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Necroptosis throws novel
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Introduction: Necroptosis is a novel pattern of immunogenic cell death and

has triggered an emerging wave in antitumor therapy. More evidence has

suggested the potential associations between necroptosis and intra-tumoral

heterogeneity. Currently, the underlying role of necroptosis remains elusive in

hepatocellular carcinoma (HCC) at antitumor immunity and inter-tumoral

heterogeneity.

Methods: This study enrolled a total of 728 HCC patients and 139

immunotherapy patients from eight public datasets. The consensus

clustering approach was employed to depict tumor heterogeneity of cancer

necroptosis. Subsequently, our study further decoded the heterogeneous

clinical outcomes, genomic landscape, biological behaviors, and immune

characteristics in necroptosis subtypes. For each patient, providing curative

clinical recommendations and developing potential therapeutic drugs were

used to promote precise medicine.

Results: With the use of the weighted gene coexpression network analysis

(WGCNA) algorithm, necroptosis-associated long non-coding RNAs (lncRNAs)

(NALRs) were identified in HCC. Based on the NALR expression, two

heterogeneous subtypes were decoded with distinct clinical outcomes.

Compared to patients in C1, patients in C2 harbored superior pathological

stage and presented more unfavorable overall survival and recurrence-free

survival. Then, the robustness and reproducibility of necroptosis subtypes were

further validated via the nearest template prediction (NTP) approach and

classical immune phenotypes. Through comprehensive explorations, C1 was
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characterized by enriched immune-inflammatory and abundant immune

infiltration, while C2 possessed elevated proliferative and metabolic activities

and highly genomic instability. Moreover, our results indicated that C1 was

more prone to obtain desirable benefits from immunotherapy. For patients in

C2, numerous underlying therapeutic agents were developed, which might

produce significant efficacy.

Conclusion: This study identified two necroptosis subtypes with distinct

characteristics, decoding the tumor heterogeneity. For an individualized

patient, our work tailored corresponding treatment strategies to improve

clinical management.
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Introduction
Hepatocellular carcinoma (HCC) is a common global cancer

burden and is the third most prevalent cause of cancer-related

mortality worldwide, accounting for over 700,000 fatalities per

year (1). Owing to its advanced malignant and high aggressive

characteristics, patients display dismal prognosis, and the 5-year

survival rate is only 18% (2). Over the last decade, encouraging

advances in cancer treatments have been achieved, such as

surgical resection, immunotherapy, targeted treatment, and

chemoradiotherapy (3). In practice, various treatment choices

are provided for HCC patients, but not all approaches

consistently have curative efficacy, which can be mainly

attributed to tumor heterogeneity. Previous research had

suggested that tumor heterogeneity is usually mirrored by

distinct molecular characteristics, and more studies have

focused on decoding disease heterogeneity to improve clinical

outcomes (4, 5). Immunotherapy as an emerging approach has

conspicuous benefits by acting on specific molecules, such as

PD1, PD-L1, and CTLA-4, while only a subset of subpopulations

present desirable efficacy. In addition, the administration of

chemotherapy is also unsatisfactory in clinical utility, due to

high therapeutic expense and varying degrees of drug

susceptibility (6). Enormous evidence had underlined the

significant links between tumor heterogeneity and therapy

efficacy. Nonetheless, current investigations demonstrate that

the exploration of tumor heterogeneity and the description of

molecular features remain insufficient. It is imperative to decode

tumor heterogeneity and identify distinct characteristics for each

patient, facilitating prognosis and therapeutic efficacy.

In recent years, necroptosis as a potentially novel way of

immunogenic cell death has gradually become an emerging wave

in antitumor therapy (7). In-depth studies have elucidated that
02
necroptosis harbors unique molecular features and is categorized

into non-apoptotic cell deaths, which are mainly mediated by

PRK1, RIPK3, RIP1,MLKL, etc. (7, 8). The role of necroptosis in

regulating cancer biology is complicated, encompassing

tumorigenesis, cancer metastasis, and antitumor immunity (9).

