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Immune response to arbovirus
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Medicine, Virginia Tech, Blacksburg, VA, United States, 2Department of Molecular Microbiology and
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Obesity is a global health problem that affects 650 million people worldwide

and leads to diverse changes in host immunity. Individuals with obesity

experience an increase in the size and the number of adipocytes, which

function as an endocrine organ and release various adipocytokines such as

leptin and adiponectin that exert wide ranging effects on other cells. In

individuals with obesity, macrophages account for up to 40% of adipose

tissue (AT) cells, three times more than in adipose tissue (10%) of healthy

weight individuals and secrete several cytokines and chemokines such as

interleukin (IL)-1b, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor

necrosis factor (TNF)-a, leading to the development of inflammation. Overall,

obesity-derived cytokines strongly affect immune responses andmake patients

with obesity more prone to severe symptoms than patients with a healthy

weight. Several epidemiological studies reported a strong association between

obesity and severe arthropod-borne virus (arbovirus) infections such as dengue

virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis

virus (SINV). Recently, experimental investigations found that DENV, WNV,

CHIKV and Mayaro virus (MAYV) infections cause worsened disease

outcomes in infected diet induced obese (DIO) mice groups compared to

infected healthy-weight animals. The mechanisms leading to higher

susceptibility to severe infections in individuals with obesity remain unknown,

though a better understanding of the causes will help scientists and clinicians

develop host directed therapies to treat severe disease. In this review article, we

summarize the effects of obesity on the host immune response in the context

of arboviral infections. We have outlined that obesity makes the host more

susceptible to infectious agents, likely by disrupting the functions of innate and

adaptive immune cells. We have also discussed the immune response of DIO

mouse models against some important arboviruses such as CHIKV, MAYV,

DENV, and WNV. We can speculate that obesity-induced disruption of innate

and adaptive immune cell function in arboviral infections ultimately affects the

course of arboviral disease. Therefore, further studies are needed to explore
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the cellular and molecular aspects of immunity that are compromised in

obesity during arboviral infections or vaccination, which will be helpful in

developing specific therapeutic/prophylactic interventions to prevent

immunopathology and disease progression in individuals with obesity.
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Introduction

Obesity is defined as an excessive accumulation of body mass

or an increased mass of adipose tissue beyond the body’s

requirement (1). According to a 2016 survey by WHO, 1.9

billion adults are overweight and the number of people with

obesity has tripled since 1975 (2). Importantly, obesity is

spreading rapidly worldwide due to numerous obesity-

promoting factors such as physical inactivity, high caloric foods

and drinks, and changing lifestyle habits due to internet use,

smartphones, video games, etc. (3). This high prevalence increases

the incidence of metabolic and cardiovascular diseases common in

people with obesity such as type 2 diabetes mellitus, osteoarthritis,

and hypertension (1, 4). It is thought that excessive adipose tissue

contributes to increased incidence of associated diseases by

promoting a chronic inflammatory state (5–7).

In addition to metabolic impacts, obesity has been identified

as an independent risk factor for severe viral diseases such as

influenza and coronavirus disease 2019 (COVID-19) (8–12).

Epidemiologic data from the COVID-19 pandemic in the United

States showed that individuals with higher body mass index

(BMI ≥30-35 kg/m2) were more likely to be admitted to the

intensive care unit compared with individuals with a BMI of <30

(13, 14). Several studies from different part of world such as

Singapore, France, England and China reports that the COVID-

19 produces severe signs and symptoms in individuals with

obesity compared to lean people and was also associated with a

higher risk of COVID-19-associated death (15–18). A similar

pattern was observed during the 2009 H1N1 influenza

pandemic, in which obesity was first reported as an important

comorbidity for increased disease severity and deaths (12, 19).

Obese people with history of respiratory diseases becomes more

susceptible to influenza and COVID-19, which is not same for

arboviruses. The role of obesity in susceptibility to arbovirus

diseases should take a note of caution.

