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Composition and regulation of
the immune microenvironment
of salivary gland in
Sjögren’s syndrome

Zhen Tan, Li Wang and Xiaomei Li*

Department of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, China
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease

characterized by exocrine gland dysfunction and inflammation. Patients

often have dry mouth and dry eye symptoms, which seriously affect their

lives. Improving drymouth and eye symptoms has become a common demand

from patients. For this reason, researchers have conducted many studies on

external secretory glands. In this paper, we summarize recent studies on the

salivary glands of pSS patients from the perspective of the immune

microenvironment. These studies showed that hypoxia, senescence, and

chronic inflammation are the essential characteristics of the salivary gland

immune microenvironment. In the SG of pSS, genes related to lymphocyte

chemotaxis, antigen presentation, and lymphocyte activation are upregulated.

Interferon (IFN)-related genes, DNA methylation, sRNA downregulation, and

mitochondrial-related differentially expressed genes are also involved in

forming the immune microenvironment of pSS, while multiple signaling

pathways are involved in regulation. We further elucidated the regulation of

the salivary gland immune microenvironment in pSS and relevant,

targeted treatments.

KEYWORDS
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1 Introduction

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease that occurs

mostly in middle-aged women and is characterized by impaired glandular function and

the appearance of autoantibodies caused by infiltrating exocrine glands with

lymphocytes, with an estimated prevalence of 0.3-3/1000 in the general population (1,

2). PSS is a heterogeneous disease; approximately 5% to 35% of the population has dry

eye, approximately 20% of patients have dry mouth, and up to 34% of patients have
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parotid gland swelling (3–5). In addition to glandular

involvement, arthritis occurs in approximately 50% of patients,

lung involvement occurs in 9-12% of patients, skin lesions occur

in 10% of patients, kidneys involvement occur in 5% of patients,

and sensory neuropathy occurs in 10-25% of patients (6–8). In

blood samples, 40%-75% of pSS patients have anti-RO/SSA, and

23%-52% have LA/SSB antibodies (9).

The etiology and pathogenesis of SS are still unclear, and it is

generally believed that genetic susceptibility related to

environmental factors is an important cause of the occurrence

of Sjogren’s syndrome (10). Currently, genome-wide association

studies on pSS have been completed, among which HLA genes

have the strongest association signal (11). Epigenetic

mechanisms such as DNA methylation, histone modification,

and noncoding RNA play a role in the pathogenesis of pSS by

regulating gene expression and may form a dynamic link

between the genome and phenotypic expression. Bacteria and

viruses are essential components of environmental factors.

Bacteria can cause autoimmune diseases through various

mechanisms, such as pathogen persistence, epitope spread,

molecular mimicry, epigenetic changes, and Toll-like receptor

activation. Type I IFN is a critical immune mediator involved in

viral defense and immune response activation, which suggests

the important role of viral infection in the pathogenesis of the

disease. A recent analysis of the gene expression of SGECs

showed that the IFN signaling pathway and genes involved in

the immune response (HLA-DRA, IL-7, and B-cell activator

receptor) in pSS were upregulated (12). Other studies found

dysregulation of the IFN signaling pathway in SG and peripheral

blood of some patients with SS (13), especially the upregulation

of type I IFN-induced genes. Various factors, such as infection

and hypoxia, induce the activation of SG epithelial cells, leading

to lymphocyte infiltration (especially CD4+ T cells) and the

release of inflammatory factors. New cell populations, such as

follicular T cells, TH17 cells, dendritic (IFN-producing) cells,

and B lymphocytes, gradually develop into B lymphocyte-

domina ted ec top i c ge rmina l c en te r s (GCs ) wi th

autoantibody production.

The occurrence and development of pSS is a complex

process involving many kinds of cells. The salivary gland, as

the most commonly affected organ, has attracted increasing

attention. Early SG lesions in pSS are rarely reported, which

may be related to the delayed diagnosis of pSS. However, many

studies have attempted to find targeted therapies for pSS by

intervening in the inflammatory process of pSS. Among them,

the improvement of dry mouth symptoms caused by impaired

salivary gland function is an important goal of treatment.

Autoantibodies in the salivary glands induce abnormal

immune responses, which together with a large number of

infiltrating inflammatory cells destroy normal salivary gland

cells, atrophy of salivary gland cells and disappearance of

salivary duct. As time goes on, the normal secretory function

of salivary glands can be affected, resulting in dry mouth (14).
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Salivary gland cells, inflammatory cells, inflammatory mediators,

autoantibodies and cytokines produced by each of them or by

each other constitute the unique immune microenvironment of

salivary gland cells. Changes in the immune microenvironment

may cause changes in glandular function. Therefore, obtaining

more salivary gland tissue samples, analyzing the potential

differences between peripheral blood and salivary gland tissue,

and further understanding the composition and regulation of the

salivary gland immune microenvironment can help us find more

targeted treatments for pSS xerostomia. In addition, the salivary

gland immune microenvironment of pSS, a type of autoimmune

epithelitis, can provide a model for the study of other

autoimmune epithelitis (celiac disease, primary biliary

cirrhosis, etc.).
2 Characteristics of the salivary
gland microenvironment

The salivary gland microenvironment directly affects

salivary gland secretion function and is very important for the

occurrence and development of pSS. It generally has three

characteristics: hypoxia, chronic inflammation, and senescence.
2.1 Hypoxia

Hypoxia is a state of reduced available oxygen caused by

reduced blood flow, anemia, metabolic changes, and

inflammation (15, 16). Hypoxia has been shown to accelerate

cell apoptosis in the renal epithelium (17) while downregulating

Cl- ion secretion in the intestinal epithelium, resulting in

decreased epithelial fluid transport activity and destruction of

tight connections between epithelial cells (18). Hypoxia can also

lead to macrophage polarization, regulatory T-cell aggregation,

and inhibitory T-cell maturation, leading to immune tolerance

and tissue damage. A recent study of minor salivary glands in

pSS patients found that hypoxia and IFN-related genes were

closely associated with the expression of interleukin (IL)-21

signaling genes, which were significantly increased in pSS

patients (19), suggesting a correlation between hypoxia and

pSS morbidity. Hypoxia-inducible factor 1a (HIF1a), a

transcription factor, is a major regulator of oxygen

homeostasis and can be regarded as a hypoxia marker. HIF1a
is also a key player in integrating the T-cell receptor (TCR) and

cytokine receptor-mediated signals of CD4+ helper T cells (20).

In addition, HIF1a enhances Th17 development through direct

transcriptional activation of RAR-related orphan receptor

gamma t (RORt) (21). This subpopulation is highly increased

in salivary gland tissue of patients with SS and a mouse model of

SS (22). Longyun Ye et al. cultured mouse submandibular glands

(SMGs) in vitro and showed that hypoxia (5% O2) induced HIF-

1a, glucose transporter 1 and VEGF expression, while BAY 87-
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2243-mediated HIF-1a inhibited salivary gland development

(23). There are also differing viewpoints. Recent studies have

shown that HIF1a expressed in epithelial cells protects against

hypoxia-induced tight junction integrity loss and epithelial

secretory function loss. The genotype and the allele of the

HIF1A Pro582Ser polymorphism were associated with a

reduced risk of pSS, suggesting that HIF1a activity may be

involved in the development of pSS disease (24). Such different

results may be related to different degrees of hypoxia. Antonela

Romina Terrizzi et al. performed a comparative analysis of adult

Wistar rats exposed to persistent or intermittent hypoxia over 90

days (25). The results suggested that salivary secretion decreased

and prostaglandin E2 (PGE2) content increased in animals

exposed to hypoxia. The persistent hypoxia group showed

higher HIF-1a staining. This suggests that PGE2 plays a

negative role during gland adaptation to hypoxia.
2.2 Chronic inflammation

Chronic inflammation is another feature of salivary gland

involvement in pSS patients, mainly manifested by periductal

lymphocytic infiltration. The lesions are mainly T and B

lymphocytes, with a few monocytes, including macrophages,

myeloid cells, plasmoid dendritic cells, and follicular dendritic

cells (FDC) (26). The corresponding plasma cells attack normal

tissues and organs, including salivary glands, and cause tissue

damage when they produce autoantibodies. It has been reported

that in a mouse salivary gland inflammation model, the degree of

salivary gland inflammation is related to the titer of antinuclear

antibodies (27). Some authors have described the presence of

anti-Ro/SSA and anti-La/SSB autoantibodies in the saliva of pSS

patients but no circulating antibodies in serum, suggesting that

the salivary glands of pSS patients can specifically produce these

autoantibodies (28). In addition to anti-Ro/SSA and anti-La/SSB

autoantibodies, anti-salivary gland protein 1, anti-carboxylase 6,

and anti-parotid secreted protein autoantibodies have also been

reported, which recognize salivary gland- and lacrimal gland-

specific antigens (29). Moreover, IL-2, IL-6, IL-21, BCL6, Foxp3,

and other cytokines and transcription factors were detected in

the salivary glands, which further proved the persistence of

inflammation (30–33).
2.3 Senescence

Senescence is a permanent state of cell cycle arrest, with the

upregulation of antiapoptotic pathways (34). Using organoid

culture techniques, some researchers found that salivary gland

progenitor cells (SGPCs) in pSS patients showed insufficient self-

renewal ability and differential ability compared with the control

group. The telomeres of pSS SGPCs were shorter than normal,

suggesting the existence of an aging phenotype (35). In addition,
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p16+ expression increased in the basal striated duct cell (BSD)

progenitor cell niche and the whole parotid epithelium, a marker

of aging (36). Senescent cel ls express and secrete

proinflammatory cytokines (i.e., senescence-related secretion

phenotypes, SASP) that play a role in spreading senescence

and promoting tissue inflammation (37).

