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inflammasome: An executioner
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Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
Radiotherapy is one of the mainstream treatment modalities for several

malignancies. However, radiation-induced injury to surrounding normal

tissues limits its efficacy. The NLRP3 inflammasome is an essential

mechanism of innate immunity that reacts to challenges from endogenous

danger signals and pathological microbes. A growing body of evidence has

demonstrated a key role of NLRP3 inflammasome in the pathogenesis of

radiation-induced tissue injury. Despite accumulating evidence, the potential

value of the NLRP3 inflammasome in the management of radiation-induced

tissue injury is not adequately recognized. We conducted a literature review to

characterize the relationship between NLRP3 inflammasome and radiation

injury. By analyzing recent evidence, we identify NLRP3 inflammasome as

one of the executioners of radiation-induced injury, since it responds to the

challenges of radiation, induces cell pyroptosis and tissue dysfunction, and

initiates non-resolving inflammation and fibrosis. Based on these concepts, we

propose early intervention/prevention strategies targeting NLRP3

inflammasome in a radiation context, which may help resolve imperative

clinical problems.

KEYWORDS

NLRP3 inflammasome, inflammasome activation, radiation injury, therapeutic target,
ROS, pyroptosis
Introduction

Radiotherapy is an effective treatment modality for various types of tumors.

However, radiation-induced injury to normal tissues is an unavoidable adverse effect

of radiotherapy. Despite ongoing advances in radiotherapy techniques that enable precise

targeting of lesions, tissues adjacent to the irradiated field are liable to be affected by

ionizing radiation. Typical examples of the adverse effects of radiotherapy include

occurrence of carotid stenosis following head and neck radiotherapy, cardiovascular

injury after thoracic radiotherapy, and gastrointestinal injury after pelvic and abdominal
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irradiation (1–6). In addition, indirect damage caused by the

out-off field effects effect (capability of inducing similar

responses in non-irradiated tissues) of radiation cannot be

overlooked. For example, patients receiving radiotherapy to

the head and neck region were reported to have a higher

incidence of diarrhea (7). Similarly, irradiation of rat tongue

was found to induce small intestine injury (8). These adverse

effects may necessitate reduction in RT doses, limiting tumor

control (9). Therefore, in-depth characterization of the

mechanism of radiation injury and exploration of more

effective management strategies are key imperatives.

The pathophysiological processes of different stages of

radiation injury are well recognized. Initially, radiation causes

DNA damage in cells, resulting in double-strand DNA breaks

(DSBs) (10). Radiation-induced damage to DNA may occur

directly via interacting with DNA molecules and causing DSBs,

or indirectly by generating free radicals, such as reactive oxygen

and nitrogen species (ROS, RNS), to cause base modification,

and eventually leading to DSBs (11). The occurrence of DSBs

induces the DNA-damage response (DDR), which initiates DNA

repair by activating the MRN (Mre11-Rad50-Nbs1)-ATM

(ataxia telangiectasia mutated)-H2AX (histone variant 2AX)

signaling (11, 12). The transducer protein ATM, as well as

ROS and other inflammatory stimuli, are capable of activating

nuclear factor kappa-B (NF-kB) in a variety of manners, in order

to better prepare cells for the stress (10, 13). DDR can also

induce apoptosis or senescence if the damage cannot be repaired,

meanwhile heightening immune surveillance for later

scavenging of the remains (11). Moreover, other forms of cell

death may still occur, irreparably damaged cells acutely generate

robust amounts of pro-inflammatory factors, attracting and

activating immune cells to the irradiated area. These

accumulated inflammatory cells may potentiate tissue injury,

establishing non-resolving inflammation and aberrant tissue

remodeling, resulting in tissue injury (14–17). The intricate

molecular mechanisms of radiation injury are yet to be fully

elucidated. However, recent evidence suggests that ionizing

radiation induces activation of inflammasome which functions

as the “executioner” for radiation, mediating certain kinds of

tissue injuries.

Inflammasomes are macromolecular complexes that react to

challenges such as exogenous or endogenous danger signals and

pathological microbes, and mediate the maturation and release

of interleukin-1b (IL-1b) and interleukin-18 (IL-18) as well as

induction of pyroptotic cell death. The activation patterns and

downstream responses of inflammasome make it an essential

part of innate immunity, acting against various types of

infections and injuries. Beyond host defensive response, recent

studies pointed out the participation of several types of

inflammasomes, including nucleotide-binding oligomerization

domain (NOD)-like receptors, pyrin domain-containing protein

3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes,

in the pathology of radiation-induced normal tissue injury (18).
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Among all inflammasomes so far identified, the nature of

NLRP3 inflammasome is the most well characterized, which can

be activated through several different mechanisms, namely the

canonical, non-canonical and alternative activation (19). The

canonical activation of NLRP3 inflammasome requires a two-

step process, including a priming signal and an activation signal.

Priming involves various pathogen-associated molecular

patterns (PAMPs) (like bacterial LPS), damage-associated

molecular patterns (DAMPs) (like eATP, uric acid, mtDNA,

etc) and their recognition by TLRs, or through cytokines (like IL-

1 and TNF-a) and their signalings (20). Priming leads to the

activation of NF-kB, thereby increasing the transcription of

inflammasome components (like NLRP3) and pro-IL-1b (18,

21, 22). The activation signals are most commonly induced by

NLRP3 agonists, such as K+ efflux, Ca2+ signals, ROS,

mitochondrial dysfunction and its released contents, and

lysosomal rupture (also the released cathepsins). Upon

activation, NLRP3 oligomerizes into a macromolecular

inflammasome complex via recruiting adaptor protein

apoptosis-associated speck-like protein containing a CARD

(ASC) and effector molecule pro-caspase (cysteinyl aspartate

specific proteinase)-1 (23–25). Activated inflammasome

mediates the maturation of IL-1b and IL-18, as well as induces

pyroptosis by cleaving its effector gasdermin-D (GSDMD) (26,

27). The non-canonical NLRP3 inflammasome activation

entails human caspase-4/5 and murine caspase-11. Once

lipopolysaccharide (LPS) from Gram-negative bacteria enters

the cytoplasm, the aforementioned inflammatory caspases will

undergo autoproteolysis and further activate GSDMD to form

membrane pores, thereby inducing K+ efflux and triggering

NLRP3 (19, 28). The alternative NLRP3 inflammasome

activation shares no similarity with its canonical or non-

canonical counterparts, which follows a complex TLR4–TRIF–

RIPK1–FADD–CASP8 signaling (29).

