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T cell receptors (TCRs) recognize peptide antigens bound to major

histocompatibility complex (MHC) molecules (p/MHC) that are expressed on

cell surfaces; while B cell-derived antibodies (Abs) recognize soluble or cell

surface native antigens of various types (proteins, carbohydrates, etc.). Immune

surveillance by T and B cells thus inspects almost all formats of antigens to

mount adaptive immune responses against cancer cells, infectious organisms

and other foreign insults, while maintaining tolerance to self-tissues. With

contributions from environmental triggers, the development of autoimmune

disease is thought to be due to the expression of MHC risk alleles by antigen-

presenting cells (APCs) presenting self-antigen (autoantigen), breaking through

self-tolerance and activating autoreactive T cells, which orchestrate

downstream pathologic events. Investigating and treating autoimmune

diseases have been challenging, both because of the intrinsic complexity of

these diseases and the need for tools targeting T cell epitopes (autoantigen-

MHC). Naturally occurring TCRs with relatively low (micromolar) affinities to p/

MHC are suboptimal for autoantigen-MHC targeting, whereas the use of

engineered TCRs and their derivatives (e.g., TCR multimers and TCR-

engineered T cells) are limited by unpredictable cross-reactivity. As Abs

generally have nanomolar affinity, recent advances in engineering TCR-like

(TCRL) Abs promise advantages over their TCR counterparts for autoantigen-

MHC targeting. Here, we compare the p/MHC binding by TCRs and TCRL Abs,

review the strategies for generation of TCRL Abs, highlight their application for

identification of autoantigen-presenting APCs, and discuss future directions

and limitations of TCRL Abs as immunotherapy for autoimmune diseases.
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Introduction

To date, over 80 autoimmune diseases have been described

(1), ranging from organ-specific (e.g., pancreas-specific Type 1

diabetes (T1D) and thyroid gland-specific Grave’s disease) to

systemic conditions (e.g., rheumatoid arthritis (RA) and

systemic lupus erythematosus (SLE)). Curative approaches for

autoimmunity are lacking. Despite diverse manifestations and

autoantigen sources, these autoimmune reactions typically share

stages of initiation, propagation, and for some, periods of clinical

remission (2).

Although environmental factors are thought to be required

as triggers for disease, predisposition to autoimmunity most

often reflects inherited factors, with MHC (human leucocyte

antigen (HLA) in humans) alleles conferring the highest risk (3,

4). Typically, class I (MHC-I or HLA-I in humans) genes encode

proteins that present peptides from intracellular antigens to CD8

+ T cells, and class II (MHC-II or HLA-II in humans) genes

encode proteins that present extracellular/endosomal antigens to

CD4+ T lymphocytes (5). A number of particular HLA-II (i.e.,

HLA-DR, -DQ, and -DP) alleles have been identified as critical

risk factors for particular autoimmune diseases. For example,

>90% celiac patients carry HLA-DQA1*05:01/HLA-

DQB1*02:01 (6, 7), and >95% narcoleptic patients carry HLA-

DQB1*06:02 (8, 9). In addition, the HLA-DRB1*04:01/*04:04

genotypes are risk alleles (odds ratios are ∼4.14 and ∼3.17,
respectively) for RA (10) and the HLA-DRB1*15:01-

DRB5*01:01 haplotype (up to 60% among Caucasians) is

linked to multiple sclerosis (MS) (11). How these polymorphic

MHC proteins interact with autoantigens and how autoantigen-

MHC presenting APCs interact with autoreactive T cells are

central questions in the field.

HLA-II+ APCs generate peptide/HLA-II (p/HLA-II)

complexes (12, 13) that interact with cognate TCRs on CD4+

T cells, which orchestrate downstream autoimmune reactions (9,

14–16). Therefore, targeting autoantigen-HLA-II complexes on

the APC surface with soluble TCR or TCRL reagents enables a

specific way to investigate the initiation and propagation of

autoimmunity. Here, we review current approaches and future

directions for generating and using TCRL (also known as TCR

mimic) Abs as research tools and potential therapeutics for

autoimmune diseases.
Comparisons of TCRL Abs
with TCRs

Abs share many similarities with TCRs in terms of diversity

of the receptor repertoire and specificity for antigen recognition

(17, 18). Abs, especially monoclonal Abs (mAbs) are widely used

in research, diagnoses and therapies as specific immune-

targeting agents (19), whereas TCRs have not been widely
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used (20). This is in large part due to the intrinsic difference

in their antigen binding affinities. TCRs have micromolar

affinities for cognate p/MHCs (21), whereas Abs have

nanomolar affinities and interact with their specific antigens

with >100x higher binding energies (22).