In conclusion, pSS SGPCs tend to be senescent, and SASPs

maintain the senescent SG microenvironment. The salivary

function of pSS patients could not recover after the

improvement of salivary gland inflammation, which proved

the existence of senescence from another aspect. Mie

Kurosawa et al. found an accumulation of senescence-

associated T cells (SA-TS) in salivary glands of PSs model

mice, which were involved in the pathogenesis of SS-associated

sialadenitis through upregulation of the epithelial chemokine

CXCL13 (38), and they may become another target for

pSS treatment.
3 Composition of salivary gland
immune microenvironment

3.1 Gland cells

First, let us review the SGs. The salivary gland is the general

name for the exocrine gland opening in the mouth through the

duct because its secretions are discharged into the mouth and

mixed into saliva. There are three pairs of SGs: parotid,

sublingual and submandibular, and the largest pair is the

parotid gland. SGs are composed of repeatedly branching

ducts and terminal acinus forming the gland parenchyma. The

acinar is divided into serous, mucinous, and mixed acinar,

producing and secreting watery or mucus-rich saliva from

serous and mucinous acinar cells. The secreted saliva passes

through intercalated ducts into striate tubes of basal cells and

lumen cells and finally into the mouth through larger excretory

ducts. Luminal striated duct cells, basal striated duct cells,

intercalated ducts , acinar cel ls , and myoepithel ia l

cells constitute the salivary gland’s epithelial cells (SGECs).

Salivary progenitor cells reside in striatal canals and proliferate

and differentiate to maintain gland homeostasis.

SGECs are not only a critical immune target of pSS but also

play an essential immune function in the pathogenesis of pSS,

mediating the initiation and persistence of inflammation and

autoimmune response. Human pSS SG epithelial cells show

increased proapoptotic molecules (such as Fas and Bax) and

decreased antiapoptotic molecules (Bcl-2) compared with

healthy individuals (39–41). Endoplasmic reticulum stress

leads to autophagy and apoptosis, which may lead to

redistribution of Ro/SSA and La/SSB autoantigens, initially on

the cell surface and eventually in apoptotic blisters (42). These

autoantigens are upregulated in pSS SGECs and regulated by the

TLR/IFN TYPE I signaling pathway (43). SGECs are not only
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important sources of pSS autoantigens Ro/SSA and La/SSB but

also express MHC class I and II and T-cell costimulatory

molecules (CD80/CD86), enabling them to function as

autoantigen presenting cells (44–46). SGECs have been shown

to express not only virus-associated toll-like receptors (TLRs)

(3 and 7) but also bacterial infection-associated TLRs (1, 2, 4)

(47). SGECs bind to multiple pathogen-associated molecular

patterns (PAMPs) through the expression of TLRs 1, 2, 3, 4, and

7. In addition to the B-cell activator CD40, SGECs also express

CXCL10, CXCL12, CXCL13, IFNa, IFNb, IFNl, TNFa, and
other receptors. They also produce a variety of cytokines/

chemokines under various stimulus conditions, including IL-

18, IL-21, IL-1, IL-6, TNFa, B-cell activating factor (BAFF),

CXCL-10, CXCL-12, CXCL-13, and CCL-21 (47–59). IL-6 and

the costimulatory molecule ICOSL contribute to follicle-assisted

T-cell induction, which is critical for B-cell activation and

differentiation (60). IFNl stimulation of SG epithelial cells also

induces the expression of BAFF and CXCL10, suggesting that

type III IFN plays a role in developing SG pathology in pSS (61).

Abundant evidence suggests that SGECs can drive the

activation, differentiation, and survival of B cells through

direct interaction and cytokine production and promote the

pathogenesis of SS (12, 62, 63). In vitro, culture results showed

that SGECs from pSS patients promoted the differentiation of B

cells into mature B-cell phenotypes and improved the survival

rate (12, 63). SGECs may also indirectly induce B-cell

differentiation. SGECs have been reported to promote T

follicular helper cell differentiation and IL-21 production (60),

which may further enhance B-cell hyperactivity in salivary

glands in pSS patients. In the salivary glands of pSS patients,

high levels of CXCL12 were detected in ductal epithelial cells

(64), and CXCL12 expression and IL-6 were associated with high

focusing scores and high levels of CD138+ plasma cell

infiltration (51). Riviere et al. showed the presence of IL-7/

IFNg amplification loops involving SGEC and T cells in primary

SS (65). They stimulated primary cultures of SGECs from

control and primary SS patients with poly (I-C), interferon a,
or interferon g. SG explants were cultured with an anti-IL-7

receptor (IL-7R) antagonist antibody (OSE-127) for 4 days, and

transcriptome analysis was performed using the NanoString

platform. The results suggested that the expression of IL7R

was decreased in T cells. Il-7 is secreted by SGECs stimulated

by poly (I-C), IFNa, or IFNg. IL-7 stimulation increases T-cell

activation and IFNg secretion. Transcriptome analysis of SG

explants showed a correlation between IL7 and IFN expression,

and explants cultured with anti-IL-7R antibodies showed

reduced IFN-stimulated gene expression. These results indicate

the presence of IL-7/IFNg amplification loops involving SGEC

and T cells in primary SS. Il-7 is secreted by the SGEC stimulated

by type I or TYPE II IFN, which in turn activates T cells that

secrete type II IFN.

The stromal component of the salivary glands is composed of

mesenchymal stromal cells (MSCs), which provide tissue-
Frontiers in Immunology 04
homeostatic properties, including regeneration, repair, and

immune regulation. It has been shown that human bone

marrow mesenchymal stem cells (hMSCs) cocultured with

purified immune cell subpopulations alter the cytokine secretion

profile of dendritic cells (DC), primary and effector T cells (Th1

and Th2), and natural killer cells (NK) to induce a more anti-

inflammatory or tolerant phenotype (66). This suggests that MSCs

may reduce inflammation by acting as immunomodulators and

promoting tissue regeneration. In recent studies, IFNg stimulated

cultured resident MSG-derived MSCs (MSG-Mscs) isolated from

the small salivary glands of pSS patients, and the protein levels of

indoleamine 2,3-dioxygenase (IDO), programmed death ligand 1

(PD-L1), and intercellular adhesion marker 1 (ICAM-1)

increased. These results suggest that MSG-Mscs have normal

immunomodulatory functions in small salivary glands. In

addition, MSG-Mscs inhibited T-cell proliferation in a dose-

dependent manner and were not associated with 17-b-estradiol
exposure (67). In addition, follicular dendritic cells (FDCs) are

stromal cells located in primary follicles and germinal centers

(GCs) of secondary and tertiary lymphoid organs and have the

unique ability to retain natural antigens in B-cell follicles for

several months (68).
3.2 Multiple participating cells

With the progression of epithelial cell activation and disease,

new cells appear in the salivary gland, such as follicle T cells and

Th17 cells, dendritic cells (producing IFN), macrophages (MFs),

natural killer cells, and B lymphocytes (T cells are usually found

in mild lesions, and B cells and MFs dominate in the most severe

lesions). Furthermore, they gradually develop into ectopic

germinal centers (69, 70).

3.2.1 B cells
There are many different types of B cells in salivary gland

tissue. FcRL4+B cells were found in or near the ductal

epithelium of the inflammatory salivary gland tissue of pSS.