The connections between radiation injury and inflammasome

are particularly intriguing since regulation of inflammasome has

been extensively studied and applied, suggesting a possibility to

manipulate the complex in the context of radiation injury. For

example, early intervention against radiation-induced

inflammasome may alleviate tissue injury, deterring the

establishment of chronic inflammation (30).

In the quest for more effective management strategies of

radiation injury, this review seeks to make sense of the underlying

mechanism of radiation-induced inflammasome activation and to

explore the characteristics of such significant pathology.

Current understanding of
radiation-induced NLRP3
inflammasome activation

As previously described, ionizing radiation induces DSBs,

DNA damage response, and oxidative stress. DSBs and DDR
frontiersin.org
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upregulate multi-functional signaling pathways such as NF-kB,
leading to intensified immune response. Free radicals such as

ROS and RNS are the major effectors of radiation damage which

mediate the oxidation of biomolecules such as DNA, protein,

lipids, and the regulation of several signaling pathways. With

aggravation of tissue injury, some stressed and dying cells release

contents that denote tissue injury to initiate damage-control-

responses (10). In the development of these processes, a variety

of signals are detected by the sensor protein NLRP3, leading to

its activation.

Radiation-induced oxidative stress leads
to NLRP3 inflammasome activation

It has long been accepted that ionizing radiation causes

tissue injury by disrupting the balance of reduction/oxidation

system, characterized by over-production of free radicals and the

induction of oxidative stress. ROS and RNS are the main types of

free radicals produced on exposure to ionizing radiation, which

are normally counteracted by the antioxidant system (10).

Upon irradiation, ROS is immediately produced from water

radiolysis (31, 32). Moreover, ROS also possesses a self-amplifying

cycle. Byperturbing themitochondrial electron transfer chain (ETC),

ROS along with other free radicals can further inflict mitochondrial

dysfunction, leading to enhanced generation of ROS (10). More

importantly, ROS iswidely accepted as a potent stimulant forNLRP3

inflammasome, which also serves significant roles in radiation

biology. Radiation-induced reductive/oxidative enzymes (such as

NOX, COX-2, NOS, and LOXs) produce ROS in a continuous

manner, which repeatedly perturbs mitochondria and persistently

provides stimulants, thereby maintaining NLRP3 inflammasome

activation long after exposure to ionizing radiation (23, 31–35).

According to a study investigating the links between oxidative

stress and NLRP3 inflammasome, increased ROS concentration

results in the dissociation of thioredoxin-interacting protein

(TXNIP) from oxidized thioredoxin-1 (Trx-1), followed by

interaction of TXNIP with NLRP3, resulting in activation of the

latter (36, 37). Moreover, as mentioned above, impaired

mitochondria subsequently release more ROS into the cytosol,

binding to NLRP3 and promoting its activation (38, 39).

It has been demonstrated that radiation directly activates the

NLRP3 inflammasome inhumanmonocyte-like cells (THP-1cells)

in a ROS-dependent manner. Eliminating ROS with N-

acetylcysteine (NAC) was found to ameliorate NLRP3 activation

and the release of IL-1b and IL-18 in vitro (40).Moreover, in in vivo

conditions, radiation-induced NLRP3 inflammasome activation is

accompanied by tissue oxidative stress, characterized by increased

ROS levels, either generated by radiation or from perturbed

mitochondria, leading to a hyper-oxidative state. Clearing free

radicals with antioxidants, or through inducing antioxidant

signaling (like Nrf2 signaling), can ameliorate inflammasome

activation and alleviate animal radiation response (8, 41–43).

Research above reveals that ROS-induced activation of NLRP3
Frontiers in Immunology 03
inflammasome plays a critical role in the initiation and

development of radiation-induced injury, thus NLRP3 may be a

therapeutic target for radiation-induced injury.

Radiation injury-derived DAMPs activate
the NLRP3 inflammasome

In addition to ROS, other DAMPs are also generated in

irradiated tissues. Ionizing radiation is known to inflict tissue

injury and induce cell death, which is more constantly observed

in actively dividing cells such as hematopoietic and epithelial

cells (44). Lytic cell death leads to the release of cell contents,

some of which serve as DAMPs and mediate the initiation of

inflammation (17).

In recent studies, uric acid was shown to serve as a mediator

of radiation-induced NLRP3 inflammasome activation in

immune cells, mainly through endocytosis and damaging the

lysosome membrane, resulting in the release of cathepsin B into

cytosol, then triggering NLRP3 inflammasome (24, 44). Other

DAMPs, such as extracellular ATP and mitochondrial DNA

(mtDNA), may also contribute to this pathology. ATP released

from damaged cells binds to the P2X7 receptor on immune cells,

thereby inducing pannexin-1-dependent K+ efflux as well as the

influx of extracellular DAMPs into the cytosol, leading to

activation of NLRP3 inflammasome (23, 24, 39). Contents

released from damaged mitochondria also may possess NLRP3

activating property, especially oxidized mtDNA, which exhibits

a powerful stimulatory effect (23, 37, 45). These findings suggest

that IR-induced damage may activate inflammasomes via a

variety of mechanisms.

The main effectors of this process are immune cells, such as

macrophages, dendritic cells, NK cells, T cells, and B cells, which

lead to the secretion of pro-inflammatory factors, cell death, and

release of cell contents (44, 46). Unsuccessful removal of these

byproducts triggers the inflammatory cascade leading to tissue

injury and chronic inflammation. A schematic illustration of the

current understanding and potential mechanisms (eATP and

mtDNA) of radiation-induced NLRP3 inflammasome activation

is presented in Figure 1.