There are very few data on the impact of obesity on arbovirus

infections. Arboviruses cause significant disease each year; dengue

virus, for example, is endemic in 129 countries and causes 390

million infections per year (20, 21), ZIKV caused more than

220,000 confirmed cases in 52 countries or territories in the

America (22, 23), and CHIKV and WNV have spread to a

number of countries, resulting in millions of cases (24–30).

Several seroprevalence studies have found a strong association
02
between obesity and previous arbovirus infections. InMadagascar,

seroprevalence of antibodies to DENV, CHIKV, and Rift Valley

fever virus (RVFV) was studied. This showed that CHIKV

infection was significantly associated with higher body weight

(31). Similar data were reported from La Réunion and India for

CHIKV infections, where individuals who were overweight or

obese had a higher risk of disease compared to the healthy

population (32, 33). In addition, obesity has also been associated

with higher seropositivity for DENV in Thailand (34), Sindbis

virus (SINV) in Sweden (35), and Toscana virus (family

Phenuiviridae) and Sicilian phlebovirus (family Phenuiviridae)

in Italy (36). It is reported that obesity contributes to increase

disease severity by promoting a chronic inflammatory state (5–7).

It has also been reported that arboviral infection (DENV) is higher

in obese people because Adenosine Monophosphate (AMP)-

Activated Protein Kinase (AMPK) is down regulated in obesity

which is a major regulator of cellular energy homeostasis (37, 38).

Arboviruses downregulates AMPK activity to prevent lipid

metabolism and increase lipid quantities available to form the

lipid envelope during viral replication (38, 39). Obese individuals

already have a low AMPK activity, which is further downregulated

by viral infection in order boost ER cholesterol levels thus

facilitating viral replication that could lead to more severe

disease. In addition, the development of severe infections may

be due to impaired CD8+T and natural killer (NK) cell activity in

obese hosts (40–42). Efforts are continued for the development of

host directed effective therapeutics such as the use of metformin in

overweight and obese young dengue patients to monitor its effects

on viral replication, endothelial dysfunction, and host immune

responses (43). Recently, several laboratory studies report that

DENV, WNV, and CHIKV (as well as other related alphaviruses)

infections cause more severe symptoms in infected obese mice

compared with infected healthy weight animals (44–46). In this

review article, we describe the immunological impairment against

arboviral infections in patients with obesity and discuss the

implications on disease severity.
The effect of obesity on immunity

In obesity, more adipose tissue accumulates in the body.

There are two main types of adipose tissue, white adipose tissue

(WAT), which plays an important role in energy storage, and
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brown adipose tissue (BAT), which has an important function in

thermogenesis. Adipocytes are the major cell types of adipose

tissue and are further subdivided based on their microscopic

appearance (47, 48). In WAT, a unilocularly arranged lipid

vacuole predominates, whereas in BAT, multilocular lipid

vacuoles are present and intermediate cell forms are referred

to as beige adipocytes (49). In addition to adipocytes and pre-

adipocytes, fibroblasts, endothelial cells, leukocytes, and

macrophages are also part of adipose tissue (50). The number

of macrophages correlates positively with body mass, adipocyte

size, and expression of pro-inflammatory cytokines (51, 52).

In people with obesity, an increase in adipose tissue is

characterized by an increase in size (hypertrophy) and the

number (hyperplasia) of adipocytes. Adipocyte hypertrophy is

accompanied by inadequate vascularization, which creates

hypoxic conditions in adipose tissue, induces apoptosis or

necrosis, and increases secretion of inflammatory cytokines,

chemokines, and adipokines, leading to severe infiltration of

immune cells, as shown in Figure 1 (53–58). In parallel with this

increase in size of adipocytes, adipose tissue undergoes a

remodeling phase with overproduction of extracellular matrix

(ECM) and increased infiltration of immune cells (59, 60). The

interaction between adipocytes and macrophages and the

metabolic inflammation triggered by macrophages play an

important role in the remodeling process (61–64). Scientists

have proposed that the most critical step in obesity-related
Frontiers in Immunology 03
infections is the initiation of macrophage migration into