As is well known, tight crosstalk exists between necroptosis and

anticancer immunity, and the occurrence of necroptosis could

elicit intense adaptive immune responses and amplify antitumor

immunity (7, 9). The induction of necroptosis combined with

immune checkpoint (ICP) inhibitors (ICIs) displays

synergistically enhanced antitumor ability (10). Systematically

and comprehensively exploring the relationships between

necroptosis and immune tumor microenvironment (TME) is

more prone to improving desirable immunotherapy efficacy. In

addition, tolerance to apoptosis is linked with drug resistance

(11), while necroptosis reportedly serves as a coalescence of

necrosis and apoptosis, which contributes to overcoming

chemotherapy failure. Therefore, necroptosis might be an

underlying target for cancer therapy, and developing drugs to

defend against cancer may obtain more clinical benefits based on

inducing or manipulating necroptosis.

The long non-coding RNAs (lncRNAs) usually possess over

200 nucleotides that are not translated into proteins. Notably, a

growing arsenal of evidence has elaborated that lncRNAs are

closely implicated in inflammatory responses, immune

infiltration, and immunotherapy (12, 13). Indeed, lncRNAs

also regulate gene expression at various levels and are closely

associated with programmed cell death, such as necroptosis (14).

The depletion of Linc00176 has been elucidated to disrupt the

cell cycle and trigger necroptosis by releasing tumor suppressor

miRNAs (15). Currently, the role of lncRNA and necroptosis in

the antitumor effect remains largely unexplored; integrated

analysis might open new insights and throw light on the

clinical management of HCC patients.
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In our study, the pronounced implications of necroptosis were

decoded by exploring its links with the TME. According to gene

expression, necroptosis-associated lncRNAs (NALRs) were

identified, and further two heterogeneous subtypes were

proposed. Subsequently, using three independent databases, the

robustness of necroptosis subtypes was rigorously verified via the

nearest template prediction (NTP) algorithm. Moreover,

profound heterogeneities were depicted and uncovered between

necroptosis subtypes, including distinct prognosis, biological

functions, clinical features, genomic variations, and immune

microenvironment characteristics. For each patient, we provided

immunotherapy evaluation and developed potential therapeutic

drugs, aiming to seek optimal clinical decisions. Overall, this work

explored the tumor heterogeneity from NALR perspectives and

tailored therapeutic strategy for each HCC patient, which was

helpful to improve prognosis and facilitate clinical management.
Methods

Data acquisition and processing

In the present study, a total of 728 HCC patients were

retrieved from four public databases, including TCGA-LIHC,

GSE14520, GSE116174, and GSE10141. The patients were

extracted in this study based on the following criteria: a)

primary HCC, b) the number of patients in each dataset is

over 50, c) not under any preoperative radiotherapy or

chemotherapy, and d) complete gene expression profiles and

corresponding survival information. In addition, the somatic

mutation data were obtained from The Cancer Genome Atlas

(TCGA) Genomic Data Commons (GDC) portal, and copy

number variation (CNV) data were downloaded from the

FireBrowse online tool, which was processed using the

genomic identification of significant targets in the Cancer 2.0

(GISTIC2.0) algorithm. Four eligible databases with expression

data and immunotherapeutic information were also screened,

encompassing GSE35640, GSE91061, GSE100797, and

Nathnaon cohorts. According to the Response Evaluation

Criteria in Solid Tumors (RECIST) v1.1 standard (16), a total

of 98 non-responders and 41 responders were used to assess

immunotherapy efficacy. The detailed criteria were as follows:

patients who had a complete response (CR) or partial response

(PR) and patients who had stable disease (SD) or progressive

disease (PD) were regarded as responders and non-responders,

respectively, and not evaluable (NE) patients were excluded from

our study. For the RNA-seq data, all expression data were

converted into transcripts per kilobase million (TPM) and

further log-2 transformed. In parallel, the expression data

from microarrays were normalized using the robust multiarray

average (RMA) approach. The baseline characteristics of all

patients were available in Table S1.
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The significance of necroptosis in tumor
microenvironment

Based on previous literature (17, 18), 115 necroptosis-

associated genes were retrieved in our study (Table S2). The

principal component analysis (PCA) was applied using the

prcomp function, and the results were visualized by

scatterplot3d package. Then, the single-sample gene set

enrichment analysis (ssGSEA) algorithm was utilized to

estimate necroptosis score and immune infiltration abundance.

