18573 Illumina NextSeq

500) was used to verify the expression of the FAMGs in the TME

and assess the relationship between immune cells and FAMGs.We

used the Seurat package in R for batch calibration and data

normalization (43). We used the t-SNE package (44) to perform

cell cluster analysis and used the SingleR package (45) to identify

cell subpopulation annotations. We verified the connections

between immune cells and molecular subtype biomarkers by

evaluating the biomarker expression level of each cell.
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https://cn.string-db.org/
http://www.broadinstitute.org/gsea/index.jsp
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://doi.org/10.3389/fimmu.2022.967277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.967277
Correlation with immune checkpoints

We assessed differences in the expression of 30 genes that

previous studies suggested to be immune checkpoint–related

genes (46–48) between groups with high or low expression of

each FAM biomarker. In addition, we used Pearson correlation

analysis based on the TIMER database to assess associations

between the expression of FAM biomarkers and that of key

immune checkpoints, including PD-1, programmed death-

ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4

(CTLA-4). We used TIDE scores to assess differences in

immunotherapy response between groups with high or low

expression levels of each FAM biomarker.
Chemotherapy sensitivity analysis

We used the CellMiner database (https://discover.nci.nih.

gov/cellminer) to construct an interaction network between

chemotherapy sensitivity and FAM molecular subtype

biomarkers. We performed Pearson correlation analysis to

assess drug-gene associations.
Human protein atlas database

The protein expression of the FAM biomarkers in normal

and CM tissues was verified by analyzing immunohistochemical

and immunofluorescent data extracted from The Human

Protein Atlas (HPA; https://www.proteinatlas.org/).
Cell culture and qRT-PCR

Human melanoma A375 cell line was purchased from

American Type Culture Collection (Manassas, VA); the M14,

human immortalized keratinocyte (HaCaT), and normal human

skin melanocyte (PIG1) cell lines with STR certification were

purchased from Shanghai Guandao Biological Engineering

Company (Shanghai, China); and the SK-MEL-28 cell line was

purchased from the Chinese National Infrastructure of Cell Line

Resource. All cells were cultured in Roswell Park Memorial

Institute (RPMI) 1640 medium supplemented with 10% fetal

bovine serum at 37°C in a 5% CO2 atmosphere. Real-time

quantitative polymerase chain reaction (qRT-PCR) was

performed to determine relative gene expression levels. Total

RNA was extracted with TRIzol reagent 24 hours. The

concentration of RNA was determined by ultraviolet

spectrophotometry. RNAs were reverse-transcribed into

complementary DNAs (50 ng/µl) using a commercial

complementary DNA reverse transcription kit. PCR with

SYBR Green Master Mix (TaKaRa Bio, Kusatsu, Japan) was

used to evaluate mRNA expression levels. Glyceraldehyde-3-
Frontiers in Immunology 05
phosphate dehydrogenase was used as the internal reference. All

primers were synthesized by Servicebio Technology Co.

(Wuhan, China). The primer sequences are shown in

Supplementary Table 3. The PCR program consisted of an

initial denaturation at 95°C for 10 minutes followed by 45

cycles of 95°C for 10 seconds, 60°C for 30 seconds, and 72°C

for 20 seconds. Target gene expression was calculated using the

2−DDCT method.
Statistical analysis

The survival, ggplot2, corrplot, pheatmap, singleR, and

limma packages were executed using R software version 4.1.1

(https://www.r-project.org). A P value <0.05 was defined as

statistically significant. The unpaired Student t-test was used to

analyzing normally distributed continuous variables.

Univariable Cox regressions and WGCNA were performed to

identify FAMGs with significant prognostic values. Kaplan–

Meier survival analyses and log-rank tests were used to assess

OS, PFS, and DSS.
Results

DEFAMGs and functional enrichment

A total of 219 FAMGs were differentially expressed between

CM tissues (n = 471) and normal skin tissues (n = 234),

including 124 downregulated and 95 upregulated genes in the

tumor samples (Figures 2A, B). GO analysis showed that the

DEFAMGs were mainly enriched in lipid and FAM-related

biological processes, cellular components, and molecular

functions (Figure 2C). KEGG analysis showed that the

DEFAMGs were mainly enriched in metabolic pathways and

FAM pathways (arach idonic ac id , l inolen ic ac id ,

glycerophospholipid, etc.) (Figure 2D). Metascape functional

annotation confirmed that DEFAMGs were mainly enriched in

FAM processes (Figure 2E).
FAM molecular subtypes

Univariable Cox regression revealed that 49 of the 219

DEFAMGs were significantly correlated with OS (Figure 3A).