adipose tissue, which could be triggered by adipocyte death,

hypoxic conditions, chemotactic regulation, and fatty acid flux,

eventually leading to a state of low-grade chronic inflammation

(59, 63, 65). Previous data also suggest the distinction between

pathological and healthy adipose tissue development. In

pathological expansion, the existing adipocytes increase

rapidly, resulting in hypoxia due to decreased blood vessel

formation, deposition of ECM, and increased infiltration of

more pro-inflammatory M1 type macrophages, whereas, more

anti-inflammatory M2 macrophages predominate in normal

body weight AT and adequate oxygen supply and normal

levels of immune cells and cytokines are maintained (66–

68) (Figure 2).

Adipose tissue (AT) also has important endocrine functions

and secretes different immune mediators that play a role in

immune cell infiltration and disease following infection. These

mediators include adipocytokines or adipokines such as leptin,

adiponectin, resist in, visfatin and other important

immunological factors such as tumor necrosis factor (TNFa),
IL-1, IL-6, plasminogen activator inhibitor type I (PAI-I), CCL2,

and different complement factors (50, 69–72). The increased

level of adipokines such as leptin activates intracellular genes

through different signaling pathways such as JAK-STAT,

MAPK, PI3K, and AMPK, leading to the production of

various intracellular inflammatory cytokines (73–76). In
A B

FIGURE 1

Overview of the differences in immune response to viral infection in healthy weight and obese individuals. (A) In healthy weight individuals,
adipocytes are smaller and less numerous, and the immune system responds normally to viral infection. (B) In individuals with obesity,
adipocytes increase in size and number, and there is massive infiltration of M1 macrophages into adipose tissue. Following viral infection, the
immune system responds with impaired production of various cytokines/chemokines.
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people of a healthy weight, regulatory anti-inflammatory cells

and cytokines such as Treg, Th2 cells and IL-4, IL-5, IL-10, IL-

14, IL-33, are maintained to control excessive inflammation (77–

79). However, in individuals with obesity, this regulatory, anti-

inflammatory state of the immune system transforms into an

inflammatory state by secreting various pro-inflammatory

cytokines, including IL-1b, IL-6, IL-8, TNFa, and CCL2 (65,

77, 80, 81). These pro-inflammatory cytokines contributes to

obesity-induced chronic low-grade inflammation.

Furthermore, obesity is also associated with the senescence

of immune cells, which promote the release of pro-inflammatory

cytokines (82, 83). Moreover, the role of microRNAs (miRNAs)

in obesity has been explored and unmasked as an important

biomarker for obesity (84, 85). MiRNAs affect the expression

and regulation of many protein-coding genes involved in the

regulation of inflammatory processes (86–88). MiRNA-146a, for

example, interferes with the activation of nuclear factor kappa B

(NF-kB) induced by TNFa and Toll-like receptor ligands (TLR),

while miRNA-155 promotes the activation of LPS/TNF

pathways (88–90). In conclusion, the excess adipose tissue in

obesity activates intracellular signaling pathways, leading to the

production of pro-inflammatory cytokines, and promotes the

infiltration of more M1 phenotype pro-inflammatory

macrophages. Overall, this section highlights the cellular and

molecular differences in immune and inflammatory mediators

between individuals with obesity or of healthy weight.
Frontiers in Immunology 04
The influence of obesity on the
generation of immune responses
after viral infection

After viral infection, the host activates innate and adaptive

immune cells to generate an antiviral immune response against

the invading pathogen. In people with obesity, excessive fat

deposition in immune tissues such as the spleen, thymus, lymph

nodes, and bone marrow alters the cellular environment and

disrupts the integrity of tissue, impairing proper development

and maturation, diversity, phenotype, and activity of immune

cells (91–93). This abnormal development of immune cells leads

to impaired interferon and cytokine production, which impairs

host antiviral immunity and increases the risk of severe viral

disease in patients with obesity (91, 94).