With the use of the estimate package, stromal and immune

scores were measured to further evaluate the TME. The

correlation was depicted by Spearman’s between necroptosis

score and 28 immune cell infiltration, stromal score, and

immune score. To explore the underlying links between

necroptosis score and immune checkpoint expression, the

radar map delineated by the radarchart package further

exhibited the correlations.
Identification of necroptosis-associated
long non-coding RNAs

The weighted gene coexpression network analysis

(WGCNA) was usually used to explore and identify the

coexpression gene modules (19). We employed the WGCNA

package to generate coexpression necroptosis-associated

lncRNA networks of TCGA-LIHC. After the outlier samples

were excluded, the expression matrix of the top 5,000 genes was

converted into an adjacency matrix, and further unsupervised

coexpression relationships were constructed. Based on the scale-

free topology criterion, an appropriate power b (soft threshold)

was calculated to develop a scale-free network. Subsequently, the

weighted adjacency matrix was transformed into the topological

overlap matrix (TOM) describing the overlap of network

neighbors, and the corresponding dissimilarity 1 − TOM was

produced. Then, gene modules from the system cluster tree were

identified by a dynamic tree cutting approach. To recognize

lncRNA modules prominently associated with necroptosis score,

the module with the highest correlation was filtered for

subsequent analysis.
Development of molecular subtypes

With the use of univariate Cox regression, the modules that

contained necroptosis-associated lncRNA genes, which

harbored the most significant correlation, were further filtered

to generate prognosis-associated candidate genes. According to

the expression profiles of these genes, consensus clustering was

employed to develop clusters in TCGA-LIHC dataset. This

process was performed by the Kmeans method implemented
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in the ConsensusClusterPlus package (20). The detailed

parameter setting has the following criteria: a) subsample of

80% of samples at each iteration, b) possible cluster ranks = 2–9,

c) the number of iterations = 1,000, and d) Euclidean distance.

To determine the optimal number of molecular clusters, the

consensus score matrix, proportion of ambiguous clustering

(PAC) score, and cumulative distribution function (CDF)

curve were synthetically executed for explorations.

Subsequently, the silhouette coefficient was employed to

quantify the robustness of clustering patterns, and a higher

silhouette value means a better match to its own pattern (21).
Nearest template prediction approach
verifies the distinct subtypes

For necroptosis subtypes, the prognosis value was assessed

by survival curves of overall survival (OS) and recurrence-free

survival (RFS). The molecular characteristics were also

deciphered by gene set variation analysis (GSVA), which was

broadly applied in pathway activities exploration (22). With the

use of 50 Hallmark gene sets from Molecular Signatures

Database (MSigDB), distinct biological characteristics were

elucidated in necroptosis subtypes. In addition, a classical six

immune subtypes had been proposed across 33 diverse cancer

types from the perspective of extensive immunogenomic

analysis (23). The ggSankeyGrad and survival packages were

implemented to depict the underlying links between immune

clusters and necroptosis subtypes.

The NTP approach is flexible for assessing class prediction

confidence for each patient (24). The signature gene list was

obtained from gene modules with high correlation by WGCNA

and then utilized in the NTP algorithm implemented in the

CMScaller package (25), evaluating the reliability and stability of

necroptosis subtypes.
The landscape of genomic variations and
clinical characteristics

To further depict the landscape of genomic variations, we

decoded molecular heterogeneity at the genomic level. Several

previous studies (26, 27) had suggested that frequently mutated

genes (FMGs) that harbored top 20 mutational frequencies were

regarded as major driver genes, such as TP53 and CTNNB1.