Each TCR contains two polypeptide chains: a and b,
whereas each Ab consists of two heavy (H) and two light (L)

chains. An Ab has two identical antigen-binding fragments (Fab,

an H/L dimer) and a crystallizable fragment (Fc, from the H

chain) that links the two Fab arms (22), yielding increased

avidity for antigen. The Fab H/L heterodimer, like the TCR a/
b heterodimer, uses two sets of complementarity-determining

regions (CDRs) to directly contact the cognate antigen. The

CDR regions are also referred to as the fragment variable (Fv)

region. CDR3 of both Fabs and TCRs are hypervariable, with key

amino acid residues governing antigen binding specificity.

Residues within the germline-encoded CDR1 and CDR2 are

less variable (17). Ab engineering usually focuses on CDRs of

Fab or Fv heavy and/or light chains. To modify both chains

using one gene cassette, a covalent link between the heavy and

light chain fragments can be used, yielding single-chain Fv

(scFv) for example.

As natural p/MHC receptors, TCRs have scientific, diagnostic

and therapeutic potential, particularly if used as tetramers or

higher order multimers to increase avidity (23), or if engineered to

improve target affinity or avidity (23–25). Affinity improved and/

or multimeric TCRs and TCR-engineered T cells have been used

to target and clear tumor cells presenting cancer-related p/MHC-I

(26). However, these reagents have seldom been used for

autoantigen-MHC-II targeting, likely for several reasons. First,

compared to TCRs recognizing foreign or neoantigens, MHC-II/

autoantigen-reactive TCRs tend to have lower affinity, which

typically allows their escape from thymic negative selection but

activity for autoimmune responses (27); this affinity window is a

poor starting point for affinity improvement by TCR engineering.

Second, improved TCR affinity is often compromised by

unpredictable cross-reactivity (28, 29), causing off-target staining

during auto-APC characterization.

To resolve these issues stemming from natural TCRs,

investigators developed TCRL mAbs by combining the high

affinity of a mAb with the capacity to recognize p/MHC

complexes (20). Some TCRL mAbs target intracellular

antigens presented by MHC-I on tumor cells and have been

applied as immunotherapeutics for cancers (30, 31).

Crystallization studies have determined the structures of five

p/MHC-I-specific TCRL mAbs in Fab formats binding to their

p/MHC-I targets (32–35). Although CDR regions of all five

TCRL Fab molecules interact with the peptide region of p/MHC-

I complexes, only two (34) show the canonical docking geometry

of TCRs with p/MHC (20). Thus, the TCR docking geometry

that elicits TCR signaling (36) is not an absolute requirement for

TCRL mAb development. Recently, the co-crystal structure of an

MHC-II-restricted TCRL Fab bound by a gliadin peptide/HLA-
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DQ2.5 (DQA1*05:01/DQB1*02:01) complex has been

determined (37). This Fab has picomolar affinity, adopts the

canonical TCR docking geometry (38), and demonstrates

desirable properties for p/MHC-II staining and specific T cell

inhibition relevant to celiac disease (37).
Generation of TCRL mAbs targeting
p/MHC-II complexes

Naturally occurring Abs rarely mimic TCR specificity for p/

MHC antigen(s); therefore, the TCRL feature of an Ab is

typically obtained through target-driven in vitro selection and/

or Ab engineering. Advances in hybridoma technology (39),

recombinant p/MHC synthesis (40), and binder selection via

phage or yeast display (41, 42) have enabled protein engineering

of TCRL mAb. As other reviews have summarized TCRL mAb

generation (20, 30, 31), we focus on the available approaches

relevant to TCRL mAbs specific for p/MHC-II.