It is worth mentioning that the exact mechanisms of

radiation-induced inflammasome activation may vary in

different tissues and cells, thus may lead to divergent

conclusions. Hence, we sorted and summarized the studies

that investigated this process to better illustrate the differences

in the physiological processes (Tables 1, 2).
Damage caused by radiation-
induced inflammasome

The main manifestations of radiation injury are often two-

fold. Firstly, in the acute stage, the irradiated tissues exhibit

typical inflammatory responses. The clinical examples include
frontiersin.org
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FIGURE 1

Mechanism of radiation-induced NLRP3 inflammasome activation. In the case of intestinal epithelial cells and infiltrating macrophages, irradiated
cells initiate inflammatory responses and eventually undergo cell death. Adjacent cells may also be affected by inflammation. Specifically,
extracellular PAMPs and DAMPs act as priming signals, binding to and inducing TLR signaling, thereby promoting the activation of NF-kB and
the transcription of inflammasome components and pro-IL-1b. The activation signals entail ROS, K+ efflux, release of mitochondrial DNA,
lysosomal rupture and cathepsin release, etc. ROS is produced from the radiolysis of water, redox enzymes, and dysfunctional mitochondria.
Lysosomal membrane may be destabilized by particulate or crystalline structures (like uric acid crystal) and then lead to lysosomal rupture,
releasing cathepsin B. Mitochondrial dysfunction gives rise to the release of mtDNA and cardiolipin. These activation signals stimulate NLRP3
inflammasome and lead to its oligomerization. Activated NLRP3 inflammasome mediates the maturation of IL-1b and IL-18, as well as induces
pyroptosis by cleaving GSDMD. The downstream effects of NLRP3 inflammasome activation are characterized by the production of cytokines,
chemokines, and recruitment of immune cells, followed by cell death. Of notes, the contribution of mtDNA and extracellular ATP to radiation-
induced inflammasome has not yet been confirmed, therefore they are illustrated with fading arrows.
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TABLE 1 In vivo studies involving radiation-induced NLRP3 inflammasome activation.

Animal Radiation
dose

Irradiated
tissue

Observation
period

NLRP3 activation-wise results Possible connections Reference

Male Wistar
rats

7.5 Gy/day
for five
consecutive
days

mouth 14 days 1. Increase in the NLRP3 and ASC
protein levels and mRNA expression in
irradiated tongues
2. Expression of pro-caspase-1 mRNA
increased with irradiation followed by
decreased protein levels
3. Increase in NF-kB mRNA and protein
levels in the cytosol and nuclei of
irradiated rat tongues

1. Increased mitochondrial LPO levels,
mRNA, and protein levels of GPx, GSSG/
GSH ratio, decreased GRd expression
2. Increased iNOS and i-mtNOS
expression
3. Reduction in the expression of
respiratory complexes I, III, and IV and
the ATPase as well as a reduction in
mitochondrial mass
4. Increase in autophagy/mitophagy
markers Atg12, Beclin-1, and Nix in
irradiated tongues

(41)

C57BL/6
mice (6 to 8
weeks old)

2, 4, 16 Gy Lung 1, 4, 8 weeks 1. NLRP3 inflammasome was activated in
mouse lungs by irradiation starting from 2
Gy, the extent of expression was not
correlated with radiation dose
2. NLRP3 activation was continued for 8
weeks until sacrifice

1. NLRP3 activation was mainly found in
the airway, rather than in the lung
parenchyma

(40)

Human
biopsy

Irradiated
human artery

156 weeks
(median) post-
radiation therapy

1. Apoptosis and NLR signaling pathways
are the most differentially expressed in
irradiated human arteries
2. Marked elevation of genes encoding IL-
1a and IL-1b, caspase-1 and NLRP3

1. Irradiated arterial biopsies had a marked
increase in pro-caspase-1 and caspase-1

(30)

male Wistar
rats (3-
month-old)

7.5 Gy/day
for five
consecutive
days

mouth 14 days 1. Increased protein level of NF-kB
subunit p65 in the nucleus and cytosol,
with increased expression of IL-1b, TNFa,
and COX-2
2. Increased NLRP3 protein level in
intestine, followed by decreased pro-
caspase-1 and increased IL-1b

1. Increased ROS and NO levels in
intestine tissue
2. Intestine show reduced expressions of
respiratory complexes I, II, III and ATP
synthase
3. decreased activity of antioxidant: GPx,
GRd, Mn-SOD, with increased GSSG/GSH
ratio

(8)

Adult female
BALB/c
mice

10 Gy abdomen 6-15 days 1. On day 6, NLRP3, caspase-1, IL-1b and
IL-18 mRNA levels were elevated in
Intestinal cell, accompanied by increased
caspase1 activity
2. IL-1, IL-8, MCP-1, TNF-a mRNA
levels were elevated

1. Increased apoptosis and DNA damage
(measured by g-H2AX expression) were
detected
2. IR increases SOD activity and
concentration of GPx, GR and increases
GSSG/GSH ratio in Intestinal cells on day
6

(47)

WT C57BL/
6J male mice

9.5 Gy Whole-body
radiation

3 hours and 30
days

1. Cleaved-caspase-1 (p10) and IL-
1b protein levels were induced in spleen
cells 3 hours after irradiation, with a mild
increase in NLRP3 protein level
2. Staining for cleaved-caspase-1 in spleen
marginal zone cells were elevated 3 hours
after radiation
3. Nlrp3 knockout was associated with
significantly improved survival at 30 days
after irradiation

1. Cleaved-caspase-1 were hardly observed
in the white pulp cells of the spleen (rich
in lymphocytes)

(48)

Male 5–7-
week-old
CD-1 mice,
Male
(caspase1
-/-) mice,
Male 7-
week-old
C57BL/6J
mice

0.5, 1, 2, 4 Gy Whole-body
radiation

1, 2, 4, 6 hours
or 1, 3, 7, and 14
days

1. A dose-dependent increase in cleaved-
caspase-1(p10) levels were examined in
spleen cells 1 day after radiation but was
not detectable at 1 or 4 hours after
radiation
2. 2 Gy radiation induced increases of
cleaved-caspase-1 sustained for 7 days and
returned to baseline levels on day 14
3. PI-Annexin V double positive spleen
cells were increased 4 hours after 2 Gy
radiation, reached highest level on day 1
and returned to baseline on day 14

1. plasma uric acid levels were increased at
2, 6 hours, and 1 day after radiation
exposure
2. Blocking uric acid generation before and
after 2 Gy radiation resulted in the
decreased inflammasome activation

(44)