With the use of the maftools package (28), the tumor mutational

burden (TMB) of each patient was calculated, and the overview

of mutation frequency was displayed. Then, the FMGs were

compared between necroptosis subtypes. Based on CNV data

from GISTIC2.0 analysis, we also dissected the burden of

amplification and deletion at focal and arm levels and

quantized the percentage of genetic changes, including the
Frontiers in Immunology 04
fraction of genome alteration (FGA), fraction of genomic

gained (FGG), and fraction of genome lost (FGL). Apart from

TMB, aneuploidy score and homologous recombination

deficiency (HRD) were also compared in necroptosis subtypes,

further identifying latent genomic features. In addition, clinical

characteristics were also explored in necroptosis subtypes,

including age, gender, and American Joint Committee on

Cancer (AJCC) stage. The multivariate Cox regression was

implemented to determine independent prognostic indicators

for OS and RFS.
Delineate the immune landscape and
assessment of immunotherapy

Gene expression profiles were further exploited to decode

the TME characteristics of each HCC patient. To depict a more

detailed landscape of immunological TME, we used the ssGSEA

algorithm to estimate the relative infiltration abundance of 28

immune cell subgroups. The expression of ICPs was used to

evaluate the immune state of a single sample, which contained

27 molecules from the B7-CD28 superfamily, TNF superfamily,

and other molecules. The co-stimulatory and co-inhibitory ICPs

were also applied to explore the differences in necroptosis

subtypes. The HLA molecules and leukocyte fraction were

employed to decipher the capacity of antigen presentation and

degree of inflammatory infiltration, respectively. In parallel, T-

cell inflammatory signature (TIS) with 18 immune genes was

measured via the ssGSEA algorithm, and unsupervised subclass

mapping (Submap) was used to appraise the expression profile

similarity, further predicting immunotherapeutic efficacy in

distinct necroptosis subtypes. Four immunotherapy datasets

were executed to reveal clinical implications underlying

distinct subtypes, and the robustness of therapy evaluation

was examined using the receiver operating characteristic

(ROC) curve.
Potential therapeutic drugs

To develop underlying therapeutic drugs, the half-maximal

inhibitory concentration (IC50) of each patient was calculated

by the pRRophetic package, which is popularly used in predicting

drug response. A lower IC50 value means a higher drug

sensitivity. Thus, potential therapeutic agents were identified

when patients possessed a lower IC50 value among necroptosis

subtypes. Moreover, the Connectivity Map (CMap) is also a

wide-utility approach for searching for potential therapeutic

drugs and targeted pathways according to gene expression

profile similarity. The elevated expression genes of specific

necroptosis subtypes were screened via the limma package,

and the expression similarity with database signatures was
frontiersin.org
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compared. Then, the enrichment score was quantified to assess

the therapeut ic sens i t iv i ty and prov ide potent ia l

therapeutic drugs.
Statistical analysis

All data cleaning, statistical analysis, and visualization were

conducted in R 4.1.2 software. Spearman’s correlation analysis

was utilized to elucidate the relationships between two

continuous variables. The Kaplan–Meier approach and Log-

rank test were executed to measure the different OS and RFS

between the two groups. The t-test or Wilcoxon rank-sum test

was adopted to evaluate the differences when comparing two

continuous variables. Pearson’s chi-squared test or Fisher’s exact

test was exploited to compare categorical variables. With the use

of the survminer , survival , and pROC packages, the

determination of optimal cutoff values, Cox regression

analysis, and ROC curve for predicting binary categorical

variables was carried out, respectively. The p < 0.05 was

considered statistically significant, and all statistical tests were

two-sided.
Results

The role of necroptosis in hepatocellular
carcinoma

The workflow of the current study is shown in Figure 1.

Through systematic and comprehensive investigations, 115

necroptosis-associated genes (NAGs) were extracted to explore

necroptosis. Based on NAG expression, our study discovered

significant differences between tumor and normal tissues,

hinting at distinct biological behaviors (Figure 2A). In TCGA-

LIHC dataset, samples from tumor and normal tissues could be

well distinguished by NAG expression profiles, indicating that

necroptosis caused tumor heterogeneity and might have crucial

roles in HCC tumorigenesis (Figure 2B). More studies had

elucidated that TME harbored tight relationships with tumor

initiation and progression. Thus, the necroptosis score was

calculated to decode the crosstalk with TME using the ssGSEA

algorithm. The higher necroptosis score displayed a more

favorable prognosis (Figure 2C) and superior immune cell

infiltration (Figure 2D). In addition, the necroptosis score

presented strong correlations with both stromal score and

immune score, implying latent power of regulating TME

(Figures 2E, F). There were also prominently positive

correlations with common immune checkpoints, such as

CD274 and CTLA4 (Figure 3A). All the above results

suggested that necroptosis possessed intense connections with

TME and might have a conspicuous impact on tumorigenesis.
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Screening necroptosis-associated long
non-coding RNAs and developing
heterogeneous subtypes