FcRL4 is closely related to lymphoma and is expressed in

almost all MUCOSAL-associated lymphoid tissue (MALT) B-

cell lymphomas associated with pSS, especially in the parotid

gland. RNA sequencing of FcRL4+ B cells isolated from

parotid cell suspensions from pSS patients showed that

FcRL4+ B cells were not enriched in the blood of pSS

patients compared with non-SS-sicCA patients, but these

cells generally displayed a proinflammatory phenotype.

Genes encoding CD11c (ITGAX), T-BET (TBX21), TACI

(TNFRSF13B), Src tyrosine kinase and NFkB pathway-

related genes were significantly upregulated in glandular

FcRL4+B cells compared with FCRL4-B cells. Therefore,

FcRL4+B cells in pSS exhibit many characteristics of

chronic activation and proinflammatory B cells (71). Some

researchers found that through immunohistochemistry and
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mRNA analysis, the expression level of FcRL4 mRNA in

parotid MALT lymphoma was increased compared with the

parotid tissue of pSS patients without lymphoma, which may

explain why MALT lymphoma in pSS patients preferentially

occurred in this specific site (15). In addition, MZB cells were

detected in saliva and lacrimal glands in both patients with

salivary gland disease and mouse models. The C57BL/6. Nod-

aec1aec2 mouse model, as well as several SS gene knockout

mouse models, showed that B lymphocytes, especially

peripheral zone B (MZB) cells, are necessary for the

development of clinical manifestations and pathogenesis,

although destruction of lacrimal and salivary gland cells

involves a typical T-cell-mediated autoimmune response.

Peck et al . , through in vitro temporal global RNA

transcriptomic analysis, showed that MZB cells from

C57BL/6. Nod-aec1aec2 mice were recruited by the

upregulated Cxcl13 chemokine to the exocrine gland, where

they recognized complement-modified antigens through their

sphingosin-1-phosphate and B-cell receptors (72). BAFF

transgenic (TG) mice developed autoimmune diseases

characterized by autoantibody production, leading to

salivary gland destruction (salivary adenitis), which was

associated with enlargement of the B-cell compartment in

the marginal region (MZ) and abnormal presence of MZ-like

B cells in blood and inflamed salivary glands (15). In the

IL14aTG mouse model, elimination of MZB from mice by B-

cell-specific deletion of RBP-J resulted in complete

elimination of all SS disease manifestations (73). Daridon

and others, through classification and reverse transcription

polymerase chain reaction analysis of salivary gland

specimens in the presence of B cells and its polyclonal form

in 18 patients, found that pSS patients with heterotopic

salivary glands in GC sample structure transition - 2 B-cell

amplification, locally produce autoantibodies, which may

help and influence subsequent epithelial damage (74).

Immunoglobulin rearrangement in single parotid B cells

i so la ted from the parot id g land was analyzed by

fluorescence-activated cell sorting, and the results showed

that compared with peripheral blood, most parotid B cells in

pSS showed the mutant status and phenotype of memory B

cells, which accumulated in the salivary glands of pSS patients

(75). Hansen et al. analyzed chemokine receptor expression in

CD27- naive and CD27+ memory B cells from primary SS

patients and healthy controls using flow cytometry, single-cell

reverse transcription polymerase chain reaction (RT−PCR),

and migration assays. The results showed that CD27+

memory B cells overexpressed the chemokine receptors

CXCR4 and CXCR5, which may promote the infiltration of

memory B cells into inflammatory glands through the

chemokine receptors CXCL12 and CXCL13 from epithelial

cells (76). Similar to transition B cells, CD27+ memory B cells

seem to promote the formation of ectopic GC-like structures

in the exocrine glands of pSS patients (77). Skarstein et al.
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found that in pSS patients, the increase in CD138+ plasma

cells and CD20+ B cells is associated with fat infiltration and

focal infiltration, suggesting that they are actively involved in

promoting inflammation (78). Szyszko et al. performed

single, double, and triple immunohistochemical and

immunofluorescence staining of small salivary gland tissues

from pSS, chronic inflammatory, and normal subjects,

suggesting that plasma cells were located near CXCL12- and

IL-6-expressing cells. A salivary gland environment with a

high focus score provided a critical factor for plasma cell

survival (51). In addition, Cui et al . developed an

enzyme-linked immunosorbent assay for autoantibodies

with good quantitative ability and found that the expression

levels of saliva anti-Cofilin-1, anti-a enolase and anti-RGI2

in parotid gland tissues of pSS/MALT patients were

significantly higher than those of healthy controls (79).

These results suggest the promoting role of plasma cells in

MALT lymphoma.

3.2.2 T cells
In the salivary glands, T cells mainly assist B cells. Th1 cells are

believed to play a major role in pSS and are the most relevant CD4

+ cell population infiltrating inflammatory SGs (80). Th2 cytokine

levels are closely associated with SG lymphocyte infiltration (30).

Th17 cells also play a key role in pSS. Th17 cells in SGs can

develop into Th17.1 cells and produce IL-17 and IFN-g, which are
involved in the pathogenesis of pSS (81). It has been reported that

Tfh cells selectively accumulate in the SGs of pSS patients (82, 83).

Tfh cells appear as a unique subpopulation of CD4+ T helper cells

that promote the development and activation of B cells. Tfh cells

express CXCR5, which migrates and localizes in B-cell follicles

and induces the expression of T-cell costimulatory (ICOS)

molecules, coinhibitory programmed cell death protein-1 (PD-

1), and the transcription factor Bcl6 (84). Tfh cells release large

amounts of IL-21, a key cytokine that activates the molecular

mechanism of somatic excessive mutation and analog switching of

B cells (85, 86). Another subpopulation of CD4+ T cells, follicular

regulatory T cells (Tfr), also express CXCR5 but have the typical

inhibitory function of regulatory T cells, negatively regulating GC

responses to prevent abnormal GC responses (87). In addition,

pSS patients showed a high degree of infiltration of pathogenic T

peripheral helper cells (Tph) in SGs, which lacked typical Tfh

markers such as CXCR5 and Bcl6 but could assist homologous B

cells through IL-21 and CD40-L (82, 88). By studying the

peripheral blood of pSS patients, Dupre et al. found that Tfh

and Tph were amplified in the peripheral blood of patients and

correlated with disease activity and B-cell marker (RF and anti-

SSB) levels (89). Pontarini et al. performed transcriptome

(microarray and quantitative PCR) analysis, FACS T-cell

immunophenotyping and intracellular cytokine detection,

polychromatic immunofluorescence microscopy and in situ

hybridization. It was found that damaged CD4+CD45RO+ICOS

+PD1+ cells selectively infiltrated ELS+ tissues in SG and
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amplified abnormally in parotid malt-L. In ELS+SG and MALT-L

parotid glands, the traditional CXCR5+CD4+PD1+ICOS+

FOXP3-TFH cell population and the uniquely enlarged CXCR5-

CD4+PD1HIICOS+ Foxp3-TPH cell population showed frequent

IL-21/interferon dual production. The results highlight Tfh and

Tph cells and IL-21 and ICOS costimulation pathways as key

pathogenic factors in SS immunopathology (90). Cytotoxic T

lymphocytes (CTLs) can specifically recognize and lyse their

targets. Recently, antigen-specific cytotoxicity expressed by

cytotoxic T cells in vitro and in vivo has been shown to be Fas

based (91). Kong et al. used immunohistochemical staining and

reverse transcription polymerase chain reaction in situ to detect

the expression of Fas and Fas ligand (FasL) in salivary gland

biopsy materials and evaluated the DNA fragments in apoptotic

cells by enzymatic incorporation of labeled nucleotide (digoxin

-dUTP). The results showed that the acinar epithelial cells of SS

were Fas+ and FasL+, and the cells died by apoptosis. Fas+ and

Bcl-2+ were the dominant infiltrating lymphocytes in SS, and FasL

was expressed in a few lymphocytes. In situ detection of apoptosis

showed minimal cell death of lymphocytes, especially in dense

periductal lesions. These results suggest that the Fas pathway may

be an important mechanism of SS gland destruction (39).