(Continued)
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radiation-induced pneumonitis (40), oral mucositis (41), and

enteropathy (55, 56). The late stage of radiation injury is often

related to chronic inflammation and fibrotic pathology, such as

pulmonary fibrosis (40), osteoradionecrosis of the jaws (which is

also considered a fibrotic lesion) (57, 58), and radiation-induced

vasculopathy (30, 59, 60). The two-stage clinical manifestations

suggest the existence of a dynamic and progressive pathology, in

which NLRP3 inflammasome may have certain contributions.
Excessive cell death and tissue
dysfunction

Cell death is a common result of inflammasome (over)

activation. Regulated-cell-death, like apoptosis and pyroptosis,

was discovered to play a part in the pathogenesis and
Frontiers in Immunology 06
progression of radiation-induced injuries (34, 48). Pyroptosis

is well known to lie downstream of inflammasome activation

and is executed by GSDMD. Inflammasome-activated caspase-1

(also other inflammatory caspases like -4, -5, -11) cleaves

GSDMD into N- and C-terminal fragments. GSDMD-N then

translocate to inner leaflet of membrane and bind to

phospholipids, oligomerize in membranes to form pores,

allowing the release of cell contents like mature IL-1b, IL-18,
TNF-a and HMGB1, followed by pyroptotic cell death. GSDMD

pores may further enhance NLRP3 inflammasome activation by

promoting K+ efflux, forming a positive-feedback (61–63).

Moreover, with research in cell death continuing to abound, it

has been recognized that apoptosis may also be induced by

inflammasomes. On the one hand, in cells with low expression of

GSDMD, caspase-1 initiates apoptosis either through activating

Bid (an extrinsic apoptosis pathway mediator) or through
TABLE 1 Continued

Animal Radiation
dose

Irradiated
tissue

Observation
period

NLRP3 activation-wise results Possible connections Reference

4. Caspase-1 deficient mice show
increased surviving spleen cells 1 day after
2 Gy radiation, as well as lower
proportion of PI-Annexin V double
positive cells

C57BL/6
female mice
(8 weeks
old)

75 Gy Left lung 2 and 3 weeks 1. The expression of NLRP3
inflammasome-related genes
(Nlrp3, Il1a, Il-1b, and Casp1) in lung
tissue were increased 3 weeks after
radiation

(46)

C57BL/6
female mice
(6 weeks
old)

75 Gy Left lung 21 days Increased mRNA levels of inflammasome
related genes (Nlrp1, Nlrp3, Il-1b,
and Casp1) in irradiated lung tissue

(49)

Male C57/6
mice

7.2 Gy,
delivered in 5
days

total body
irradiation

14 days 1. IR increased mRNA and protein levels
of IL-1b and NLRP3 in thymus and
spleen
2. Strong increases of IL-1b protein levels
in intestine tissue as well as serum

(50)

C57BL/6
mice,
NLRP3
macrophage-
specific
knockout
mice

14 or 16 Gy Whole-body
radiation

7 days 1. 16 Gy radiation: all NLRP3-deficient
mice died on day 6, 20% of WT mice
survived until day 15
2. 14 Gy radiation: on day 15, 75% WT
mice and 50% NLRP3-deficient mice
survived

1. Higher level of ROS generation in the
colon of NLRP3-deficient mice than in
that of WT mice
2. NLRP3-deficient mice had a lower
expression of barrier protein (ZO-1, E-
cadherin, calaudin-2) than WT
3. cGAS-STING activation: elevated IFN-b
levels in serum of NLRP3-deficient mice
compared to WT. With increased p-TBK-1
and p-IRF3 protein levels in colon tissue

(51)

3-month-old
C57BL/6
mice

40 Gy The left thigh
skin

8 weeks 1. mRNA and protein levels of NLRP3,
caspase-1, and IL-1b were significantly
increased in irradiated skin tissue

1. Increased serum 8-OHdG levels and
skin gH2AX expression levels were
detected 4 weeks after radiation
2. radiation causes increase in serum ROS
levels as well as 4-HNE and 3-NT in skin
tissue

(42)
fro
ROS, reactive oxygen species; LPO, lipid peroxidation; GPx, glutathione peroxidase; GSSG, glutathione disulfide; GSH, glutathione; GR, glutathione Reductase; iNOS, inducible nitric oxide
synthase; i-mtNOS, mitochondrial iNOS; BALF, bronchoalveolar lavage fluid; MDA, malondialdehyde; SOD, superoxide dismutase; Mn-SOD, manganese-dependent superoxide
dismutase; PI, propidium iodide; p-TBK-1, phosphorylated TANK binding kinase 1; p-IRF3, phosphorylated interferon regulatory factor 3; 8-OhdG, 8-hydroxy-2’-deoxyguanosine; 4-HNE,
4-hydroxynonenal; 3-NT, 3-Nitrotyrosine.
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processing caspase-7, rather than inducing pyroptosis (28). On

the other hand, ASC specks may also recruit and activate

caspase-8 and undergo apoptosis (64). It has also recently been

demonstrated that apoptosis may enhance NLRP3

inflammasome activation by cleaving pannexin-1 to induce K+

efflux (65). To recapitulate briefly, both pyroptosis and apoptosis
Frontiers in Immunology 07
lie downstream of inflammasome activation, depending on the

expression of GSDMD, and both may contribute to further

inflammasome assembling (28).

Cell death caused by inflammasome activation may present

diverse results among various types of tissues. In macrophages, for

example, radiation acutely activates NLRP3 inflammasome
TABLE 2 In vitro studies involving radiation-induced NLRP3 inflammasome activation.