Initially, mice or rats immunized with p/MHC-II complexes

expressed by cells or as soluble, recombinant proteins were used

to produce a candidate B cell pool from which B cell hybridomas

(immortal B cell lines producing candidate mAbs) were

generated. Although TCRL specificity was possible (43, 44),

most often, p/MHC-II-specific enrichment and screening were

required to identify hybridomas producing TCRL mAbs. To

date, >20 p/MHC-II-specific TCRL mAbs have been generated
Frontiers in Immunology 03
using this approach (20, 45, 46) and about half are relevant to

autoimmune diseases (Table 1). However, challenges persist: 1)

limited B cell clonal candidates with peptide specificities and

more clones with monomorphic MHC specificity due to the

framework differences of MHC-II alleles or MHC-II from

different species (immunization of HLA-transgenic mice (49)

may help enrich for peptide-specific responses, see discussion

below); 2) low throughput of hybridoma production and labor-

intensive screening for p/MHC-II binding; 3) non-human origin

of the Ab itself, limiting their therapeutic use. Notably, a human

B cell hybridoma expressing a TCRL mAb recognizing an HLA-

A2-derived self-peptide bound to HLA-DR1 was generated

using peripheral blood mononuclear cells (PBMC) (59).

To avoid the limitations of hybridoma approaches, phage

display has been applied by several groups to screen Ab libraries

for p/HLA-II binders (49, 52, 56) (Table 1). A typical library

contains 108-1011 phage particles, each displaying an Ab variant

on the surface. Phage display is achieved by covalently fusing Ab

fragments, such as Fab and scFv, with a phage coat protein

through molecular cloning (41, 70). Screening the library for

binders to p/HLA-II relies on a process called “panning” or more

recently “biopanning” (70). This process includes multiple

rounds of negative selection (e.g., against irrelevant p/HLA-II)

and positive selection (e.g., against target p/HLA-II). Designing

Ab libraries in phage allows selection frommouse (49) or human

(37, 52, 53, 56) antibody sources. To enrich for peptide-specific

Abs in the mouse endogenous repertoire prior to construction of
TABLE 1 TCRL mAbs targeting autoimmunity-related p/MHC-II complexes.

mAb Clone Species Format Method Disease/Model T cell antigen/MHC References

B-7-1, B-18-7, C-34-72 Mouse Full-length Ab Hybridoma MS/EAE model MBP87-99/I-A
s (47)

S.1.6 Mouse Full-length Ab Hybridoma MS MBP/DR7 (48)

R.1.D12 Mouse Full-length Ab Hybridoma MS MBP/DRw11 (48)

MK16 Mouse Fab Phage display MS MBP218-231/DR15 (49)

12A Mouse Full-length Ab Hybridoma RA HC gp-39263-275/DR4 (50, 51)

2E4, 1F11, 2C3, 3A3, 3H5 Human Fab Phage display MS MOG35-55/DR15 (52)

G3H8 Human Fab; reconstructed full-length Ab Phage display T1D GAD65555-567/DR4 (52, 53)

mAb287 Mouse Full-length Ab Hybridoma T1D/NOD mice Insulin B9-23/I-A
g7 (54, 55)

FS1 Mouse Full-length Ab Hybridoma Diabetes/NOD mice p63/I-Ag7 (46)

106, 107 Human scFv; reconstructed full-length Ab Phage display Celiac Disease glia-a1a/DQ2.5 (56)

mAb757 Mouse Full-length Ab Hybridoma T1D/NOD mice Insulin B9-23/I-A
g7 (57)

3-5 Mouse Full-length Ab Hybridoma T1D/NOD mice 2.5HIP/I-Ag7 (58)

206, 3.C11 Human scFv; reconstructed full-length Ab Phage Display Celiac Disease glia-a2/DQ2.5 (37)

Selected other TCRL mAbs mentioned in this mini review

Y-Ae Mouse Full-length Ab Hybridoma Self-antigen Ea/I-Ab (43, 44)

UL-5A1 Human Full-length Ab Hybridoma* Self-antigen HLA-A2105-117/DR1 (59)

I-5 Mouse Full-length Ab Hybridoma Self-antigen CLIP/DR3 (60)

D-4, G-32, and G-35 Mouse Full-length Ab Hybridoma Model antigen MCC/I-Ek (61, 62)

3M4E5 and 3M4F4 Human Fab Phage Display Tumor antigen NY-ESO-1/A*0201 (34)

13.4.1 Mouse Fab Phage Display Viral antigen HA255-262/H-2Kk (63)
fr
*Human hybridoma. Note: See (20, 30, 31, 45, 46, 64–69) for a more comprehensive list of other TCRL mAbs, including anti-p/MHC-I reagents.
ontiersin.org

https://doi.org/10.3389/fimmu.2022.968432
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.968432
a phage-Fab library, the Fugger group immunized HLA-DR15

(DRA*01:01/DRB1*15:01) transgenic mice using DR15

molecules in complex with a myelin basic protein (MBP)

peptide, leveraging the inherent DR15 tolerance of the model

to skew the Ab response towards specificity for the MBP peptide

(49). HLA-transgenic animal immunization followed by

screening yielded a series of TCRL reagent findings, including

the MBP/DR15-restricted TCRL mAb MK16 as mentioned (49),

invariant chain peptide/HLA-DR mAb in another study (60),

and an MHC-I-restricted TCRL mAb in additional work (63).