Previously, O’Shea et al. investigated the characteristics of

dendritic cells (DCs) in obesity and found that the number of

circulating DCs decreased significantly in individuals with

obesity and their abnormal function was characterized by

decreased expression of CD83 after TLR stimulation compared

to the control group (95). CD83 plays a critical role in triggering

T cell responses, and its decreased expression leads to a

weakened host antiviral immune response and increased

severity of viral infections in patients with obesity (95–97).

Experimental data show that DCs in DIO mice have a blunted

ability to trigger the expansion of naïve T cells due to higher
FIGURE 2

Effects of obesity on innate and adaptive immune cells. Mast cells (MCs) release various cytokines and chemokines that promote inflammation.
M1 macrophages release proinflammatory mediators. M2 macrophages release anti-inflammatory cytokines. Natural killer cells decrease
immune surveillance activity. Dendritic cells have impaired ability to present antigens to other immune cells. CD8+ T cells have decreased
cytotoxic activity to kill infected cells. CD4+ T cells: there is a decrease in Treg and Th2 cells and an increase in Th17 and Th1 cells. B cells have
decreased antibody production with reduced neutralizing ability.
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levels of cytokines and chemokines such as IL-1a, IL-17, and
TNFa (98, 99). During influenza virus infection, DCs from

patients with obesity showed impaired antigen presentation and

insufficient competence in directing antiviral orchestration of T

cells (100, 101). This abnormal state was associated with

increased pro-inflammatory cytokine levels in the lungs of

DIO mice, particularly the IL-6 associated proinflammatory

state that impairs the number and frequency of CD4+ and

CD8+ T cells in the lungs. Furthermore, obesity has also been

reported to impair the migration of DCs to the lymph

nodes (102).

Studies have shown that humans or animals with obesity

have functionally impaired NK cells, which increase the risk of

cancer and viral infections (103–107). With the development of

obesity, specific lipid uptake receptors expression is increased in

NK cells which results in increase uptake of free fatty acids and

activated NK cells fail to activate mTOR and glycolytic

metabolism resulting in decrease IFN- g production which is

reviewed in detail previously (108). Veil and colleagues

experiment data reveals the increased expression of activation

markers such as CD69 on NK cells from obese patients which

result in altered degranulation and reduced production of IFN- g
(107). Nave et al., observed that leptin treatment stimulated NK

activity four times higher in lean than obese animals (41). The

activation of post receptor signaling components (Janus kinase-

2p, protein kinase B pT308, AMPalphapT172) was reduced after

an in vivo leptin challenge in obese animals (41). Recently, it is

reported that impaired NK cell function, and polymorphisms in

NK cell cytolytic function genes are associated with

hyperinflammation which enhances dengue severity (109).

Collectively, these findings provide evidence obesity induced

disturbance in NK cells function can lead to severe arboviruses

diseases in obese patients which remains unknown.

There are currently limited data on the response of

interferons/cytokines to arbovirus infection in obese humans/

animals. It has been reported that humans with obesity do not

elicit a robust type I IFN response in viral infections such as

H1N1 influenza virus infection (110–112). Cabanillas et al.

demonstrated that obese mice infected with H1N1 virus had

significantly lower levels of IFN-a and IFN-b compared with the

control group, and viral load and mortality were also higher

(111). Obese H1N1 patients were also found to have decreased

IFN-a production, which could be related to leptin levels,

leading to dysregulated development of immune cells and their

shift toward inflammatory phenotypes (42, 113). Leptin is

chronically produced by AT in individuals with obesity and

interferes with IFN signaling by increasing Suppressor of

Cytokine Signaling 3 (SOCS3) (114). SOCS3 negatively

regulates the JAK-STAT signaling pathway and limits IFN

production by downregulating interferon stimulated gene

(ISG) transcription in individuals with obesity (113, 115).