Cell line Radiation
dose

Observation
period

NLRP3 activation-wise results Possible connections Reference

THP-1 cells 2 Gy 1, 4, 6 hours 1. 2 Gy radiation increased protein expression levels of
NLRP3, cleaved-caspase-1, IL-1b and IL-18
2. ROS production was increased in 1, 4 and 6 hours
after radiation treatment

1. NAC (ROS inhibitor)
treatment significantly decreased
IL-18 and IL-1b protein levels in
the supernatants of the THP-1
cells

(40)

primary BMDMs from
C57BL/6J mice

5, 10, 20 Gy 3 or 24 hours 1. In 24 hours, 10 and 20 Gy radiation increased
pyroptosis in a dose-dependent manner, NLRP3
knockout prevented radiation-induced pyroptosis
2. In 24 hours, 5 Gy radiation significantly induced the
release of IL-1b, IL-18 and IFN-g, 10 and 20 Gy
radiation additionally increased the production of TNF-
a, IL-1a, IL-12p40 and MCP-1
3. In 3 hours, 10 and 20 Gy radiation induced caspase-
1 cleavage
4. In 3 hours, no significant changes were observed in
mRNA levels of NLRP3 inflammasome-related genes
(Nlrp3, caspase-1 or IL-1b)

(48)

pulmonary
microvascular
endothelial cell, flow
adapted (Mimicking in
vivo vasculature)

①g radiation:
0, 0.25, 0.5, 1
Gy
②low LET
proton
radiation: 1
Gy
③high LET
proton
radiation:
0.25, 0.5 Gy
④Mixed Field
Gamma and
Proton
Radiation:
0.75 Gy

24 hours 1. 1 Gy low LET proton radiation significantly
increased NLRP3 and ICAM-1 expression levels
2. 0.25 Gy or 0.5 Gy high LET proton radiation
significantly increased NLRP3 and ICAM-1 expression
levels
3. Mixed field gamma and proton radiation exposure
induced robust increases in both NLRP3 and ICAM-1
expression

1. 0.25 and 0.5 Gy g radiation
causes mRNA levels of
antioxidant gene, HO-1, NQO1,
and GSTM1
2. IR significantly increases
ICAM-1 expression in a dose-
dependent manner
3. Mixed field radiation exposure
induced extensive cell death

(52)

microvascular brain
endothelial cells

2, 2.5, 5, 7.5,
10 Gy

24 hours 1. NLRP3 mRNA and protein expression level was
induced 24h post IR, with no linear dose dependency
2. IR higher than 2 Gy causes pyroptosis with dose-
dependency
3. IR higher than 2.5 Gy significantly increases the
mRNA level of caspase-1 in 24 hours, as well as
elevated the caspase-1/pro-caspase-1 ratio
4. IR higher than 5 Gy causes increase of ASC protein
level, and 7.5 Gy for GSDMD protein level
5. IR higher than 5 Gy up-regulated mRNA and
protein levels of IL-1b and IL-18 in 24 hours, up-
regulation of cleaved-/pro-interleukin ratio in higher
than 5 Gy for IL-18, and in higher than 2.5Gy for IL-
1b

(53)

Human umbilical cord
blood-derived
mesenchymal stem cells

0, 2, 4, 8 Gy 24 hours 1. 4 Gy radiation increased NLRP3 mRNA and protein
levels
2. radiation dose-dependently increased IL-1b mRNA
and protein levels

1. the knockdown or inhibition of
Sirt1 significantly enhanced
radiation-induced IL-1b
expression.

(54)
fro
low/higher linear energy transfer (LET) protons (3–4 or 8–10 keV/µm, respectively); IR, ionizing radiation; THP-1, human monocytic leukemia cell line; BMDM, bone marrow-derived
macrophages.
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signaling both in vivo and in vitro. Low dose (<5 Gy) radiation

stimulates macrophages to secrete proinflammatory molecules

while high dose (>10 Gy) promotes its pyroptosis (48), which

may justify immunecell loss andmyeloid suppressionafter extreme

radiation exposure or high-dose RT (66–68). Moreover, the

epithelial tissues, such as oral mucosa, gut mucosa, as well as lung

epithelium, are particularly susceptible to ionizing radiation.

Inflammasome activation and pyroptosis have been observed in

these tissues after exposure to radiation (47, 48, 53, 69). Excessive

cell death in epitheliummay lead to the breakdown of barriers such

as skin, gut mucosal barrier, and alveolar epithelial barrier.

Compromised barriers allow pathogenic microbes to invade

inflammatory tissue, exacerbating immune response and tissue

damage (17, 70). LPS from Gram-negative bacteria may also

contribute to the inflammasome cascade through non-canonical

NLRP3 inflammasome activation, thereby leading to even

deteriorated conditions (29). Equally important, immoderate cell

death in vascular endothelial cells causes vascular dysfunction,

leading to increased permeability, impaired vascular tone, and

altered blood homeostasis, aggravating already severe damage

caused by radiation (10, 53).

In the background of radiation injury, cell death should be

contained within a reasonable range to minimize normal tissue

injury, since excessive cell death leads to tissue dysfunction of

various kinds, adding to more unwanted events. Targeting solely

against apoptosis or pyroptosis, however, may not fulfill the

designated goal, since the two cell death machineries compete to

be performed (64). Given that both pyroptosis and apoptosis lie

downstream of inflammasome activation, it is therefore preferable

to target this upstreampro-inflammatory signaling. Inotherwords,

early preventive measures are necessary to prevent irreversible

damage to cells, which will be discussed in the later section.

Onset of chronic radiation injury

Inflammasome activation enables the maturation and release

of IL-1b and IL-18, thus functioning as an immune regulator in

radiation-induced injury. Both IL-1b and IL-18 are multi-

functional immune modulator and inflammatory amplifier,

mediating the initiation of innate and adaptive immune

response (17, 71). Cascaded inflammation may lead to excessive

production of numerous proinflammatory cytokines (like IL-1,

IL-6, TNF-a, etc) and chemokines, together with protracted

radiation stimulation, may give rise to the establishment of

chronic inflammation and tissue injury (14, 72).

It is widely accepted that the chronic phase of radiation-

induced tissue injury involves damage repair and tissue

remodeling. However, when accompanied with persistent

oxidative stress and non-resolving inflammation, damaged

tissues may not heal properly and result in fibrotic lesions (14,

73). Radiation-induced fibrosis (RIF) is characterized by

increased collagen deposition, poor vascularity, and scarring

(57). The current understanding on the development of RIF
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entails the augment of TGF-b signaling, vascular injury and

hypoxia, chronic inflammation, and finally, the activation

of myofibroblasts that mediates aberrant tissue remodeling (74).