3.2.3 Other cells
Dendritic cells (DCs) can be divided into antigen presenting

myeloid DCs (MDCs), which are effector cells, and plasma cell

DCs (PDCs), which mainly produce type I interferon. Among

them, plasmacytoid dendritic cells (PDCs) produce type I

interferon (IFN) and contribute to the pathogenesis of various

autoimmune diseases. PDC and type I IFN activity are elevated in

the salivary glands of SS patients. Zhou et al. applied pdC-

consuming anti-BST2/CD317 antibodies to female NOD mice

aged 4 to 7 weeks at the early stage of SS and assessed the

pathology of SS at 10 weeks of age. The results suggested that PDC

treatment inhibited the development of inflammation and

secretory dysfunction of SMG and significantly reduced the

number of type I interferon mRNA, total white blood cells, T

lymphocytes and B lymphocytes in SMG. This suggests a role for

PDC in the pathogenesis of pSS (92). In patients with pSS,

immature myeloid dendritic cells (DCS) are reduced in the

blood, and mature myeloid dendritic cells accumulate in the

salivary glands. As the duration of pSS syndrome increases, the

reduction in myeloid dendritic cells in the blood spontaneously

recovers. Myeloid DCs may play an important role in the

pathogenesis of pSS by initiating the helper T-cell immune

response (93).

Fibroblasts are an extremely heterogeneous population of

cells with a spindle shape, oval nuclei, and the ability to adhere to

collagen fibers. In addition to synthesizing and reshaping the

structure and function of the extracellular matrix, they also have

the ability to secrete cytokines, chemokines and growth factors.

Furthermore, immune fibroblasts affect the homeostasis of

immune cells, and are one of the important stromal cells
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constituting the tertiary lymphoid structures (TLS) (94). Nayar

et al. showed that immune fibroblast activation and expansion

were observed during TLS formation in wild-type (WT) mice

that induced salivary gland inflammation. In Dm2 mice, the loss

of PDPN+/FAP+ fibroblasts disrupted the establishment of TLS

and impaired the establishment of local pathology. Meanwhile,

in salivary glands of pSS patients, the phenotype and

proliferation of TLS immune fibroblasts are regulated by IL-13

and IL-22 (95). In addition, Korsunsky et al. performed single-

cell RNA sequencing of fibroblasts and found that

CXCL10+CCL19+ immune-interacting and SPARC+COL3A1+

vascular-interacting fibroblasts were expanded in a variety of

inflammatory tissues (salivary glands of pSS, synovium of RA,

colon of ulcerative colitis, etc.) (96). In ulcerative colitis,

fibroblasts are the main source of IL-6, and many cytokines

and inflammatory mediators have been found to significantly

induce IL-6 expression in fibroblasts, including TNF, IL-17, IL-1,

LPS, and IFN (97).
3.3 Extracellular matrix

SS is essentially a kind of epithelial inflammation, and the

integrity, structure, and function of epithelial cells largely depend

on the homeostasis of the extracellular matrix (ECM). The ECM is

a network of many components , including fibrin,

glycosaminoglycan, growth factor, protease, and inhibitors. An

increasing number of studies have shown that changes in the

morphology and function of acini and ducts, accompanied by the

degradation and remodeling of ECM, are critical events in salivary

gland changes in pSS patients. ECM not only supports glandular

cells, but its components are also important components of

damage-related molecular patterns (DAMPs). DAMPs are

potential endogenous inflammatory sources that drive

autoimmunity by activating pattern recognition receptors (98).

When the glandular tissue of pSS patients is damaged by internal

and external environmental factors, the ECM releases soluble

DAMPs (Biglycan, decorin, etc.) under the action of matrix

metalloproteinases (MMPs). Soluble DAMPs activate

homologous receptors that mediate inflammation (e.g., MyD88-

dependent TLRs), leading to aseptic inflammation and enhancing

pathogen-mediated inflammation (99–101). The salivary mucins

MUC1, MUC7, and MUC5B secreted into the intercellular space

have been reported to activate proinflammatory molecules and

Toll-like receptors, which are also involved in inflammatory

responses (99). Aberrant decorin levels (DCN) induce damage

to human salivary gland epithelial cells and the polarization of

macrophages (102). The increased level of DCN in the parotid

gland of pSS patients was positively correlated with several

chemokines (CXCL13, CXCL9, and CCL20), IL-1ß, and

caspase3 but negatively correlated with the proliferation-related

gene MKI67. DCN induces apoptosis of A253 cells and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.967304
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tan et al. 10.3389/fimmu.2022.967304
differentiation of macrophages into the M1 phenotype, which is

characterized by the expression of proinflammatory

cytokines (102).
4 Special structure

The salivary glands of pSS patients are characterized by

chronic inflammation, and the lesions are mainly composed of

T and B lymphocytes (26). In the initial stage of disease, lymphoid

tissue initiator or inducer (LTi) cells, induced by precursors such

as Epstein-Barr virus or cytomegalovirus, produce lymphotoxin,

which promotes the expression of NF-kB signals in lymphoid

tissue organizer cells by lymphotoxin-b receptors. This results in

the enhanced expression of homeostatic chemokines and

cytokines (CXCL13, CCL19, CCL21, RANKL, IL-17 and IL-22)

(103, 104). At the same time, the virus induced the expression of

interferon-g and stimulated the expression of CXCL9 and

CXCL10 in ductal epithelium. These cytokines and chemokines

are involved in attracting T lymphocytes, B lymphocytes, and

other immune cells to the site of inflammation and promote the

formation and maintenance of organized lymphoid tissue (105–

107). In addition, prolonged gland activation leads to the

formation of FDC networks and the separation of T and B cells,

and finally to the formation of ectopic lymphoid structures (ELS)

with ectopic germinal centers as the core, T and B cell separation

areas surrounding, and the formation of high endothelial venules

(HEVs) as exchange channels with peripheral blood lymphocytes

(103, 104, 108). The germinal center consists of a light zone and a

dark zone. There are rapidly proliferating central blasts in the dark

zone, and their Ig variable region genes can undergo somatic

hypermutation, thereby protecting them from apoptosis. In the

light zone, the central cells transformed from the central blast cells

competitively bind to the antigen presented by FDC. The central B

cells with high affinity BCR bound to the antigen were positively

selected, and the cells that did not receive the antigen underwent

apoptosis. Tfh cells regulate the apoptosis of positively selected

central B cells or further development into memory B cells or

plasma cells through Fas-FasL and CD40-CD40L (109). Tph

further induces chemotaxis and conversion of memory B cells

into plasma cells by producing IL-21 and CXCL13. Initiation and

maintenance of ELS in pSS requires ectopic expression of

lymphoid chemokines, including CXCL12, CXCL13, CCL19,

and CCL21. These chemokines regulate lymphocyte trafficking

and tissue localization by interacting with their unique receptors

CXCR4 (for CXCL12), CXCR5(for CXCL13), and CCR7(for

CCL19 and CCL21). CXCL12 is mainly produced by follicles

and ducts, and its receptor is expressed in plasma cells (110).

CXCL13 is mainly produced by stromal cells, memory CD4+ T

cells, and non-immune cells (ductal epithelial and endothelial

cells) in the FDC network. CCL21 is released from myofibroblast-
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like stromal cells and is closely associated with HEV

formation (Figure 1).
5 Regulation of the immune
microenvironment

5.1 Gene regulation

5.1.1 Genes
In the SG of pSS, upregulated genes are associated with

lymphocyte chemotaxis, including IFN-induced chemokines

such as CXCL10, and lymphocyte activation, such as TCR b-
sites, which play a central role in T-cell activation. The MHC

genes HLA-DR and HLA-DQ, which are related to antigen

presentation, were also highly expressed in pSS. CXCL13 and

CD3D genes were expressed in >90% of pSS patients and <10%

of controls, confirming lymphocyte chemotaxis and activation in

the SG of pSS patients. Lymphocyte-b (LTb) is involved in ELS

formation in inflammatory tissues and is one of the top 50

differentially expressed genes (DEGs) (111). Shimoyama et al.,

using single nucleotide polymorphism (SNP)-specific

sequencing, found that the risk allele of human salivary gland

GTF2I SNPs increased GTF2I expression and enhanced nuclear

factor kB (NFkB) activation in human salivary gland cells via the

NFkB P65 subunit (112). Inamo et al. used microarray

technology to detect peripheral blood B cells of pSS patients

and healthy controls and identified LINC00487 and SOX4 as key

genes of B-cell disorder in pSS patients by the WGCNA

algorithm (113). Many type I IFN genes associated with the

response to viral infection were found in the first 200 genes with

increased expression in pSS (114). These include IFNa-inducible
protein 27, 9-27 (IFITM1), IFN stimulates gene 12 (ISG12),

GBP2, and IFN regulator 8 (IRF8). Furthermore, the EBV-

induced ligand (CCL19) and its receptor CCR7 genes were

upregulated in pSS SGs. These two genes are involved in the

activation of B and T cells.