The NMF algorithm divided the TCGA CM samples into 2

clusters (cluster 1 and 2) (Figure 3B). The relationship between

cophenetic, dispersion, and silhouette coefficients showed that

the 2 clusters were significantly different (Figure 3C), which was

further verified by principal component analysis (Figure 3D).

Survival analysis showed that cluster 2 patients had better OS

and DFS than cluster 1 patients did (Figures 3E, F). The GSEA

results indicated that the immune response and immune system
frontiersin.org
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A B

D
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FIGURE 2

Identification of DEFAMGs in the TCGA cohort. (A) Heatmap of DEFAMGs. (B) Volcano plot of DEFAMGs. (C) GO enrichment analysis of
DEFAMGs, showing only the first 10 terms respectively in the BP, MF and CC. (D) KEGG enrichment analysis of DEFAMGs, showing top 18 Fatty
acid metabolism-related pathways. (E) Metascape displayed the functional enrichment network of fatty acid metabolism.
A B D

E F
G

I

H

J K

C

FIGURE 3

Construction of FAM molecular subtypes using TCGA CM samples. (A) A forest map of 49 prognostic FAMGs identified by univariable Cox
regression. (B) The 2 FAM subtypes identified by the NMF algorithm. (C) The cophenetic, dispersion, and silhouette coefficients for the 2 FAM
molecular subtypes. (D) Principal component analysis visualization of the 2 FAM molecular subtypes (cluster 1 and cluster 2). (E, F) The OS and
DFS of patients with samples in cluster 2 were better than those of patients with samples in cluster 1. (G, H) GSEA results suggest that the
immune system process and response pathways are upregulated in cluster 2. (I) Heatmap of TME components in the 2 FAM clusters, showing
that cluster 2 had higher level of immune infiltrations than cluster 1. (J) Violin plot of TME ESTIMATE scores for the 2 FAM clusters. (K)
Differences in immune infiltration and function between the 2 FAM clusters, showing immune functions were more activated in cluster 2 than
cluster 1. ns, no sigificant, P>0.05; ***P≤0.001.
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process were upregulated in cluster 2 (Figures 3G, H). Given the

higher immune level and better prognosis in cluster 2, we

compared the TME between the two clusters and found that

immunocyte subpopulations were highly enriched in cluster 2

(Figure 3I). Compared with cluster 1, cluster 2 had significantly

higher stromal, immune, and ESTIMATE scores (Figure 3J). The

ssGSEA showed that cluster 2 also had higher levels of immune

infiltration and more activated immune functions (Figure 3K).

These findings were consistent with those of identical analyses

performed using a GEO dataset (GSE65904) as an external

validation dataset (Supplementary Figures 1A–J).
DEFAMGs between FAM molecular
subtypes

We identified 55 DEFAMGs between the 2 clusters of the

TCGA CM samples (Figure 4A), including 22 upregulated and
Frontiers in Immunology 07
33 downregulated genes in cluster 2 (Figure 4B). GO and KEGG

analyses revealed that the DEFAMGs were enriched in the

oxidation-reduction process, arachidonic acid metabolism, and

metabolic pathways (Figure 4C). Using GEO samples, we

identified 76 DEFAMGs between the 2 clusters (Figure 4D),

including 48 upregulated and 28 downregulated genes in cluster

2 (Figure 4E). GO and KEGG analyses showed that these

DEFAMGs were enriched in the oxidation-reduction process,

the lipid metabolic process, and metabolic pathways (Figure 4F).