The contributions ofNLRP3 inflammasome to various types of

fibrosis are gradually recognized (75). Mainly, IL-1b and IL-18

possess the capability to directly induce collagen synthesis in

fibroblasts, or via interacting with SMAD signaling and promote

epithelial-mesenchymal-transition, as well as inducing TGF-b
through activating NF-kB (75, 76). NLRP3 is also demonstrated

to directly participate in fibrosis by augmenting TGF-b signaling,

independently of its inflammasomeproperty. Thoughmost studies

on the pro-fibrosis property of inflammasome were conducted on

themodel of chronic kidneydiseaseor liverfibrosis (77, 78),wemay

well extrapolate the potential contribution of inflammasome toRIF

based on these understandings.

TGF-b, a prominent pro-fibrosis mediator, which activates

fibroblasts through the SMAD signaling, is in the spotlight of

studies on RIF (79, 80). The production and the function of TGF-

b relate to inflammasome activation in several respects. As is

discussed afore, ROS is acutely and persistently produced upon

irradiation, which not only activates NLRP3 inflammasome, but is

also discovered to promote the production and enhance the

signaling of TGF-b (81). Moreover, the inflammasome-

mediated vascular injury and dysfunction may help establish a

hypoxic environment, which further augments the production of

free radicals. A hypoxic state also leads to increased HIF-1a

signaling and promotes various pro-fibrotic mediators (74).

Potentiated local inflammation as well contributes to fibrogenic

processes (14).

Further research is recommended to unravel the exact role of

NLRP3 inflammasome in RIF, as regulatory strategies of the

complex are widely studied and practiced. In case there is a

strong connection between NLRP3 inflammasome and RIF, the

latter may be prevented by targeting the former.

Although we have stressed on the detrimental aspects of

inflammasome-induced response, the beneficial aspects of

inflammation should not be neglected. For instance,

inflammasome-induced cell death may assist the clearance of

severely damaged cells. Moreover, the attracted immune cells also

serve to protect tissues from barrier breakdown and potential

infections, and scavenge dead cells and initiate tissue repair and

remodeling. They only have a detrimental effect if the balance of

inflammation is out of control. Hence, in-depth characterization of

these machineries and designing of strategies specifically against

undesired injuries is of vital importance.
Targeting inflammasome in
radiation injury

As previously explained and analyzed, NLRP3 inflammasome

plays a key role in radiation injury, as it is activatedby radiation, and

then mediates at least a certain range of injuries. In other words,
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radiation is the one that gives the order, it is the inflammasome that

responds and kills—functioning as the executioner. Fortunately,

there exist ample options to target NLRP3 inflammasome and

restrain it from causing tissue injuries.

Radiotherapy dose is directly related to the achievement of

desired local-regional control of cancer. However, severe adverse

effects of radiation are the main reason for reducing the

radiotherapy dose, which is especially the case when the

tolerance of “organ at risk” is taken into account (9, 82). For

example, if the unwanted effects (indicative symptoms or

pathological changes for endpoints) of organ at risk arrive too

early, the designated RT dose may not be accomplished, leading

to increased risk of recurrence. Moreover, even in the absence of

acute symptoms, radiologists need to be cautious when

considering the late adverse effects of organs that are sensitive

to radiation, restraining the efficacy of radiotherapy. Hence,

strategies for counteracting the adverse effects of radiation

should be explored in order to achieve a higher upper limit of

radiotherapy dose.

We here propose the necessity of early intervention against

inflammasome in radiation injury. The definitions of the adjective

“early” are two-fold, comprising both macroscopic and

microscopic perspectives. Firstly, by referring to early

intervention at the clinical level, we intend to emphasize the

active prevention of radiation injury, rather than passively dealing

with end-stage problems. Studies focused on other NLRP3-

associated clinical problems, such as post-myocardial infarction

fibrosis and autoimmune diseases, have discovered that inhibition

of NLRP3 inflammasome in the early phases of diseases may

reduce the occurrence of severe, late-stage lesions (83, 84).

Moreover, at the molecular level, the activation and downstream

effects of NLRP3 inflammasome are sequential, consecutive

processes, which suggests that if the inhibition is designated at

the upstream of the pathway, such as transcriptional (priming)

repression, sensor protein inhibition, and removal of stimulants,

the entire signalling cascade may be suppressed. For example,

inhibiting the activation of inflammasome signalling was shown to

reduce macrophage pyroptosis (48), as well as preserve the

integrity of the epithelial barrier (50, 73), thereby reducing the

occurrence of tissue dysfunction.
Conventional regulation strategies and
early intervention

Conventional targeting against NLRP3 inflammasome

include stimulant removal, transcriptional regulation (41, 49,

50, 54), activation inhibition (84, 85), effector protein (namely

caspase-1) targeting (86), and product targeting (mostly against

IL-1b and GSDMD) (30, 87, 88). The representative therapeutics

based on these concepts are briefly summarized in Table 3.

Early intervention against NLRP3 inflammasome may lead to

better outcomes. When solely considering the manipulation of
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NLRP3 inflammasome, it is noteworthy that these strategies may

yield various results, as they are designed for different stages of

the signaling cascade. First and foremost, elimination of ROS

with antioxidants leads to suppression of the entire pathway

accompanied by reduction in free radical-induced oxidative

damage, which is the most desired situation (8, 52, 99).

Moreover, modifying the NLRP3 inflammasome via

transcriptional regulation or direct inhibition of activation

(suppressing NLRP3 protein function) may generate similar

outcomes, as they both prevent the oligomerization of the

inflammasome complex. However, the rest of the mentioned

strategies bear extra unwanted effects, since different types of

inflammasomes share an identical set of downstream signaling.

For example, inhibition of caspase-1 may interrupt the proper

functioning of other inflammasomes (such as AIM2 and NLRC4

inflammasomes) as well, increasing the susceptibility to infection.

Specific targeting of IL-1b may lead to increased incidence of

infection too, as observed in the CANTOS trial (86, 100). Playing

downstream of inflammasome activation, pyroptosis may be

precluded via disrupting the upstream signaling. However,

manipulation of the effector for pyroptosis, GSDMD, may not

redeem the dying cells, as other programmed cell death pathways

may substitute pyroptosis leading to cell death (64). To

summarize these machineries, it is obvious that the more

upstream the interventions are aimed at, the greater the

outcomes may yield. Our proposition on early intervention

against NLRP3 inflammasome is illustrated in Figure 2.
Transcriptional and
translational regulation

NF-kB is a multi-functional regulator that controls diverse

cellular processes like immune response, proliferation and cell

survival, etc. Various PAMPs, DAMPs, and some endogenous

molecules may give rise to NF-kB activation through triggering

TLRs, TNFR1 and IL-1R signaling (101). In respect of radiation-

induced response, NF-kB upregulates diverse pro-survival (such

as antioxidant enzymes, anti-apoptotic proteins and growth

factors) and pro-inflammatory (various cytokines, chemokines

and adhesion molecules) genes expression (102), thus exhibiting

either protective and damaging effects.