In addition to infection, oxidative stress is an important cause

of Sjögren’s syndrome, and reactive oxygen species (ROS) in

oxidative stress mainly come from mitochondria. Mitochondria

are organelles necessary tomaintain homeostasis in cells, and their

function is maintained by dynamic fine-tuning. Damaged

mitochondria produce more ROS than healthy mitochondria.

Changes in mitochondrial-endoplasmic reticulum contact sites

(MERCs) can increase inflammatory signals and regulate stress

responses and intracellular homeostasis, ultimately affecting cell

fate (115). Damaged mitochondria produced more reactive

oxygen species than healthy mitochondria, and the presence of

mitochondria in pSS salivary gland cells resulted in severe

ultrastructural changes (115). Recent scientific studies have

shown that mitochondria-related differentially expressed genes
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(CD38, CMPK2, TBC1D9, and PYCR1) are closely related to the

immune cell infiltration of salivary glands in pSS patients through

real-time quantitative PCR (116).
5.1.2 Epigenetics
Moreover, epigenetics, which includes DNA methylation,

noncoding RNA and histone modifications, are involved in the

regulation of inflammatory signals in pSS.
5.1.2.1 DNA methylation

At present, there are many literature reports on DNA

methylation and pSS (117). DNA methylation is catalyzed by

DNA methyltransferase (DNMT) and refers to the presence of

methyl radicals (methyl) in CpG dinucleotides from 5-

methylcytosine (5-MC). A study on salivary gland methylation

showed that the level of salivary gland epithelial cell methylation

in pSS patients was lower than that in healthy individuals

through DNA global methylation and real-time PCR detection

(118). Coculture of human salivary gland cell lines established

from irradiated tumor epithelial duct cells and Ramos human B-

cell lines suggested that DNA demethylation is associated with

lymphocyte infiltration, especially B-cell infiltration, and that the

protein kinase C d - extracellular signal-regulated kinase DNA

methyltransferase 1 pathway may be involved in this

phenomenon (118). However, DNA methylation is an

epigenetic mechanism that includes the adjustment of gene

expression and is heritable and reversible without modifying
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the DNA sequence. This provides another direction for the

treatment of pSS.

5.1.2.2 MiRNAs

MicroRNAs (miRNAs) are small noncoding RNAs (sRNAs)

that alter gene expression by binding to target messenger RNAs

(mRNAs) and inhibiting translation. A researcher (119)

conducted sRNA analysis based on global next-generation

sequencing (NGS) for pSS labial salivary glands (LSGs) and

sicca control groups, and the results suggested that 30% of sRNA

in pSS LSG was miRNA, and the miRNA with the most

significant change was HSA-Mir-181D-5p compared with the

control group. The mRNA level of TNF-a, a direct target of

HSA-miR-181D-5p, was significantly increased and negatively

correlated with the presence of HSA-miR-181D-5p.

Downregulation of HSA-miR-181D-5p in the LSG of SS

patients may promote the adenoinflammatory environment by

deregulating its direct target TNF-a.
5.1.2.3 Histones

The N-terminal tail of histones protrudes from the

nucleosome and is subject to various covalent posttranslational

modificat ions , inc luding acety la t ion , methyla t ion,

phosphorylation, ADP ribosylation, protein conjugation, b-N-
acetylglucosamination, deimination/citrullination and

ubiquitination/sumoylation. A variety of enzymes are involved

in histone modification, such as histone deacetylases (HDACs),

histone acetyl transferases (HATs) and histone methyl
FIGURE 1

Ectopic lymphoid structures (ELSs) formed around the glands in the salivary glands of a patient with Sjogren’s syndrome. Its core is the ectopic
germinal center (EGC), including the bright and dark regions; Germinal center B cells (GcB) were screened by follicular dendritic cells (FDC) in
the bright region. The GcB cells that did not receive antigen presentation were apoptotic, and the GcB cells that received antigen presentation
were transformed into memory B cells and plasma cells under the assistance of follicular helper T cells (Tfh) or were regulated by Tfh cells to
undergo apoptosis. Under the regulation of IL-21 and CXCL13 produced by Tph, memory B cells were transformed into plasma cells under the
combined action of BAFF and other factors. Plasma cells infiltrated around ducts and acinar epithelial cells expressing CXCL12 and produced
autoantibodies. There are B cell rich areas and T cell rich areas around EGC. High endothelial venules (HEVs) appear in the periphery of
lymphoid aggregates in T cell-rich areas, and HEV formation is influenced by CCL21 produced by myofibroblast-like stromal cells; Under the
stimulation of virus and other inducements, tissues expressed IFN-g and induced the release of CXCL9 and CXCL10; CXCL9 and CXCL10
promote the accumulation of peripheral T and B lymphocytes that enter the gland through HEV to the site of inflammation.
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transferases (HMTs). It has been widely reported that HDACs

are involved in immune reactions. HDAC4 negatively regulates

the polarization of naive CD4+ T cells toward the Th17

phenotype (120), while HDAC6 induces IL-13 expression

through AP-1, leading to the polarization of M2 macrophages

(121). Sirtuin 2 (SIRT2), a member of the NAD+-dependent

histone deacetylase family, promotes the deacetylation of

p70S6K, activates the mTORC1/HIF-1a/RORg T pathway,

inhibits the production of IL-2 by CD4+ T cells, and promotes

their differentiation into Th17 cells (122). Histone deacetylase

inhibitors (HDACi) modulate the inhibitory T lymphocyte

subsets of regulatory T cells (Tregs) and enhance FoxP3

acetylation, thereby protecting transcription factors from

proteasome degradation. In vitro T-cell culture experiments in

mice showed that HDACi reduced the proliferation of effector T

cells and enhanced the inhibitory function of Tregs in coculture

with effector T cells (123). HDAC6 inhibitors inhibit Th17-cell

differentiation through the PKM2/STAT3 axis (124), while

trastatin A (TSA), an HDAC inhibitor, inhibits dendritic cell

maturation through downregulation of NF-kB (P65) (125).

HDAC also plays an important role in B cells. Studies have

shown that the development and survival of plasma cells depend

on HDAC11, and the number of plasma cells in the peripheral

blood of mice lacking HDAC11 is significantly reduced. In B

cells lacking functional HDAC11, the differentiation of plasma

cells in vitro is blocked, and HDAC11 is involved in the

deacetylation of IRF4 at lysine 103 (126).
5.2 Signal transduction

5.2.1 BAFF
BAFF is a crucial cytokine of B cells, promoting B-cell

maturation, proliferation, and survival. In pSS patients,

salivary gland epithelial cells and innate immune cells can

secrete BAFF (127, 128). Elevated LEVELS of BAFF were

detected in salivary glands (127). Epithelial cells promote B-

cell activation through BAFF, and BAFF may also promote

epithelial cell survival through a member of the TNF receptor

superfamily 13C (also known as the BAFF receptor) (129). BAFF

is induced by type I and type II IFN (130). Therefore,

TNFSF13B, encoding BAFF, can be considered the gene

stimulated by IFN. IFN regulatory factors (IRFs) control the

transcription of TNFSF13B: IRF1 and IRF2 are induction factors

of TNFSF13B transcription, while IRF4 and IRF8 are inhibition

factors (131). TNFSF13B transgenic mice overexpressing BAFF

first developed a lupus-like phenotype and then acquired pSS

characteristics, including reduced salivation. This finding

supports the role of BAFF in promoting the pathogenesis of pSS.

5.2.2 EGF
The SG epithelium relies on a variety of signaling pathways

to maintain homeostasis. One pathway is epithelial growth
Frontiers in Immunology 09
factor (EGF) signal transduction. For TLR signal transduction,

EGF receptor (EGFR) activation has also been required for TLR3

signal transduction in the epithelial cell line and TLR-4-

mediated downstream NFkB pathway activation, although in

the cancer cell model system (132, 133). Conversely, TLR4

signaling also activates EGFR signaling, epithelial cell

proliferation, and EGFR ligand expression (134).
5.2.3 NFkB
The NFkB family is a group of transcription factors that

activate a range of inflammatory downstream targets when they

translocate to the nucleus. The NFkB pathway has been well

demonstrated to be active in pSS SGECs. Phosphorylated IKKϵ
(pIKKϵ), pIkBa, and pNFkB were highly expressed in the ductal

epithelium of small SGs in pSS patients (135). In pSS SGECs, the

expression of the NFkB inhibitor IkBa was significantly lower

than that in healthy controls (135, 136), and IkBa inhibited

NFkB activity by masking nuclear localization signals.