Human Fab or scFv libraries built and expressed in phage have

been mostly from large naïve repertoires (37, 52, 53, 56), which

likely harbor TCRL candidates, albeit rare. Using stringent phage

panning strategies, the Reiter and the Løset groups isolated DR-

restricted (52, 53) and DQ-restricted (37, 56) human TCRL

mAbs, respectively (Table 1). As these human Fabs or scFvs were

not raised or matured against the target p/HLA-II, their affinities

were suboptimal. Reconstructing a full-size Ab using the TCRL

Fab or scFv increased the binding strength (37, 53). However,

further affinity maturation may be useful. Recently, Frick et al.

suggested a strategy to improve binder affinity via multiple

rounds of phage-Ab library optimization and selection (37).

Combining phage display with yeast display is particularly

useful for developing high affinity TCRL mAbs (71). Since first

developed (42), yeast display technology has evolved, allowing

surface display of monomeric or dimeric protein scaffolds (72,

73). Thus, either scFv or Fab identified from a phage-Ab library

can be affinity matured using the yeast platform. Advantages of

yeast display include 1) eukaryotic gene transcription and

protein expression machinery for appropriate Ab folding; and

2) quantitative flow cytometry-based screening, ensuring high

throughput selection for high-affinity Abs (74, 75).
TCRL mAbs as research tools and
therapeutics for autoimmune
diseases

Characterization of autoantigen-
presenting APCs using TCRL mAbs

Presentation of autoantigen by APCs, especially professional

MHC-II+ APCs, such as dendritic cells (DCs), macrophages

(MФs), and B cells, is critical for CD4+ T cell activation and

differentiation into helper T effector (Teff) or suppressive T

regulatory (Treg) cells during autoimmune responses. An

imbalance of Teff and Treg functions upon autoantigen

recognition is believed to drive the loss of tolerance, with

subsequent autoreactive T cell responses and production of

autoantibodies (2). Therefore, the study of MHC-II+

autoantigen presenting cells (auto-APCs) is fundamental for
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understanding disease pathogenesis and may lead to novel

immunotherapies. Murine models allow direct evaluation

of tissue-resident and circulating APC subsets and enable

genetic modifications of these APCs to assess their

autoreactive functions. For example, using an experimental

autoimmune uveitis (EAU) mouse model, Lipski et al.

analyzed disease-related infiltrating MФs and resident retinal

microglia by tissue immunostaining and cytometry-based

immunophenotyping of isolated cells (76). In another model,

single-cell sequencing was used to characterize tissue-infiltrating

APCs in autoimmune diabetes (77). However, discoveries in

murine models are not easily transferable to human diseases

(78, 79).

Auto-APC identification using human samples is a preferred

approach for clinical relevance. Early studies with human

samples focused on APC enumeration in PBMC and biopsies.

Increased frequency of circulating DCs was implicated in

regulation of antigen presentation by islet cells and activation

of autoreactive CD4+ T cells (80, 81). Recently, a novel approach

was developed using PBMC to identify autoantigen-specific

memory B cells, which are potent MHC-II+ APC (82).

Therapeutic strategies focusing broadly on APC function have

been developed, such as B cell depletion in SLE (83) and

tolerogenic DC adoptive therapy (84). However, the key to the

optimization of APC-directed immunotherapy is identification

of autoantigen specificity.

Due to their high affinity and the ease with which they can be

further engineered, TCRL mAbs have gradually replaced TCR-

derived reagents in research and therapeutic development for

autoimmunity. TCRL MK16, described above, identified

microglia/MФs rather than astrocytes as the predominant

auto-APCs in MS lesions (49). Human cartilage glycoprotein

(HC gp-39, residues 263-275) represents a candidate T cell

autoantigen in RA and can be presented by the RA

susceptibility allele, HLA-DR4 (DRA*01:01/DRB1*04:01) (50,

85). TCRL mAb 12A specific for gp-39 (263-275)/DR4 identified

autoantigen-presenting DCs in synovial tissue of DR4+ patients,

indicating local presentation of gp-39 in inflamed joints (50, 51).