NF-kB contributes to activation of NLRP3 inflammasome by

providing NLRP3 components and pro-IL-1b. Targeting NF-kB
signaling may disrupt priming and ameliorate NLRP3

inflammasome activation. Targeting IRAK4, a mediator of

TLR-NF-kB signaling, may partially suppress NLRP3

transcription (24). Resveratrol, a natural non-flavonoid

polyphenolic as well as an antioxidant, is shown to mitigate

radiation-induced NF-kB activation through regulating SIRT1

(50, 54). Similarly, Rosiglitazone, an agonist of PPARg, is able to
suppress the expression and release of NLRP3, caspase-1, and,

IL-1b through attenuating NF-kB signaling (35, 103).
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Post-transcriptional regulation of NLRP3 ismainly mediated by

a group ofmiRNAand long non-codingRNA (lncRNA).miR-133b,

miR-20b, miR-223 and others mediate the silencing of the NLRP3

gene. lncRNAs interact with miRNAs and can either promote or

attenuate inflammasome signaling depending on tissues and

pathologies (23, 83). Moreover, NLRP3 inflammasome has also

been targeted post-translationally through regulating its

phosphorylation, ubiquitination, and their reverse processes. For

instance, targeting NLRP3 phosphorylase like JNK1 and promoting

NLRP3 degradation via deubiquitylation inhibitor (23, 86) has been

applied in inflammatory diseases, and is also a potential therapeutic

strategy in radiation injury.
Modulation of NLRP3 inflammasome
through intersectional pathways

NLRP3 inflammasome has a complex regulatory mechanism,

which may interact with key proteins involved in other aspects of

cellular physiology. It is therefore possible to regulate NLRP3

inflammasome through modulating these intersecting pathways.

The competition of DDX3X between NLRP3 inflammasome

and stress granules (SGs) provides an option to regulate NLRP3

inflammasome through modulating the formation of the latter.

DDX3X is a necessary component of the NLRP3 inflammasome,

which is also involved in the initiation of SGs assembly. After

formation of SGs, DDX3X is sequestered within the complex,
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leaving NLRP3 inflammasome inactivated (104–106). Such

interaction is promising for designing therapeutic strategies.

For instance, pharmacological induction of SGs was shown to

protect cochlea cells against ototoxic drugs challenge (107), and a

similar strategy may be explored and applied in radioprotection

as well.

Autophagy is also known to interact with NLRP3

inflammasome, and therefore, may serve as a potential

regulatory strategy for radiation-induced inflammasome as

well. Autophagy plays a particularly important role in the

recycling and removal of damaged cell components (108). In

the context of radiation injury, the clearance of damaged

mitochondria through autophagy or mitophagy (a form of

autophagy for selective removal of dysfunctional or redundant

mitochondria) may avoid NLRP3 inflammasome activation (83,

108–110). Correspondingly, in a recent study, induction of

autophagy was found to ameliorate radiation-induced

enteropathy by promoting phagocytosis of the NLRP3

inflammasome, which further confirmed our hypothesis (111).
Novel therapeutics

Dysbiosis of resident microbiota may contribute to enhanced

immune response (112, 113). Moreover, barrier breakdown in

radiation injury may allow the translocation of pathogenic

microbes and increased infiltration of immune cells, which
TABLE 3 Conventional therapeutic strategies for regulating the NLRP3 inflammasome.

Medication Application in disease therapy Mechanism Stage Reference

anakinra CAPS and rheumatoid arthritis IL-1R antagonist Clinical
trial

(86)

Canakinumab CAPS, atherosclerotic diseases, arthritis and gout IL-1b-neutralizing antibody (86)

rilonacept CAPS decoy receptor that binds both IL-1b and IL-1a (89)

Tranilast allergy, asthma and hypertrophic scars binds the NACHT domain of NLRP3, affects the
oligomerization (without affecting the ATPase activity)

(20)

VX-740 and
VX-765

murine osteoarthritis, delayed-type hypersensitivity reversible caspase-1 inhibitor Pre-
clinical

(20, 86)

Glyburide efficiently prevent endotoxic-shock-induced lethality mechanism unknown, though functions downstream of the
P2X7 receptor and upstream of NLRP3

(90)

MCC950 CAPS and EAE blocks ASC oligomerization;
directly binds to the NACHT domain and changes NLRP3
conformation

(86, 90–92)

BHB Muckle–Wells syndrome, familial cold autoinflammatory
syndrome and urate crystal–induced peritonitis

preventing potassium efflux and reducing ASC
oligomerization and speck formation

(90, 93)

JC171 delayed the progression and reduced the severity of multiple
sclerosis

interfering interaction with ASC (86)

CY-09 CAPS and type 2 diabetes directly binds to NLRP3 NACHT domain and inhibits
NLRP3 ATPase activity

(83)

OLT1177 degenerative arthritis directly binds to NLRP3 and inhibits ATPase activity (94)

ibrutinib ischemic brain injury, metabolic inflammation and SCD a BTK inhibitor, suppresses NLRP3 activation and IL-1b
release

(95–97)

Disulfiram LPS-induced sepsis blocking GSDMD pore formation (98)
fro
CAPS, cryopyrin-associated periodic syndromes; VX-740, Pralnacasan; VX-765, Belnacasan; MCC950, CP-456773; EAE, experimental autoimmune encephalitis; BHB, b-hydroxybutyrate;
SCD, sickle cell disease; BTK, Bruton tyrosine kinase.
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further exacerbates tissue damage (39, 114–116). Inspired by these

observations, researchers have utilized commensal microbiota

against radiation injury and obtained fruitful outcomes.

Microbiota transplantation has been shown to alleviate radiation

injury of the intestinal and oral mucosa; the results also indicated

that transplanted microbiota can regulate immune response and

further influence the outcomes of irradiated tissue (117, 118).