Stimulation of TLR2 receptors in SGECs induces IL-2

production through the NFkB pathway in pSS SGECs (137,

138). In the human SG cell line, IL-6 upregulation is regulated by

a set of pathways, including NFkB (139). Knockout of the

natural NFkB inhibitor A20 in K14+ epithelial cells (thereby

activating the constitutive pathway) is sufficient to trigger the

initial stages of pSS, including reduced saliva production and

lymphocyte invasion of SGs (54).
5.2.4 EMT
The transdifferentiation of epithelial cells into motile

mesenchymal cel ls , a process known as epithelial-

mesenchymal transformation (EMT), is essential for

development, wound healing, and stem cell behavior and

contributes pathologically to fibrosis and cancer progression

(140). In primary epithelial tumors, the interaction between

cells and the extracellular matrix is reshaped during EMT,

resulting in the separation of epithelial cells from each other

and the underlying basement membrane and the formation of

migratory mesenchymal cells that migrate to different sites with

blood flow (141). In pSS, the EMT process mainly involves

fibrosis of epithelial cells. During fibrosis, EMT responds to the

triggering of TGF-b1, and TGF-b family receptors mediate

intracellular signaling cascades that activate SMAD family

members through SMAD 2/3 phosphorylation (142). Sisto

et al. exposed cultures of healthy salivary gland epithelial cells

(SGECs) from healthy donors to TGF-b1 treatment.

Semiquantitative RT−PCR, quantitative real-time PCR and

Western blot analysis were performed to compare the related

gene and protein levels of Smad2/3/4, Snail, e-cadherin,

Vimentin and type I collagen (143). They observed higher

expression of SMAD2, 3, and 4 and Snail in TGF-b 1-exposed

SGECs than in untreated healthy SGECs at both the genetic and

protein levels. Snail is the transcriptional repressor and
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promoter of EMT. Furthermore, compared with untreated

SGEC, we found a significant decrease in the epithelial

phenotypic marker e-cadherin and a significant increase in the

mesenchymal phenotypic marker vimentin and type I collagen

in the TGF-b 1-treated samples. This finding suggests that TGF-

b1 induces EMT through the TGF-b1/SMAD/Snail signaling

pathway, further confirming the existence of EMT in SGs.

Concurrent use of the specific TGF-b1 inhibitor SB-431542 in

healthy SGECs treated with TGF-b1 significantly reduced the

fibrosis markers vimentin and type I collagen, while the

epithelial marker e-cadherin returned to levels similar to those

of untreated healthy SGECs. This further confirms that TGF-b1
plays an important role in EMT-dependent fibrosis. IL-17 and

IL-22 play an important role in EMT. Through the study of

salivary glands of pSS patients, researchers found that the

expression of the epithelial marker E-cadherin was negatively

correlated with the increase in tissue inflammation in pSS SG

specimens, while the expression of mesenchymal vimentin and

type I collagen was positively correlated. At the same time, they

assessed the effect of IL-17 and IL-22 treatment on EMT-

dependent SG fibrosis in primary human salivary gland

epithelial cells (SGECs) isolated from healthy subjects. The

results suggest that vimentin and type I collagen are

upregulated after interleukin treatment, while e-cadherin

expression is decreased, and the cooperation between IL-17

and IL-22 is required to induce EMT (144).

5.2.5 JAK/STAT
Recent results show that IFN-g specifically inhibits the early

steps of TGF-b-induced SMAD3 activation through the JAK/

STAT pathway while inducing a rapid increase in SMAD7

expression (145, 146). SMAD7 binds to the TFG-b-receptor
complex to inhibit TGF-b-mediated phosphorylation of SMAD3

and block TGF-b signaling (35), promoting SG precursor cell

differentiation and saliva production (147). Pringle et al. recently

demonstrated that SG progenitor cel ls respond to

proinflammatory cytokines through proliferation and apparent

cell death, likely through the JAK/STAT signaling pathway,

suggesting that JAK/STAT signaling pathway inhibitors may

interfere with SG epithelial homeostasis (35).

5.2.6 IFN
Microarray and real-time quantitative polymerase chain

reaction (RT-qPCR) studies showed that IFN-stimulating

genes were significantly upregulated in small salivary glands

(MSG) in pSS patients compared with healthy controls (148,

149). Studies have shown that specific type I IFN-associated

transcripts (IFIT-3) and type II IFN-associated transcripts

(GFP-2) are expressed in MSGs, and IFIT-3 is mainly located

in the duct epithelial cells of salivary glands. Gbp-2 is

simultaneously located in ductal epithelial cells in lymphocyte

aggregates and inflammatory cell infiltrates (150). Animal
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experiments demonstrated type I IFN dependence on SS

development in female NOD mice and elevated pDC (the

main producer of type I IFN) TYPE I IFN in their

submandibular gland (SMG). After injection of pDCs

consuming anti-BST2/CD317 antibodies into female NOD

mice aged 4 to 7 weeks, the lack of pDCs hindered the

development of SMG inflammation and secretion dysfunction

and significantly reduced the number of TYPE I IFN mRNA,

white blood cell count, and T and B lymphocytes in the SMG.

The expression of IL-7, BAFF, TNF-a, IFN-g, CXCL9, CXCL11,
CD40, CD40 L, Lt-a, Lt-b and NOS2 decreased (92). A study

confirmed that overexpression of both type I and type II

interferon-induced genes (IFIG) was simultaneously observed

in peripheral blood and MSG tissues of patients with pSS (13).

Recent studies have suggested that type III IFN (also known as

IFN-l) may be involved in the pathogenesis of pSS. Epithelial

IFN-l2/IL-28a expression was increased in the MSGs of pSS

patients compared with non-PSS controls (151). These results

suggest the role of the IFN pathway in the pathogenesis of pSS.

5.2.7 LAMP3/HSP70/BMP6
BMP6 is a central cytokine that induces pSS-related

secretion dysfunction. BMP6 can inhibit the water

permeability of the salivary gland epithelial cell membrane by

downregulating aquaporin 5 (AQP5), while local overexpression

of BMP6 in the salivary gland or lacrimal gland can lead to loss

of body fluid secretion in mice (152). HSP70 is an endogenous

natural TLR4 ligand (TLR4 is an upstream regulator of BMP6)

that stimulates BMP6 expression in pSS. The release of HSP70

from salivary epithelial cells may be triggered by overexpression

of lysosome-associated membrane protein 3 (LAMP3). RT−PCR

of small salivary gland RNA in pSS patients confirmed a positive

correlation between BMP6 and LAMP3 expression. However,

LAMP3 overexpression can induce BMP6 expression and a pSS

phenotype in murine monocytes. The newly discovered LAMP3/

HSP70/BMP6 axis provides an etiological model for SS gland

dysfunction and autoimmunity (153).

5.2.8 Pro-resolving mechanism
Salivary gland inflammation in pSS is generally triggered by

viral and bacterial infections in susceptible individuals, leading

to initial tissue loss. Neutrophils and M2 macrophages clear the

site of injury or infection when the decomposition mechanism

works appropriately (154). However, when this mechanism is

abnormal, dead cells are not cleared in time, leading to the

formation of their antigens, increased levels of cytokines and

chemokines, and lymphocyte infiltration (155). Specific pro-

resolving mediators (SPMs, including liposomes, resolvins,

marisins, and protectin) and their aspirin-triggered (AT)

forms act as inflammatory mediators, promoting tissue

regeneration by limiting uncontrolled inflammation while

promoting its termination (156). Odusanwo et al. found that
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the RvD1 receptor ALX/FPR2 was present in fresh, isolated

salivary gland cells and salivary-derived cell lines of 16-week-old

C57BL/6 mice in animal experiments. RvD1 receptor activation

eliminates tight junctions and cytoskeletal disruption caused by

TNF-a by modulating the phosphatidylinositol 3-kinase (PI3K)/

AkT signaling pathway, enhances the migration and polarity of

salivary epithelial cells, and promotes inflammation regression

and tissue repair in salivary epithelial cells (157). Parashar et al.