To further decode tumor heterogeneity, our study identified

NALRs via the WGCNA approach. First of all, the sample

dendrogram and trait heatmap were visualized, and then

outlier samples were removed to conduct clustering (Figure

S1A). A scale-free network was developed when soft threshold

b was set as 4, and the no-scale R2 was close to 0.9 (Figure S1B).

Then, through cluster dendrogram and eigengene adjacency

heatmap, cutting and clustering were applied to the samples,

resulting in eight coexpression modules (Figures 3B, C).

Furthermore, the relationships between gene modules and

necroptosis scores were measured. Among these, the green

module displayed the strongest links with the necroptosis

phenotype (Figure 3D). The robustness of gene modules was

ultimately tested via correlation analysis between gene

significance (GS) and module membership (MM) (Figure 3E).

Significant R value indicated intense links, and the green module

genes were defined as NALRs for performing follow-up works.

With the use of univariate Cox regression analysis, a total of

57 prognosis-associated NALRs were screened for exploring

HCC heterogeneity (Figure 4A). According to the NALR

expression, consensus cluster analysis was employed to

decipher heterogeneous subtypes, in which all HCC patients

were initially assigned to k (k = 2–9) clusters. A higher consensus

score means more likely to divide into the same subgroup

(Figure 4B and Figure S2B–H). In parallel, the smoother

middle segment of the CDF curve represents clearer sample

assignments (Figure S2A). All results suggested that the optimal

clustering number was generated when k = 2. Moreover, the

PAC was also popularly used to assess unsupervised clustering

by quantifying the middle segment. When samples were

assigned into two clusters, PAC presented the lowest value,

implying k = 2 was the best again (Figure 4C). To further

identify stable and robust subtypes, samples were detected by

measuring silhouette coefficient and screening positive silhouette

width (Figures 4D, E).
The significant prognosis value of
necroptosis subtypes

As mentioned above, our study identified two robust

necroptosis subtypes, termed C1 and C2. To enhance clinical

utility, the prognosis value of subtypes was further elucidated.

The results exhibited that C2 displayed an inferior prognosis at

both OS and RFS levels (p < 0.05) (Figures 5A, B). Underlying

biological characteristics might map onto heterogeneous

clinical outcomes; thus, 50 Hallmark pathways were enrolled

to decipher the potential biological behaviors of C1 and C2.
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Interestingly, patients in C1 were mainly enriched in immune-

inflammatory pathways, such as interferon-gamma response

and inflammation, while patients in C2 were obviously related

to the metabolic and proliferative activities (Figure 5C).

Therefore, C1 was characterized as immune-inflammatory

HCC, and C2 was defined as elevated cell proliferative and

metabolic HCC.

Additionally, we compared w previous immune-related

molecular subtypes, and a Sankey diagram depicted the

necroptosis subtype sample contribution of HCC patients to

immune subtypes. The necroptosis subtypes C1 and C2 have

tight links with immune subtypes C3 and C4, respectively

(Figure S3C). Consistent with previous research and our

results, immune subtype C3 presented the most favorable

prognosis at both OS and progression-free survival (PFS)
Frontiers in Immunology 06
levels (p < 0.05) (Figures 5D, E). Taken together, two

necroptosis subtypes harbored important prognosis values.
The validation of necroptosis subtypes

Three independent external datasets from distinct platforms

were further retrieved to verify necroptosis subtypes, including

GSE14520, GSE116174, and GSE10141 datasets. According to

characteristic gene expression, the NTP approach was exploited

to explore the stability and reliability of necroptosis subtypes.