The PPI network included 28 downregulated and 36 upregulated

DEFAMGs (Figure 4G).
WGCNA-selected FAM molecular
subtypes modules and genes

We extracted the expressions of 531 FAMGs in TCGA

samples and GSE65904 samples for WGCNA. Seven modules
A B

D E F

G

C

FIGURE 4

DEFAMGs between FAM molecular subtypes. (A, B) Heatmap and volcano plot of DEFAMGs between cluster 1 and cluster 2 in the TCGA cohort.
(C) GO and KEGG enrichment analyses of DEFAMGs in the TCGA cohort. (D, E) Heatmap and volcano plot of DEFAMGs between cluster 1 and
cluster 2 in the GEO cohort. (F) GO and KEGG enrichment analyses of DEFAMGs in GEO cohort. (G) The PPI network that includes an
intersection of TCGA and GEO cohorts.
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were identified by the average linkage hierarchical clustering

based on the soft-thresholding power in TCGA samples, and the

WGCNA traits heat map showed that the Module Eigengenes

(ME) turquoise was selected (Figure 5A). The Module

Eigengenes (ME) turquoise had the highest correlation with

the FAM clusters (|cor| =0.59, P-value =5e-44) and contained

110 FAMGs. The dendrogram of genes clustered according to a

dissimilarity measure (1-Topological Overlap Matrix, TOM)

was shown in Figure 5B. The Sample dendrogram and soft

threshold of WGCNA according to FAM Molecular subtypes

were shown in Figures 5C, D. The co-expression network was

constructed, and 3 modules were determined in GEO samples.

Correlation analysis between the module eigengenes and FAM

cluster showed that the ME turquoise (Figures 5E–H, Module–

trait relationships = 0.39, P = 0.000) had the highest association

with the FAM clusters. 92 genes in the module were considered

to be hub FAM-related Modules genes. The overlapping part of

the Venn plots identified 6 genes (i.e. ACSL5, ALOX5AP, CD1D,

CD74, IL4I1 and TBXAS1) as core FAM biomarkers of

CM (Figure 5I).
Frontiers in Immunology 08
Prognostic value of the 6 hub FAM
biomarkers

Kaplan-Meier analyses showed thathigher expressionofACSL5,

ALOX5AP, CD1D, CD74, IL4I1, or TBXAS1 was associated with

better OS, PFS, and DSS in the TCGA cohort, and with better OS in

GEO cohorts (Figures 6A–D). In addition, univariable and

multivariable Cox regressions showed that the 6 genes were

independent prognostic factors for OS (Supplementary Table 4).
GSEA findings

GSEA revealed that antigen processing and presentation, T-

cel l receptor , the PD-1 signal ing pathway, cancer

immunotherapy by PD-1 blockade, tumor escape, and

ferroptosis were all positively correlated with the expression

levels of the 6 FAMGs (Figures 7A–F). These results indicate that

the 6 genes may be involved in tumor immune regulation,

immune evasion, and tumor cell response to PD-1 blockade.
A B
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FIGURE 5

WGCNA-selected FAM molecular subtypes modules and genes. (A–D) TCGA Cohort WGCNA, (A) Seven modules are identified by WGCNA in
TCGA samples; the turquoise module is highly correlation with FAM molecular subtypes (Cor= ± 0.59, p<0.001). (B) Dynamic Tree plot. (C)
Sample heatmap of cluster 1 and cluster 2. (D) scale independence and mean connectivity. (E–H) Three modules are identified by WGCNA in
GEO samples; the turquoise module is highly correlation with FAM molecular subtypes (Cor= ± 0.39, p<0.001). (I) Venn Diagram. ACSL5,
ALOX5AP, CD1D, CD74, IL4I1 and TBXAS1 are identified as core biomarkers of FAM molecular subtype in CM patients.
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FIGURE 6

Kaplan-Meier analyses. (A–C) OS, PFS and DSS according to ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1 expression status in TCGA
samples. (D) OS, PFS, and DSS according to ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1 expression status in GEO samples. K-M results
showed the high-expression of ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1 had a better prognosis in CM patients.
A B