Though the exact relationship between radiation injury and

NLRP3 inflammasome has not yet been illustrated, fecal

microbiota transplantation was found to inhibit the expression of

inflammasomes components (NLRP3, ASC, caspase-1, and IL-1b)
in rat brain, thus ameliorating stress-induced depression-like

behaviors (119, 120). The effectiveness of fecal microbiota

transplantation in alleviating radiation injury and suppressing

NLRP3 inflammasome points towards a connection between

commensal microbiota and radiation-induced inflammasome.

Efforts should be made to better comprehend their interactions

and design pertinent therapeutic strategies.
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Mesenchymal stem cell (MSC) therapy has emerged as a

promising therapeutic modality for multiple diseases

considering their convenient isolation and culture, low

immunogenicity, regenerative and multiple differentiation

abilities, and potent immunomodulatory capacities. MSC

therapy has been shown to attenuate radiation-induced brain

damage by suppressing microglia pyroptosis, reducing ROS

production, and NLRP3 inflammasome activation (121). Also,

modified MSCs serve as a practical assistant in gene therapy for

radiation injury, which efficiently deliver target genes to the

injured sites and alleviate radiation injury (122). However, MSCs

may transform into malignant cells; hence, it is necessary to

evaluate potential side effects and to prevent them in advance.

Exosomes have been applied to the treatment of radiation

injury as vectors for therapeutic agents (123). Moreover, recent

evidence also suggests that the secretions of exosomes interact

with inflammasome pathology (124, 125), which may be

involved in MSCs-mediated therapies for radiation
FIGURE 2

The necessity of early intervention against radiation-induced injury. The NLRP3 inflammasome acts as an executioner in radiation-induced
tissue injury. Upon activation, it triggers a cascaded reaction, which indicates that interventions targeting upstream of the signaling may yield the
most desirable outcomes. In comparison, the results of downstream intervention may be accompanied with unwanted effects. Red arrows
indicate unwanted effects of strategies suppressing pyroptosis, caspase-1, or IL-1b. Blockade of pyroptosis may lead to activation of apoptosis or
other death pathways. Also, caspase-1 is required for the proper function of other inflammasomes, and blockade at this point may shut down
the entire inflammasome signaling, leaving the organism vulnerable to infection. Suppressing IL-1b also increases the risk of infection. Both
Figures 1, 2 were created with BioRender.com.
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injury (126). As a therapeutic carrier, exosomes are considered

safer than cell therapy because of their lower immunogenicity.

Moreover, exosomes have almost no cytotoxicity, better storage

stability, antiserum aggregation ability, and biological activity

(123). Based on the above-mentioned advantages, exosomes are

potential promising carriers for delivery of various therapeutic

loads, such as siRNA and miRNAs against inflammasome

components, to the desired target sites.
Conclusion and future perspectives

As discussed in this review, NLRP3 inflammasome is one of

the executioners of radiation-induced tissue injury, which

mediates a range of common radiation-induced illnesses. With

ongoing advances in the research on radiation-induced

inflammasome, the prospects of targeting inflammasome as a

preventive measure against radiation injury appear practicable.

However, there are some unsolved questions in this field. For

example, the concepts this review proposes mainly focuses on

the detrimental aspects of the inflammasome in radiation injury;

however, the inflammasome is also responsible for tumor

immunity, pathogen clearance, and initiating tissue repair in

some cases (100). More importantly, due to the diverse

expression patterns of the NLRP3 inflammasome, its exact

roles among different forms of injuries may vary. Proper

targeting of inflammasomes should be elaborate and precise,

which is why there is a need for further in-depth research.

Radiotherapy is an effective treatment modality for various

malignancies in clinical practice. Nonetheless, the side effects of

ionizing radiation restrict its use to some extent. This is particularly

the case when high doses are required for the treatment of advanced,

unresectable malignancies. More importantly, the currently used

measures for protecting normal tissue are generally passive and are

typically implemented after the development of injuries. In between

prevention,mitigation, and treatment, there is no doubt that the first

one stands out as the most ideal strategy (127).

However, the reality of radioprotectants is frustrating.

According to the 2008 ASCO guidelines for the clinical use of

radiotherapy protectants, only dexrazoxane, doxorubicin,

amifostine, and palifermin are recommended under several

specific circumstances (128). This is because of the inherent

challenges in the development of an effective and harmless

radioprotectant. Till date, no clinical trials have been conducted

in the context of radiation-induced inflammation, suggesting the

inadequacy of research in this field.
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Based on the analysis of the mechanism and function of the

NLRP3 inflammasome in radiation injury, this reviewmay provide

insights for developing better therapeutic strategies against

radiation-induced injury to normal tissues, as well as highlight

the critical role of this machinery. In-depth characterization of the

physiology of radiation injury and its counteracting response is

crucial for the further advancement of radiotherapy.
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22. Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes
through the inflammasomes. Nat Immunol (2012) 13:325–32. doi: 10.1038/ni.2231

23. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation:
toward a better understanding of complex mechanisms. Cell Discovery (2020) 6:36.
doi: 10.1038/s41421-020-0167-x
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Glossary

DSBs double-strand DNA breaks

ROS reactive oxygen species

RNS reactive nitrogen species

DDR DNA-damage response

MRN Mre11-Rad50-Nbs1

ATM ataxia telangiectasia mutated

H2AX histone variant 2AX

NF-kB nuclear factor kappa-B

IL-1b interleukin-1b

IL-18 interleukin-18

NLRP3 nucleotide-binding oligomerization domain (NOD)-like receptors,
pyrin domain-containing protein 3

AIM2 absent in melanoma 2

PAMPs pathogen-associated molecular patterns

DAMPs damage-associated molecular patterns

ASC apoptosis-associated speck-like protein containing a CARD

caspase cysteinyl aspartate specific proteinase

GSDMD gasdermin-D

LPS lipopolysaccharide

ETC electron transfer chain

TXNIP thioredoxin-interacting protein

Trx-1 thioredoxin-1

NAC N-acetylcysteine

mtDNA mitochondrial DNA

RIF Radiation-induced fibrosis

SGs stress granules

MSC mesenchymal stem cell
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