showed that the gene expression of enzymes involved in SPM

biosynthesis was changed in the submandibular glands of NOD/

ShiLtJ female mice, in which 5-LOX and 12/15-LOX were

downregulated and upregulated, respectively. Specific

predecomposition mediator (SPM) lysosomal D1 (RvD1)

promotes the breakdown of salivary gland inflammation, and

mice lacking the RvD1 receptor ALX/FPR2 exhibit congenital

and adaptive immune deficiencies in salivary glands. Female

ALX/FPR2 KO mice showed increased autoantibody production

and loss of salivary gland function with age. This suggests that

unde r l y ing SPM malad ju s tmen t may l e ad to SS

progression (158).
6 The role of key inflammatory
factors

6.1 TNF

In the salivary glands of patients with Sjogren’s syndrome,

upregulated TNF-a induces apoptosis of epithelial cells and

disrupts barrier function controlled by tight junction proteins

such as the Claudin superfamily, resulting in reduced salivary

secretion and gland atrophy (159). TNF-induced apoptosis

occurs through the binding of TNF type I receptors (TNFR1),

which contain death domains that transmit apoptotic signals

through caspase activation (160). In addition, TNFa
significantly increased the levels of caspase 3, 8, 9 and

cytochrome C, leading to a decrease in the level of Bcl-2 and

induced apoptosis of SMG-C6 cells and human SMG tissues

(161). Caspase 3 is considered the most important executor of

apoptosis, and caspase 8 initiates the death receptor pathway of

apoptosis. Caspase 9 is a key player in the mitochondrial

pathway and is involved in various stimuli. Cytochrome C is

released from damaged mitochondria and plays a key role in

inducing apoptosis. miRNAs regulate the expression of target

genes at the posttranscriptional level, and many miRNAs are

involved in the regulation of apoptosis. To determine the role of

these miRNAs in TNFa -induced acinar cell apoptosis, real-time

PCR was used to measure their expression levels after cells were

incubated with TNFa for a specified period of time. The results

showed that TNFa could induce significantly increased levels of

Mir-34a-5p, Mir-34a-3p, Mir-200b-5p and Mir-200b-3p
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simultaneously, while leT-7a-5P expression remained

unchanged (161).
6.2 Interleukin

Interleukin-2 (IL-2) and high-affinity IL-2 receptor (IL-2R)

are essential for the survival of regulatory T cells (Tregs), which

are major players in immune tolerance and prevention of

autoimmune diseases. Elevated IL-2R levels were found to be

positively correlated with SS severity, as reflected by

pathologically low salivary flow. Due to the impaired IL-2/IL-

2R signaling ability in pSS patients, the immunosuppressive

function of Tregs in SS patients was weakened, which may

induce salivary gland infiltration of lymphocytes and induce

and aggravate pSS (162).

Recent studies have found that interleukin-6 is significantly

higher in pSS patients than in HCs patients and is associated

with mononuclear cell infiltration in salivary gland tissues in

these patients (163). Salivary gland epithelial cells are the

primary cellular source of increased IL-6 secretion in these

patients. In addition, IL-6 can induce the transformation of

SGECs from morphological and phenotypic to mesenchymal

phenotypes in a dose-dependent manner. Recent studies have

shown that IL-6-treated SGECs have decreased e-cadherin

expression and increased vimentin and type I collagen

expression compared to control cells. The results confirmed

that IL-6 dysregulation may lead to EMT-dependent

fibrosis (164).

IL-7 is a 25 kDa soluble globular protein produced and

secreted by nonhematopoietic cells such as stromal cells,

epithelial cells and endothelial cells. IL-7R is widely expressed

in T and B cells, and IL-7/IL7R signaling is critical for the

development and maintenance of the entire lymphoid

compartment. In vitro experiments have shown that IL-7

induces the production of Th1- and Th2-related cytokines,

including IFNg, monocytes induced by IFNg (MIG), IFNg-
inducible 10-KD protein (IP-10) and IL-4 (165). Another in

vitro cell study showed that IL-7 stimulation induced higher

IFN-g, IL-4, IL-17 and IL-21 production in CCR9+ Th cells and

CXCR5+ Th cells (166).

Katsifis et al. showed that the expression of IL-17 protein in

salivary glands increased gradually with increasing biopsy lesion

score. Transforming growth factor b, IL-6, and IL-23 are

essential promoters of Th17 differentiation and are abundant

compared to the amounts in control tissues (167). Animal

experiments showed that IL-17 inhibited acetylcholine-induced

calcium migration and downregulated transient receptor type 1

expression in SG epithelial cells by promoting Nfkbiz mRNA

stabilization. In addition, local IL-17 neutralization in SGs

significantly reduced salivation and improved tissue
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inflammation in mice (168). These results suggest that IL-17

may lead to salivary gland dysfunction in Sjogren’s syndrome by

inhibiting TRPC1-mediated calcium movement.

IL-21, a member of the recently discovered type I cytokine

family, is mainly secreted by Tfh and Tph cells. IL-21R is

expressed in B cells and activated CD4+ T cells. IL-21

costimulates B cells with BCR to promote their differentiation

into plasma cells, which is also necessary for the formation of

normal germinal centers (GCs). The addition of IL-21 to the

coculture system blocked 90% of B cells from differentiating into

plasma cells. Animal experiments showed that IL-21R knockout

mice completely eliminated spontaneous accumulation of GC B

cells and plasma cells in blood (169). In addition, IL-21R is

required for Thef cell development. In general, IL-21R signaling

is necessary for spontaneous accumulation of B and T-cell

effector populations.
7 Treatment

As a target organ most frequently involved in pSS patients,

the impairment of salivary gland function can lead to an

imbalance in oral microecology and severe discomfort for

patients. An increasing number of treatments are available

with further research on the pathogenesis of pSS. In the

following sections, we will review the treatment of pSS from

the perspective of the immune microenvironment.
7.1 Resistance to hypoxia

As mentioned above, the salivary glands of pSS patients are

chronically hypoxic, and blocking hypoxia development may be

a potential treatment option. DMOG and FG-4497 hypoxic

stabilizers have shown promising results in inflammatory

bowel disease (IBD), reducing inflammation, reducing

intestinal epithelial cell apoptosis, and enhancing intestinal

barrier function (170–172). These may be potential drugs for

improving salivary gland hypoxia. Moreover, drugs that inhibit

PGE2, such as nonsteroidal drugs, may be equally effective in

improving salivary gland function because of their role in

hypoxia. In in vitro culture of human tubular HK-2 cells, cell

death was mediated by COX-2-dependent PGE2 production,

and the COX-2 inhibitor cefoxib prevented hypoxia-induced cell

death (173). In another study of human retinal pigment

epithelium, celecoxib also showed inhibition of HIF-1a under

hypoxia (174)
7.2 Senolytics

Senescence makes salivary gland progenitor cells lose their

ability to increase their value and differentiate, and the damaged
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salivary gland does not have enough regeneration potential to

fully restore its function. Therefore, it is beneficial for pSS SGs to

consume senescent cells and prevent the spread of senescence.

Senolytics are a group of drugs that selectively eliminate

senescent cells (175). In addition, pro-aging agents (such as

navitoclax, dasatinib, and quercetin) work by inhibiting pro-

survival pathways (such as Bcl-2 and Bcl-XL) to promote

senescent cell death, thereby rejuvenating glandular cells and

restoring glandular function (176). Selective removal of

p16Ink4a-positive cells by ganciclovir or the antiaging drug

ABT263 can eliminate senescent cells and improve the self-

renewal ability of stem cells, thereby improving salivary gland

function (177). Repressing cellular senescence contributes to the

rescue of IR-induced hyposalivation by transient activation of

Hh signaling, which is related to enhanced DNA repair and

decreased oxidative stress in SMGs (178). Agonists of the Hh

signaling pathway may be new targets for treating dryness. In

addition, in an in vitro culture experiment of SGSCs after

passage culture, the ROCK inhibitor Y-27632 inhibited the

expression of senescence-related proteins and promoted cell

proliferation (179). Another study showed that in C57BL/6

mice, loss of salivary function is closely related to cellular

senescence, and radiation-induced loss of salivary gland

function is dependent on IL-6, but IL-6 preconditioning can

also prevent senescence and salivary gland hypofunction by

enhancing DNA damage repair mechanisms (180). This

suggests that IL-6 may play a dual role in Sjogren’s syndrome.

A 6-month multicenter, double-blind, randomized placebo-

controlled trial showed no improvement in systemic

involvement and symptoms with toclizumab compared with

placebo in patients with pSS (181). Currently, only toclizumab

has been reported in the treatment of pSS with myelitis or

refractory interstitial pneumonia (182, 183). However, the

application of IL-6 in Sjogren’s syndrome remains to

be explored.
7.3 Anti-inflammatory drugs

7.3.1 Treatment of B cells and related factors
As a novel small molecule immunomodulator, iguratimod

was confirmed to inhibit B cells by reducing immunoglobulin

production and various inflammatory cytokines, including IL-1,

IL-6, IL-8, and TNF (184). Clinical studies have validated that

iguratimod improved some dryness symptoms and disease

activity in pSS patients, reducing BAFF and the percentage of

plasma cells over 24 weeks. It can also inhibit PGE2 production

by selectively inhibiting COX-2 and the NFkB pathway (185). In

animal studies, iguratimod improved inflammatory infiltration

of the submandibular gland in mice (186).