D E F

C

FIGURE 7

GSEA. (A–F) GSEA showed that antigen processing and presentation, T-cell receptor, the PD-1 signaling pathway, cancer immunotherapy by
PD-1 blockade, tumor escape, and ferroptosis were all positively correlated with ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1 expression
levels.
Frontiers in Immunology frontiersin.org09

https://doi.org/10.3389/fimmu.2022.967277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.967277
TME analysis findings

Compared with the groups with low expression of the 6

FAMGs, those with high expression of the 6 FAMGs had

significantly higher ESTIMATE, immune, and stromal scores but

lower tumor purity (Supplementary Figure 2). The expression levels

of the 6 FAMGs were significantly positively correlated with the

ESTIMATE, immune, and stromal scores but negatively correlated

with tumor purity (Supplementary Figure 3). The expression levels

of the 6 FAMGs were also positively correlated with the infiltration

of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils,

and dendritic cells (Figure 8).
Single-cell analysis findings

The single-cell analysis confirmed that the expression levels of

the 6 FAMGs were relatively high in the CD8+ T cell, B cell, and

natural killer (NK) cell subsets (Figures 9A, B). The average and

percent expressions of the 6 FAMGs are illustrated in a bubble chart

of single-cell data (Figure 9C). The expression levels of the 6 FAMGs

are illustrated in a violin chart of single-cell data (Figure 9D).
Relationship between immune
checkpoints and FAM molecular subtype
biomarkers

A total of 30 immune checkpoints, including PD-L1, PD-1,

and CTLA-4, were found to be differentially expressed between
Frontiers in Immunology 10
groups with low or high expression of the 6 FAMGs

(Supplementary Figure 4). The expression levels of the 6

FAMGs were significantly correlated with those of PD-L1, PD-

1, and CTLA-4 (Figures 10A–C). A comparison of the groups’

TIDE scores demonstrated that the group with high expression of

the 6 FAMGs had better immunotherapy responses (Figure 10D).
Chemotherapy sensitivity

Chemotherapy sensitivity analysis showed that positive

expression of the 6 FAMGs was associated with high

sensitivity to certain chemotherapy drugs (Figure 11A).

Pearson correlation analysis confirmed that higher expression

levels of the 6 FAMGs were associated with higher sensitivity to

some chemotherapy and targeted drugs, such as trametinib,

selumetinib, cobimetinib, carboplatin, oxaliplatin, cisplatin, and

dacarbazine (Figure 11B).
Validation of the 6 FAM molecular
subtype biomarkers

Semiquantitative analyses of immunohistochemical images

confirmed the expression levels of the 6 FAMGs were

significantly higher in CM tissues than in normal skin

(Figure 12A). Immunofluorescence analysis revealed that

ACSL5, CD1D, CD74, IL4I1, and TBXAS1 were mainly located

in the cytosol and nucleoplasm (Figure 12B). qRT-PCR analysis

revealed that the 6 FAMGs had significantly upregulated

expression in A375, m14, and SK-MEL-28 cell lines compared

with HaCaT and PIG1 cell lines (Figure 12).
Discussion

Major findings

This study comprehensively analyzed the role of FAMGs in

the subtypes , prognosis , immune infi l t ra t ion and

immunotherapy response in CM. We first systematically

investigated the correlation between DEFAMGs and the

prognosis of patients with CM. Then we applied the NMF

method to deconvolute the FAMGs expression profiles and

identified 2 FAM clusters, cluster 1 and cluster 2, based on the

TCGA CM cohort and further validated using the GEO cohort.

According to the FAM subtypes, we identified 6 hub genes

(ACSL5, ALOX5AP, CD1D, CD74, IL4I1, TBXAS1) as FAM

subtype biomarkers. Finally, we verified the expression levels

of the 6 genes in the HPA database and the qRT-PCR. Overall,

our findings show that ACSL5, ALOX5AP, CD1D, CD74, IL4I1,

and TBXAS1 are key FAM biomarkers that affect the function
FIGURE 8

TME. The expression levels of the 6 FAMGs expression were
positively correlated with the infiltration of B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells.
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and phenotype of infiltrating immune cells and are associated