Costanzo et al. reported that IFN-g production was decreased

in individuals with obesity infected with influenza A virus, which
Frontiers in Immunology 05
was due to dysfunctional gdT cells (116). In addition to the

abnormal number of gdT cells during influenza virus infection in

individuals with obesity, the surviving cells also become

unresponsive to TLR ligands, further contributing to the IFN

deficiency (116). This IFN deficiency could block the IFN signal

transduction cascade. A comparative study of cytokine

production after influenza virus infection revealed that the

production of cytokines such as IL-6, TNF-a, IL-1b, and CCL-

2 was delayed and decreased in the early stages of infection in

obese subjects (103, 111, 117). This delayed immune response

leads to low-grade chronic inflammation (112). However, in the

later stages of infection, excessive cytokine secretion in obese

subjects leads to cytokine storm (103, 117, 118). Thus, obesity-

induced chronic inflammation and deregulated immune

response lead to impaired clearance of viral particles in the

early stage of infection.

The release of inflammatory mediators from adipose tissue is

obesity such as leptin, adiponectin, resistin, visfatin and other

important immunological factors such as tumor necrosis factor

(TNFa), IL-1, IL-6, plasminogen activator inhibitor type I (PAI-I),

CCL2, and different complement factors produce obesity-induced

chronic inflammation (50, 69–72). This chronic inflammation

leads to the T cells exhaustion through different ways. First, T cells

from humans and animals with obesity exhibit decreased

proliferative capacity and increased exhaustion, as evidenced by

downregulated Ki67 and upregulated PD-1 (119). The higher

leptin levels in obesity lead to the upregulation of phosphorylated

STAT3, which induces PD-1 expression in T cells. This is also

demonstrated by decreased IFN-g and TNFa production in

stimulated polyclonal T cells from individuals with obesity

(119). Second, increase in glucose, FFAs, phospholipids,

cholesterol, and other metabolites in individuals with obesity

alters the metabolism of T cells, leading to impaired activation

and decreased activity (118, 120, 121). Moreover, IFN production

is delayed in the early stages of viral infections in obesity, and this

delayed IFN production inhibits T cell proliferation, blocks their

efflux from lymphoid organs, and leads to T cell exhaustion (122–

124). The disruption of the antiviral immune response could

increase cell apoptosis and impair normal T cell activation and

proliferation during viral infections. Several studies have shown

that patients with obesity infected with influenza or COVID-19

who become severely ill lack an effective antiviral T cell response

(125–127).

The immune system of patients with obesity is also

inherently weakened due to immune senescence (82, 83). The

development of obesity induces oxidative stress and

inflammation, which shortens telomere length and leads to

cellular aging (128, 129). In adiposity, leptin levels increase in

serum which also cause the telomere shortening (130, 131).

Epigenetic studies reveal that obesity induces a widespread gene

expression and methylation changes in multiple tissues of body

including blood leukocyte DNA, which can cause immune

dysfunction (132–134). It has been reported that senescent
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cells expressing SA b-gal activity and p53 levels increase in obese

animals (135, 136). It was seen that depletion of senescent cells

from obese animals can ameliorate pathology (137, 138). In

addition to the association between obesity and disease

progression due to a reduction in T cells, obesity also

promotes thymic degeneration and T cell senescence, which is

seen in elderly individuals with obesity and even in children with

obesity (139–141). There is epigenetic evidence of

hypermethylation of T lymphocyte DNA in humans and

animals that exhibit obesity-related T cell senescence (142,

143). Regulatory T cells are found to be important regulatory

cells in AT that provide anti-inflammatory signals (99, 144). In

an experimental study, Feuerer et al. found that when most Treg

cells were removed from AT, pro-inflammatory transcripts were

overexpressed compared to the experimental group, suggesting

the key anti-inflammatory role of Treg cells (78). gdT cells also

produce growth factors, induce maturation of DCs, recruit

macrophages, and interact with Treg cells (145). In patients

with obesity, the number of gdT cells is decreased, which could

lead to an impaired antiviral response and worsening of disease

pathology due to their sensitivity to inflammation (116).