Recently reported are several TCRL mAbs, specific for different

gluten-derived peptide epitopes in complex with the celiac

disease risk allele, HLA-DQ2.5. These complexes are known to

be recognized by CD4+ T cells that drive disease (16, 38). The

TCRL mAbs identified plasma cells, an unexpected APC, as the

most abundant cell type presenting gluten peptides in gut

biopsies from celiac patients (37, 56).

Although murine models cannot directly identify auto-APCs

that function in human diseases, applying TCRL mAbs in these

models may shed mechanistic light on disease pathology. For

example, with specificity for a model antigen, moth cytochrome

c-derived peptide (MCC, residues 95-103) bound by mouse

MHC-II I-Ek, TCRL mAb determined that a minimum of

200–400 p/MHC-II complexes per APC was necessary for T-

cell stimulation (61). This number is at least an order of
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magnitude higher than the minimum requirement of p/MHC-I

complexes for licensing cytolytic activity of human CD8+ T cells

(86, 87).
Therapeutic potential of TCRL mAbs in
autoimmune diseases

TCRL mAbs have not been intensively investigated as

therapeutics for autoimmune diseases, although their pre-

clinical examination in cancers (30, 31) suggests therapeutic

potential. In cancer, TCRL mAbs can target intracellular tumor

antigens presented by cell surface MHC-I molecules, broadening

the original oncoantigen spectrum targeted by Ab-based

therapy. However, a limitation of TCRL mAb in this setting is

low TCRL Ab coverage per cell due to MHC-I downregulation

on tumors (30). In contrast, MHC-II is typically up-regulated on

auto-APCs in autoimmunity. Further, the tight linkage of

particular autoimmune diseases with particular MHC-II alleles

(3) provides defined allelic targets for TCRL mAbs. Although
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depletion of pathology-driving cells, as in cancer therapy, is a

therapeutic option in autoimmunity, TCRL mAb therapy

typically aims to reestablish healthy immune balance among

cells like CD4+ Teff and Treg cells by non-depleting mechanisms

(Figure 1). Here, we propose a few options for future TCRL

autoimmune therapeutics, based on advances in TCRL mAb

cancer therapies (30, 31) and Ab therapies for autoimmune

diseases (19, 88).

Antibody treatment can induce target cell apoptosis (89) or

(via Ab Fc region) lead to antibody-dependent cell-mediated

cytotoxicity (ADCC), antibody-dependent cellular phagocytosis

(ADCP), or complement-dependent cytotoxicity (CDC) (88, 90)

(Figures 1A, B). For example, anti-CD20 mAbs, FDA-approved

for RA and primary progressive MS (91, 92), appear to work by

depletion of CD20+ B cells, including those that present

autoantigen to T cells and give rise to autoantibody-producing

plasma cells. However, unclear long-term benefits and side

effects (e.g., lack of vaccine Ab response) of broad B cell

elimination are concerns (88). Alternatively, one may consider

engineering a bispecific Ab (BsAb), coupling specificity of anti-
FIGURE 1

Therapeutic potential of TCRL mAbs in autoimmune diseases. TCRL mAbs specific for autoantigen/HLA complexes can elicit therapeutic effects
via depleting (pink) or non-depleting (cyan) mechanisms. (A) TCRL mAbs either block autoantigen presentation or induce apoptosis of target
cells. (B) TCRL mAbs induce Fc-mediated cytotoxicity through various effector mechanisms. (C, F) Bispecific antibodies targeting autoantigen/
HLA complexes and either a surface marker of target cells or a pathogenic-related cytokine; (D) TCRL mAb–toxin conjugates induce auto-APC
depletion by payload effector molecules, including cytokines, toxins or radioactive substances. (E) TCLR mAb-cytokine conjugates guide the
delivery of immunomodulatory cytokines (e.g., IL-10, TGF-b) to auto-APCs for tolerance induction. (G) TCRL scFv fragments are reformatted
into CARs for auto-APC targeting and depletion. (H) CD4+CD25+ TCRL CAR Treg cells suppress Teff function and induce tolerance. (This figure
was created with BioRender.com).
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2022.968432
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.968432
CD20 and anti-autoantigen p/MHC for targeted depletion of

pathology-related B cells (Figure 1C). In NOD mice, an

autoimmune diabetes model, TCRL mAb alone were reported

to delay diabetes onset, likely due to selective deletion of auto-

APCs (54, 55); detailed mechanism and systemic immune

impact await further investigation.