with immunosuppression in the TME.
FAM molecular subtype in CM

Tumor molecular subtypes that are based on predicted

prognosis and TME composition have become a hotspot in

cancer research, but few studies have provided comprehensive

insight into the integral role of FAM in tumor molecular

subtypes, especially in CM. For example, Ying et al. used a

method of consensus clustering to build specific FAM-related

molecular subtypes that were associated with malignancy and

prognosis in glioma (49), but they did not explore the differences

in immunocyte infiltration into the TME between the FAM-

related molecular subtypes. Samson et al. constructed a

mutational subtype of melanoma based on the BRAF mutation

patterns of 2 FAM-related genes, ALDH1A1 and ALDH1A3;

however, this CM subtype accounts for ALDH1A3 expression as

only a prognostic marker for BRAF/MEK inhibitor treatment

response in BRAF-mutant metastatic melanoma patients (50). In
Frontiers in Immunology 11
the present study, we identified 2 FAM subtypes (cluster 1 and

cluster 2) with different immune infiltration patterns based on

the FAMG phenotype of CM. GSEA showed that immune

response and immune system process were significantly

regulated in FAM cluster 2. Immunocyte subsets, such as

CD8+ T cells, B cells, tumor-infiltrating lymphocytes, T

follicular helper cells, regulatory T cells, and T helper cells,

were highly enriched in FAM cluster 2, indicating that cluster 2

had higher levels of T-cell subset infiltration than cluster 1 did.

T cells degrade fatty acids through fatty acid oxidation to

acquire lipids for energy. In addition, the development and

function of different T-cell subsets are closely linked to the

balance between fatty acid synthesis and fatty acid oxidation in

the TME. For example, the preferential usage of fatty acid oxidation

has been linked to the development of CD8+ memory T cells and

the induction of CD4+ regulatory T cells over other T-cell lineages.

Especially in CD4+ T-cell subsets, the FAM profile changes during

an immune response and is influenced by different tissues and

different types of inflammation. Our FAM subtypes provide further

evidence that different FAM patterns affect the abundance of T-cell

subsets in the CM TME. Recent studies confirmed that T-cell
A B

D

C

FIGURE 9

The expression of the 6 FAMGs was validated in a GEO single-cell cohort. (A) The expression levels of ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and
TBXAS1 were relatively high in the CD8+ T-cell, CD4+ T-cell, B-cell, and NK cell subsets. (B) Immunocyte annotation, Cluster 0, CD4+T cells; 1,
CD8+T cells; 2, B cell; 3, Endothelial cells; 4, Melanocytes; 5, CD8+T cells; 6NK cells; 7, Tissue stem cells; 8, Melanocytes; 9, Melanocytes; 10,
CD8+T cells; 11, Fibroblasts; 12, CD4+T cells; 13, Endothelial cells 14, Melanocytes;15, Endothelial cells. (B) A bubble chart of single-cell data
shows the average and percent expression of ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1. (C) A violin chart of single-cell data shows the
expression levels of the 6 FAMGs. (D) A bubble chart of single-cell data shows the average and percent expression of ACSL5, ALOX5AP, CD1D,
CD74, IL4I1, and TBXAS1.
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FIGURE 10

Immune checkpoint correlation and TIDE score. (A–C) The expression of the 6 FAMGs (ACSL5, ALOX5AP, CD1D, CD74, IL4I1 and TBXAS1) and
that of immune checkpoints (PD-L1, PD-1, and CTLA-4) were significantly positively correlated. (D) The TIDE scores of the groups with high or
low expression levels of the FAMGs showed that the high-expression group had worse immunotherapy responses. ***P≤0.001.
A B

FIGURE 11

Chemotherapy sensitivity. (A) Chemotherapy sensitivity network shows that CM expressing the 6 genes has significant sensitivity to some
chemotherapy drugs. (B) The scatter plot of the relationship shows that increased expression of ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and
TBXAS1 is associated with sensitivity to trametinib, selumetinib, cobimetinib, carboplatin, oxaliplatin, cisplatin, and dacarbazine.
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subpopulations are the targets of ICI and chimeric antigen receptor