Impaired T-cell response in obesity caused by a combination

of host and viral factors predisposes individuals with obesity to

failure of viral control and development of severe

disease (Figure 2).

B cells play a critical role in limiting viral replication and

dissemination through antibody production. Non-neutralizing

antibodies perform essential tasks, often through their constant

(Fc) region, in ways like interacting with complement proteins to

enhance opsonization or through Fc receptor interactions which

mediate antibody-dependent cellular cytotoxicity. Similarly,

neutralizing antibodies also serve essential functions in the

immune response to pathogens by blocking viral entry into

host cells. Previous experiments have shown that in individuals

with obesity exposed to H1N1 influenza virus, the titer of virus

specific antibodies is reduced, and antibodies primed in the

obese state have a weakened neutralization capacity compared to

those primed in healthy weight individuals (146, 147). This

could be due to several factors, such as greater inflammation,

DNA hypermethylation of B cells, and abnormal leptin levels

that differentially regulate B cell development, maturation, and

activity (142, 143, 148). It has been described that the peripheral

B cell pool of individuals with obesity contains a higher

proportion of pro-inflammatory late/exhausted memory B

subsets and a lower proportion of anti-inflammatory

transitional B cells (148, 149). Moreover, functional defects of

B cells in individuals with obesity contribute to triggering an

acute inflammatory state through the production of pro-

inflammatory mediators. It is plausible that obesity leads to

severe arbovirus infections by altering the number and function

of B cells and the potential interaction with other lymphocytes

(follicular T helper cells) by producing a hyperinflammation

cascade and an imbalance of adipokines. Overall, the
Frontiers in Immunology 06
development of obesity may alter the function of innate and

adaptive immune cells and weaken the host antiviral immune

response to fight viral infections (see Figure 2).
The influence of obesity on the
generation of protective immune
responses after vaccination

To prevent severe viral diseases, it is best to develop vaccines

against them, followed by comprehensive vaccination.

Currently, several arbovirus vaccines are available, and some

are under development (150–155). The use of vaccines has major

implications for the control of these diseases in arbovirus-

endemic areas. The live-attenuated vaccine against yellow

fever, 17D, is one of the most effective vaccines ever produced.

It was found that children with severe protein deficiency had a

significantly lower seroconversion rate for 17D (12.5%) than

healthy children (83.3%) (156). To date, no study has observed

the effects of obesity on the development of protective immune

response to arboviral vaccines. However, several investigations

report that obesity can decrease the induction of immune

response to various viruses and toxins, including influenza,

SARS-CoV-2, tick-borne encephalitis virus, hepatitis B virus,

and tetanus toxins (147, 157–164).

In the past, obesity has been found to interfere with the

induction of an effective protective immune response to

influenza virus vaccines (158, 159, 165). When individuals

with obesity were vaccinated with an inactivated trivalent

influenza vaccine, lower antibody titers were observed in

participants with obesity 12 months post vaccination (159).

Cellular and humoral immune responses were well maintained

in healthy individuals after vaccination, whereas lower influenza

virus antibody titers and decreases in CD8+ T-cell activation

were observed in individuals with obesity 12 months after

vaccination (159). Garner-Spitzer et al. studied the immune

response to tick-borne encephalitis (TBE) virus vaccine in

obese and healthy-weight and individuals with obesity (164).

They observed that adults with obesity had a greater initial

increase in TBE-specific antibody titers at day 7 to day 28,

followed by a sharp decline 6 months post TBE vaccination that

correlated with high BMI and leptin levels. Recently, a non-peer

reviewed study from Italy analyzed antibody titer production in

a cohort of 248 healthcare workers (158 women, 90 men) after

vaccination with the second dose of an mRNA vaccine against

COVID-19 (BNT162b2, Pfizer) (163). The results of this study

show that the humoral immune response was significantly

stronger in individuals without obesity compared to

participants who were classified as being overweight or obese

(p<0.0001) (163). In another investigation, Watanabe et al.,

investigated the variables associated with serological response

following COVID-19 mRNA vaccines and found obesity as one

of the most important factors associated with lower antibody
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titers (166). These data highlight the impact of obesity on