Rituximab (RTX) is a monoclonal antibody that targets

CD20 on B cells. CD20 is involved in the regulation of B

lymphocyte growth after activation. In their open study using
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RTX, Carubbi et al. (179, 187) found that RTX treatment

reversed specific focal lymphocytic sialoadenitis into a

nonspecific chronic sialoadenitis mode by depleting B cells,

resulting in complete recovery of small salivary gland structure

in patients with residual SG function. However, other studies

suggested that RTX anti-CD20 treatment might not deplete B-

cell infiltration of pSS MALT sites (188). Gong et al.

demonstrated in a mouse model that the local production of

BAFF is a key local factor in MALt-mediated anti-RTX-

depleting B cells (189). B-cell depletion can be achieved only

when anti-BAFF is combined with anti-CD20.

Belimumab inhibits soluble BAFF. A one-year open-label

trial on belimumab showed that the reduction in B-cell

activation biomarkers observed at week 28 continued to week

52, but there was no change in salivary flow, Schirmer test, or

salivary biopsy lesion scores (190). Immunobiological evidence

supports a sequential regimen of RTX prebelimumab

administration designed to target microenvironment BAFF

first to improve the success rate of subsequent rituximab

depletion therapy in MALT pathological tissues (189).

Ianalumab is a monoclonal antibody that consumes B cells

and blocks the B-cell activator receptor. In a double-blind,

placebo-controlled phase II single-center study, ianalumab

(VAY736) resulted in rapid and sustained B-cell depletion and

improved ESSDAI and ESSPRI scores, but the variability in

salivation flow rate was high enough to make any comparison

difficult (191)

In pSS mouse models, labial gland mesenchymal stem cell-

derived Exos (LGMSC-EXOS) reduced inflammatory infiltration

and restored salivary secretion in salivary glands (192). LGMSC

EXO-derived microRNA-125B affects the plasma cells of pSS by

directly binding to its target gene, PRDM1 (PR domain zinc

finger protein 1, also known as BLIMP1), which may be

developed as a target gene for the treatment of pSS.

7.3.2 Treatment of T cells and related factors
Cyclosporine A inhibits the IL-2 activity of T cells by

interfering with calcineurin required for IL-2 gene

transcription (193, 194). Hydroxychloroquine (HCQ) reduces

the production of type I IFN and blocks the activation of TLR7

and TLR9 receptors (195), thereby interfering with antigen

processing and blocking T-cell activation (196). However, in

randomized, double-blind controlled trials in patients with pSS,

HCQ did not improve disease symptoms despite inhibiting type

I IFN-induced gene expression (188). The effect of HCQ alone

on improving glandular function remains controversial.

Abatacept (CTLA4-Ig) binds to the costimulatory molecule

CD80/CD86 and blocks the binding of these molecules to CD28

on T cells (197). A recent 48-week trial of abatacept in patients

with pSS showed significant improvement in clinical and dry eye

symptoms but not in stimulated whole salivary flow (198).
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Studies have shown a reduction in GCs in lymphocytic lesions

and SG lip biopsies after abatacept treatment (199, 200), but

salivary and lacrimal gland function remained stable (201).

In a recent clinical trial, prezalumab (a nondepleting

monoclonal antibody against ICOSL) had a significant

biological effect on SG inflammation, with a significant

reduction in the number of CD4+ICOS+Tfh-like cells

compared with placebo, despite the failure of the primary

endpoint. demonstrated the biological efficacy of targeting the

ICOS/ICOS-L pathway in pSS (202).

Other researchers have mitigated pSS by blocking MHC

class II IAg7 antigen presentation in NOD mice to prevent

pathogenic T cells from recognizing their antigens. The results

showed that tetraazatricyclo-dodecane (TATD) and 8-

azaguanine (8-AZA) alleviated symptoms by improving saliva

and lacrimal gland secretion, reducing autoantibody levels, and

reducing the severity of lymphocyte infiltration in saliva and

lacrimal glands (203).

7.3.3 Other anti-inflammatory drugs
Glucocorticoids are a widely used drug for chronic

inflammatory autoimmune diseases . They bind to

glucocorticoid receptors, resulting in increased transcription of

anti-inflammatory genes, such as IL-10, and anti-inflammatory

proteins that inhibit the expression of inflammatory genes.

Studies have shown that glucocorticoid administration for 6

weeks improves saliva flow in patients but generally does not

improve histological or functional parameters of SGs (204).

However, a four-year long-term prospective study showed the

opposite result: early pSS is characterized by a decline in

salivary gland function, with or without steroid use, and a

further decline in salivary gland function over time. Reduced

salivary gland flow was not associated with corticosteroid

use (205).

Leflunomide (LEF) inhibits pyrimidine biosynthesis and

decreases naive and memory CD4+ T-cell and B-cell

proliferation and NFkB activation (206, 207). In a phase II

clinical trial involving 15 patients with early active PSS for 24

weeks, LEF treatment did not improve salivary flow (208).

However, the combination of leflunomide and HCQ has been

reported to increase salivary gland unstimulated significantly

and stimulate total salivary production of pSS at certain time

points (209, 210).

Drugs that treat pSS through the NF-kB signaling pathway,

such as the novel synthetic DMARD drug iguratimod and the

Syk signaling blocker GS-9876 (the Syk signaling pathway is

upstream of IKK activation, and its blocking improves the

release of NF-kB by its inhibitory complex), are currently in

clinical trials. Their effect on the glands has yet to be tested.

In mouse models, Harim Tavares Dos Santos et al. found

that hemolysin D1 (RvD1) and its aspirin-triggered AT-RVD1
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effectively reduced inflammation and restored saliva flow before

and after the onset of pSS. Resolvins are special proresolving

mediators (SPMs) that can actively regulate inflammation.

Furthermore, the expression of various SPM receptors (ALX/

FPR2, BLT1, and CMKLR1) was found in human salivary

glands, which may be a potential target for treating pSS

patients (156).

CD40 is a transmembrane type I glycoprotein composed of

277 amino acids that belongs to the tumor necrosis factor

(TNF) gene superfamily. The ligand CD40L/CD154 is a type II

transmembrane protein and exists in a soluble (scd40L) or

membrane-bound form. It is present on activated T cells, B

cells, endothelial cells and epithelial cells (190). Compared with

the control group, NOD mice treated with the CD40 DNA

vaccine showed reduced lymphocyte infiltration and

increased salivary secretion in salivary glands. At the same

time, the expression levels of TNF-a and IL-6 in salivary

glands decreased, the number of dendritic cells and plasma

cells decreased, and the ANA level decreased (211). Iscalimab,

an anti-CD40 antibody, has been shown to be safe and

well tolerated at all doses in phase I clinical studies,

with no clinically relevant changes in any of the safety

parameters, including no evidence of thromboembolic events

(212). However, its role in pSS patients remains to be

further evaluated.

PSS patients have elevated levels of IL-7 and its receptor in

salivary glands. Animal experiments showed that intraperitoneal

injection of a blocking antibody against IL-7 receptor a chain

(IL-7Ra) for 3 weeks in 10-week-old female NOD mice

significantly improved characteristic SS pathology, including

reduced salivary secretion and infiltration of leukocytes in the

submandibular gland (SMG). Anti-IL-7r a treatment

significantly reduced the amount of TNF-a in SMGs and

increased the levels of Claudin-1 and aquaporin 5, two

molecules essential for normal salivation (213). In phase I

clinical trials of the monoclonal antibody GSK2618960 against

interleukin-7 receptor a subunit (CD127), GSK2618960 was

well tolerated and blocked IL-7 receptor signaling when fully

targeted (214). This may be a new target for the future treatment

of Sjogren’s syndrome.
Conclusion

Oral salivary gland reduction is one of themost common clinical

manifestationsof pSS, adisease thatdirectly affects exocrine function.

The onset of the disease is genetically susceptible in cells, viruses, and

other environmental factors under stimulation through chronic
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hypoxia, cell senescence, local inflammation, and the production of

autoantibodies and other pathways in salivary gland cells, so that

their function is impaired. This paper systematically reviews the

characteristics and regulatory pathways of the salivary gland

microenvironment, hoping that more targeted treatments can be

developed to restore gland function and improve dry mouth

symptoms through an in-depth understanding of the local

immune microenvironment.
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