T-cell therapy and that the status of T cells can strongly influence

patients’ prognosis (51, 52). Our results also showed that FAM

cluster 2, with its high levels of T-cell infiltration, was associated

with favorable outcomes, which suggests that cluster 2 may be more

responsive to immunotherapy than cluster 1. In addition, our GO

and KEGG analyses showed that the DEFAMGs between cluster 2

and cluster 1 were mainly enriched in the oxidation-reduction

process, peroxisome proliferator-activated receptor (PPAR)

signaling pathway, and lipid metabolic pathways. Accumulating

evidence shows that the PPAR signaling pathway, which is involved

in lipid metabolism, energy homeostasis maintenance,

inflammation, and immune tolerance, has a role in

carcinogenesis. Lee et al. found that AMP-activated kinase

induces the upregulation of CPT1 and PGC-1 to activate the

PPAR signaling pathway, which may more indirectly favor fatty

acid oxidation (53). Therefore, the PPAR signaling pathway may be

a key determinant of FAM patterns between FAM subtypes, and it

may be used in the context of novel therapeutic strategies

against CM.
Frontiers in Immunology 13
FAM molecular subtype biomarkers

Based on the FAM molecular subtypes, we identified the 6

FAMGs (ACSL5, ALOX5AP, CD1D, CD74, IL4I1, TBXAS1) that

play vital regulatory roles in the melanoma TME. Among the 6 hub

FAMGs, IL4I1 (interleukin-4-induced gene 1) has a vital role in

immunosuppressive functions and tumor immune escape. In 2009,

Carbonnelle et al. were the first to propose that the novel

immunosuppressive enzyme IL4I1, which is produced by the

neoplastic cells of several B-cell lymphomas and by tumor-

associated macrophages, is a prognostic biomarker and

therapeutic target in cancer (54). Later, Fanette et al. found that

tumor-associated macrophages with high IL4I1 expression can

inhibit T-cell proliferation in vitro through H2O2 production.

They also confirmed that in human melanoma and

mesothelioma, minimal IL4I1 activity-induced tumor escape was

preceded by a rapid diminution of interferon g–producing cytotoxic
antitumor CD8+ T cells (55). Cousin et al. further showed that IL4I1

stimulates the generation of Foxp3+ regulatory T cells and limits T

helper 1 and T helper 2 polarization in vitro, and their findings
A B

C

FIGURE 12

Verification of the protein expression of the 6 FAMGs using the HPA database. (A) Immunohistochemical images show the protein expression of
ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1 in CM and skin tissue. (B) Immunofluorescence show that ACSL5, CD1D, CD74, IL4I1, and
TBXAS1 are mainly located in the cytosol and nucleoplasm. (C) qRT-PCR, showing the relative expression of ACSL5, CD1D, CD74, IL4I1 and
TBXAS1 were significant differences between 2 normal human cell lines and 3 melanoma cell lines. *P≥0.05; **P≥0.01.
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reinforced the concept that IL4I1 facilitates tumor escape from the

immune response (56). Sadik et al. recently identified IL4I1 as a

major aryl hydrocarbon receptor (AHR)-activating enzyme that

promotes AHR-driven cancer cell motility and suppresses adaptive

immunity. Compared with IDO1 or TDO2, IL4I1 had a stronger

effect on AHR activity, which suggests that IL4I1 is an alternative

metabolic immune checkpoint that could be therapeutically

targeted in patients in whom combined ICI and IDO1 inhibition

therapy has failed (57).. In the present study, we consistently

observed that the PD-1, T-cell receptor, and tumor escape from

immune attack signaling pathways were significantly enriched in

CM samples with high IL4I1 expression. The differential expression

of IL4I1 was significantly correlated with the infiltration of immune

cells such as B cells, CD8+ T cells, macrophages, and neutrophils in

the TME. These findings suggest that IL4I1 can be an indicator of

response to anti–PD-1 treatments and is a novel metabolic immune

checkpoint in CM.