antibody titers, potentially impairing vaccine-conferred

protective immune responses to viral vaccines. Based on these

studies, individuals with obesity mount antigen-specific

antibody responses equivalent to those of individuals of

healthy weight at early time points post-vaccination, yet the

antibody titers of individuals with obesity rapidly wane around a

year post-vaccination. Thus, these insights suggest that altered

vaccination schedules or higher vaccine formulation doses could

benefit the durability of antibody responses primed in

individuals with obesity. In addition, there is a possibility that

people with obesity may be at higher risk for break through

infections due to the impact of obesity on the priming of

immune responses. Because of the continuous increase in

arboviral infections worldwide and the rising obesity rates,

future studies are needed to monitor the induction of the

immune response after vaccination in people with obesity to

determine the long-term protective role of arboviral vaccines. In

addition, it is necessary to unravel the mechanism behind the

poor immune response to vaccines and the development of

severe disease in people with obesity to prevent severe cases and

develop alternative strategies/therapies for people with obesity.
Arbovirus infection in people
with obesity

Obesity has been found to affect the immune response to

viral infections such as influenza, SARS-CoV-2, and

coxsackievirus (19, 167–171). Several studies have also

reported the association between obesity and disease severity

in arboviral infections (172). Padmakumar et al. analyzed 1,111

patients with confirmed CHIKV infection and found that disease

was more severe in individuals with obesity and was associated

with severe inflammatory sequelae (33). Comparative data from

clinical trials revealed that CHIKV was associated with more

severe polyarthralgia and took longer to improve in diabetic vs.

non-diabetic patients (173, 174). In addition, we have infected

healthy weight, obese, and malnourished mice with arthritogenic

arboviruses from the genus Alphavirus (CHIKV, Mayaro virus

and Ross River virus) and observed increased morbidity such as

footpad swelling and weight loss in obese mice under all

conditions (46). Furthermore, higher levels of viremia and

RNAemia were seen in obese mice compared to controls 1 day

post MAYV infection. However, the group of obese mice had

lower levels of both infectious virus and viral RNA 3 days after

MAYV infection compared to lean controls. A similar pattern

was observed 3 days post CHIKV infection, where the group of

obese mice had significantly lower RNAemia compared to lean

controls (46). Thus, consistent with the epidemiological data in

humans, individuals with obesity have worse disease outcomes

during arthritogenic alphavirus infection and may also have

altered viral replication kinetics.
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Recently, Geerling et al. used an obese mouse model to

investigate the influence of obesity on the development WNV

disease (45). They found that the group of obese mice had a

higher mortality rate and increased virus titers in the central

nervous system compared to animals in the control group. In

addition, they observed that obesity also deregulated the host

acute adaptive immune responses, as obese female mice

exhibited significant disruption of neutralizing antibody

function (45). Thus, obesity may promote altered viral

pathogenesis and decreased neutralizing capacity of antibodies.

Several studies also reported that patients with obesity with

DENV infections were more likely to develop severe symptoms

compared with DENV patients without obesity (34, 175, 176).

Chuong et al. investigated the influence of nutritional status on

DENV replication, immune protection, transmission, and

disease severity in obese mice (44). They observed that severe

DENV disease in obese mice was associated with high levels of

proinflammatory cytokines. The obese mice had increased

circulating levels of B-cell activating factor (BAFF), CCL5,

CCL17, Chitinase-3-like 1, CXCL5, and IFN-a after DENV

infection compared to animals in the control group. These

cytokine imbalances might contribute to increase disease

severity in patients with obesity by inducing vascular leakage

and reduced platelet levels (177–180). Overall, these studies

provide evidence that obesity significantly alters host

immunity to arboviral infections, which likely contributes to

increased disease severity.