Non-depleting TCRL mAbs, for example those with low FcR

binding (93, 94), provide additional avenues for therapeutic

interventions. TCRL mAbs can limit autoantigen-MHC

accessibility and reduce activation of cognate T cells

(Figure 1A). This has long been the rationale for evaluating

TCRL mAb specificity and functionality in vitro or in mouse

models (37, 49, 50, 53, 54). Additionally, autoimmune

modulators conjugated to or coupled with TCRL mAbs could

facilitate modulator delivery to autoantigen-MHC-II-enriched

sites of disease. Such modulators include toxins (Figure 1D),

immunoregulatory cytokines, and antibodies that neutralize

effector molecules or regulate effector cell activity (88).

Cytokines like IL-10 and TGF-b that induce tolerogenic DC

(95) with therapeutic efficacy (84) might reestablish tolerance at

sites harboring auto-APCs (Figure 1E). Coupling TCRL mAb to

FDA-approved antibodies that target inflammatory cytokines, as

available for TNF, IL-6 and IL-1b, could localize their

immunosuppressive effect to the sites of pathology (Figure 1F).

TCRL mAbs could also be used in a chimeric antigen receptor

(CAR) format for constructing CAR T cells (Figure 1G). In

diabetic NOD mice, CAR T cells expressing an insulin peptide/

MHC-II TCRL mAb modulated autoimmunity (54, 55). In

addition, re-directing Treg cells to the autoimmune milieu was

shown to suppress autoreactive Teff cells in several models (96).

Thus, it may be fruitful to introduce TCRL CARs into Treg cells

for autoantigen-MHC directed Treg cell activity (Figure 1H).
Potential side effects of TCRL mAb
therapy targeting autoantigen-
MHC complexes

For TCRL mAbs that are on-target (specific for autoantigen-

MHC) and on-tissue (targeting autoimmune lesion), their

primary actions will be to deplete auto-APCs and/or to

modulate the CD4+ T cell-mediated immune responses

(Figure 1). However, adverse effects may arise after target

auto-APC depletion or following immunomodulation. A

potential concern with cell-depleting TCRL mAbs is

autoantigen release from apoptotic auto-APCs, which may

propagate autoimmunity (2). On-target but off-tissue or off-

target binding by TCRL mAbs raises other risks, such as

unpredictable cross-reactive interaction between these Abs and

highly homologous HLA-II allelic proteins or mimetic self-

peptides. For example, unexpected cross-reactivity of affinity-

enhanced TCR reagents targeting cancer-related MAGE A3/
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HLA-A*01 complex was reported to result in fetal cardiotoxicity

(29). Regardless of target specificity, immune activation or

suppression subsequent to TCRL mAb administration may

lead to unpredictable toxicities, such as new autoimmune

reactions or reduced host defense. In general, most safety and

side effect concerns associated with traditional Ab therapies (97,

98) are worthy of attention during TCRL Ab development and

preclinical evaluation. To minimize the chance of causing

adverse effects, efforts in 1) Fc engineering/modification to

control Fc-mediated effector function, 2) advanced affinity

maturation to avoid exaggerated/prolonged mAb binding to

the target, and 3) rigorous immunopharmacology studies in

vitro and in animal models (97), will be crucial at stages prior to

clinical trials.
Future directions

Despite great promise, effectively leveraging modern TCRL

technologies in autoimmune therapy st i l l requires

optimization: First, advanced tools and innovative strategies

for autoantigen discovery are still needed, as highly accurate

identification and characterization of HLA-restricted peptide

antigens are a prerequisite for downstream development of

TCRL agents. Secondly, directed evolution and affinity

maturation for low affinity TCRL candidates are still

challenging, although combinatorial libraries designed using

phage and yeast display platforms offer potential solutions. As

more and more TCR and TCRL mAb structures emerge,

machine learning (99) may offer more guidance on TCRL

engineering. Last, for use in physiologic conditions, protein

scaffolds other than mAbs sometimes possess better properties

including protein stability, reduced immunogenicity, and

increased tissue penetration (90, 100). Lessons learned from

TCRL mAb development can be applied to alternative protein

scaffolds (90) to expand TCRL methodology. Ongoing TCRL

projects are focusing on resolving these issues, in hopes of

opening an era for next generation autoimmune research

and therapies.
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