Previous studies showed that ACSL5 (acyl-CoA synthetase 5), a

nuclear-coded FAMG expressed in the mitochondria, can convert

carbons from citrate to bioactive fatty acids to stimulate the

inflammatory response in the TME (58, 59). For example, Klaus

et al. found that the high activity of ACSL5 enhances caspase-3 and

caspase-7 activity to promote apoptosis regulated by TP53 status via

WNT2B palmitoylation in enterocytes and colorectal

adenocarcinomas (60). In addition, ACSL5 can be used to predict

survival and immunotherapy response. Gassler et al. showed that

lower ACSL5 expression is a prognostic marker for early recurrence

in patients with colorectal adenocarcinoma (61). Chen et al. showed

that breast, colorectal, lung, or ovarian cancer patients who have

higher ACSL5 expression have good survival outcomes (62). Our

results showed thatACSL5 is an important indicator of the OS, PFS,

and DSS of CM patients. We also found that ACSL5 is correlated

with the ferroptosis signaling pathway in CM, which suggests that

ACSL5 can inhibit the proliferation of tumor cells by

inducing ferroptosis.

ALOX5AP is a key enzyme that facilitates the activity of 5-

lipoxygenase (5-LOX), which metabolizes arachidonic acid to

leukotrienes. Moore et al. found that the 5-LOX/ALOX5AP

pathway can affect cancer-related immune evasion in the TME

(63). Ye et al. confirmed that ALOX5AP is involved in M2

macrophage recruitment, infiltration, and polarization, which

can indirectly block tumor-specific T-cell activity to promote

immune evasion in the ovarian cancer TME (64).

CD1D, a major histocompatibility complex class I–like

molecule, presents lipoidal antigen to NK T cells, which are

involved in the innate anticancer immune response. Bernal et al.

confirmed that the CD1D molecule plays a crucial role in the

induction of melanoma immune evasion by forming a complex

with b2 microglobulin in the CD1D/NK T-cell axis (65). CD1D+

tumors can evade recognition by NK T cells in the CD1D/NK T-

cell axis by shedding glycolipids, which presumably replace the
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endogenous lipids that are bound to CD1D and cannot be

recognized by NK T cells (66).

CD74 has been implicated to play a tumor-progression role

in the immune microenvironment of CM patients. Figueiredo

et al. confirmed that CD74, as a macrophage migration

inhibitory factor (MIF), regulates the activity of macrophages

and other immune cells via the CD74-MIF signaling pathway.

Interfering with MIF-CD74 immunosuppressive signaling can

restore the antitumor immune response in metastatic melanoma

(67). According to other studies, the polarization of

macrophages to M2 macrophages induces immunosuppression

by suppressing cytotoxic T cells in the TME (68). In the present

study, we also showed that CD74 is positively associated with the

infiltration of macrophages, dendritic cells, and neutrophils in

CM. Our single-cell analysis of the TME further showed that

high CD74 expression was enriched in CD8+ T cells, CD4+ T

cells, macrophages, neutrophils, and dendritic cells in the

CM TME.

In the arachidonic acid cascade, TBXAS1 encodes for

thromboxane synthase, which converts prostaglandin H2 into

thromboxane A2, a process that involves the modulation of cell

cytotoxicity and tumor growth and metastasis (69, 70). Abraham

et al. showed that TBXAS1 genes are associated with breast

cancer risk (71). We found that TBXAS1 is significantly

correlated with neutrophils in the TME, indicating that high

TBXAS1 expression upregulates the inflammation response in

the TME.
Limitations

Although it presents encouraging results, our study had several

limitations. First, the FAM tumor subtype was constructed and

validated using open data sources (TCGA and GEO). Testing the

subtype in an independent patient cohort would validate the

reliability of our subtypes in identifying CM patients. Second, our

study lacked in vivo experiments to verify the molecular function of

the 6 hub genes. Future studies are needed to investigate the

mechanisms underlying the 6 FAM biomarkers’ mediation of CM

progression and the immune microenvironment.
Conclusion

Our FAM subtypes verify that different FAM reprogramming

affects the function and phenotype of infiltrating immune cells in

the CM TME. Our findings suggest that the FAM molecular

subtype biomarkers ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and

TBXAS1 can be independent predictors of prognosis and

immunotherapy response in CM patients. These findings may

provide potential therapeutic targets in CM.
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