In Figure 3, we illustrate the general immune response of the

host to arbovirus infection. When the mosquito inoculates the virus

into the human body, DCs and mast cells (MCs) in the epidermis

encounter the virus. MCs degranulate and release cytokines (IFN-a
and TNFa), chemokines (CCL5, CXCL10 and CXCL12) and

proteases that play a critical role in the recruitment of CD8+ T,

CD4+ T, NK and NKT cells to the site of infection (181, 182). The

DCs, macrophages or monocytes are targets of arbovirus infection

and act as antigen-presenting cells and release other cytokines,

which in turn activate other innate and adaptive immune cells

(183). DCs activated by arboviruses present antigens to CD4+ T

and CD8+ T cells by upregulating co-stimulatory molecules such as

CD80 and CD86 (184). Activated CD4+ T cells release IFN-g, IL-4,
IL-5, IL-10 or IL-12, which activate CD8+ T cells and B cells to

clonally expand to produce CD8+ effector/memory and B plasma/

memory cells (185). B plasma cells produce virus-specific

neutralizing antibodies to prevent virus entry into the cells.

Cytotoxic CD8+ T, NK and NKT cells, on the other hand, kill

virus-infected cells and promote viral clearance. The development

of obesity may disrupt the normal function of innate and adaptive

immune cells during arbovirus infection or vaccination. We can

speculate that the disruption of innate and adaptive immune cell

functions during arbovirus infection or vaccination will ultimately

affect the course of arbovirus disease and the induction of protective

immune responses following infection or vaccination, which

requires further investigation. This highlights the need for
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vigilance in the preventive or clinical management of viral infections

in patients with obesity.
Future perspectives

Obesity is a key public health problem. Nearly 13% of adults

worldwide are obese and 40% are overweight. Obesity-induced

chronic inflammation disrupts innate and adaptive immune cell

functions, leading to impaired IFN and cytokine production, likely

increasing the severity of viral disease. Recent epidemiological and

experimental data strongly suggest that obesity is associated with

increased disease severity in viral infections such as influenza

virus, SARS-CoV-2, DENV, WNV, and CHIKV. The number of

cases of arbovirus infections is steadily increasing worldwide.

There are limited data on the host antiviral immune response

and viral dynamics following arbovirus infection in individuals

with obesity, highlighting the need for further studies to elucidate

the cellular and molecular aspects of immunity that are

compromised in obesity during arboviral infection and how

these factors contribute to worsened disease outcomes. In

addition, several studies have reported that individuals with
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obesity produce a poor protective immune response to vaccines

or natural infections. Therefore, it is necessary to study the impact

of obesity on antigen-specific immunity to ensure this population

is protected following vaccination or natural infection. Obesity

affects hundreds of millions of people around the world and a

better understanding of the associated disorders will help scientists

and physicians to develop specific therapeutic/prophylactic

interventions to prevent immunopathology and disease

progression in at-risk populations.
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A B

FIGURE 3

The immune response of healthy weight and obese individuals to arbovirus infection or vaccination. (A) The immune response of healthy individuals
to arbovirus infection or vaccine. Sentinel cells of the immune system, such as dendritic cells, mast cells and macrophages, encounter the virus after
infection from a mosquito bite or vaccine injection. Mast cells degranulate within minutes of recognizing the virus and release various cytokines/
chemokines that activate other immune cells such as CD8+ T, natural killer (NK), NKT cells and macrophages against the viral infection to promote
viral clearance. Dendritic cells or macrophages become infected and present viral antigens to CD4+ and CD8+ T cells to initiate an adaptive
immune response. (B) We can speculate that the development of obesity disrupts the innate and adaptive immune cells during arboviral infection or
vaccination, ultimately affecting the course of arboviral disease and the induction of the host immune response to the vaccine. 1-Increased
production of proinflammatory cytokines from Mast cells in obesity. 2- Increase proinflammatory cytokines production from M1 macrophages in
obesity. 3-Delayed antibody production. 4-Impaired activation of naïve T cells and Delayed CD4+ and CD8+ T cells response in obesity. 5-Impaired
antigen presentation by DC in obesity.
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