The characteristic genes were filtered out when soft threshold b
was set as 5 using WGCNA (Figure S3A). Based on the most

pronounced modules, the pink and red components were

defined as C1- and C2-specific characteristic genes,
FIGURE 1

The flow diagram of this study.
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respectively (Figure S3B). After prediction confidence was

quantified and evaluated, samples with a false discovery rate

(FDR) of less than 0.05 were extracted for subsequent

investigations (Figures 6A, C, E). All the Kaplan–Meier

analyses elaborated that C2 still presented dismal OS in

GSE14520 (Figure 6B), GSE116174 (Figure 6D), and

GSE10141 datasets (Figure 6F). Our results proved the stability

and prognos i s va lue of necroptos i s subtypes v ia

rigorous validation.
Frontiers in Immunology 07
The distinct molecular and clinical
features

As illustrated in Figure 7A, the landscape of somatic

mutation was explored, and the top 20 FMGs were delineated

in HCC patients. Notably, C2 displayed prominently superior

mutational frequency than C1 in common FMGs, especially for

TP53, CTNNB1, TNN, and CACNA1E (Figure 7B). Although

some mutations were not statistically different, there was an
B

C D

E F

A

FIGURE 2

The role of necroptosis in tumor microenvironment (TME). (A) The expression of 115 necroptosis-associated genes between tumor and normal tissue.
(B) The distribution of all samples using principal component analysis (PCA) in TCGA-LIHC dataset. (C) Kaplan–Meier curves of overall survival (OS)
according to the necroptosis score in TCGA-LIHC dataset. (D) Correlations between 28 immune cell infiltration and necroptosis score using Spearman’s
analysis. (E) Correlations between stromal score generated from estimate algorithm and necroptosis score. (F) Correlations between immune score
generated from estimate algorithm and necroptosis score. *p < 0.05, ***p < 0.001.
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obvious tendency for high mutational frequency in C2, such as

PCLO and PRKDC (Figure 7B). To further dissect the genomic

variations, the CNV in bases, fragments, and chromosome arms

were compared and evaluated between the distinct necroptosis

subtypes (Figures 7C, D). Strikingly, C2 presented conspicuous

CNV and harbored much more deletions at bases, fragments,

and chromosome arm levels (Figures 7C, D). For amplification

alterations, C2 also behaved with a higher burden at bases and

fragments, excluding chromosome arm levels (Figures 7C, D). In
Frontiers in Immunology 08
line with somatic mutation and CNV, C2 possessed a more

elevated burden including TMB, aneuploidy score, and HRD

compared to C1 (Figures 7E–G). Taken together, C1 was

regarded as a stable genome subtype, while C2 was

characterized by high genomic instability.

In addition, we also deciphered clinical features between

necroptosis subtypes, encompassing age, gender, and AJCC

stage (Figures 8A–C). There was no statistical significance

between age and gender, while patients in C2 had advanced
B

C

D E

A

FIGURE 3

The identification of necroptosis-associated lncRNAs. (A) Correlations between the expression of immune checkpoint molecules and
necroptosis score. (B) The heatmap reveals the eigengene adjacency of distinct modules. (C) Clustering dendrograms of co-expression network
modules; each module was assigned a color. (D) Correlation analysis between gene modules and necroptosis score. (E) The scatterplot of
module membership (MM) vs gene significance (GS) of the necroptosis score. ***p < 0.001.
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clinical stages, implying a more malignant phenotype

(Figures 8A–C). Considering that C2 is characterized by

elevated cell proliferative and metabolic activities and superior

clinical stage, the poor prognosis was further explained.

Combining these clinical traits, multivariate Cox regression

analysis indicated that both AJCC stage and necroptosis

subtypes were independent risk indicators for assessing OS

(Figure 8D). A similar discovery also appeared in predicting

RFS in TCGA-LIHC dataset (Figure 8E). Therefore, necroptosis

subtypes could be a promising tool to evaluate the prognosis of

HCC patients.
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Integrative assessment of
immunotherapy for hepatocellular
carcinoma patients

The necroptosis subtypes displayed pronounced

heterogeneity in several aspects, including prognosis, genomic

variations, biological characteristics, and clinical features. To

determine optimal treatment and further facilitate the clinical

outcome are urgently needed. To bridge this gap, immune gene

sets of stored 28 immune cells were accessed from a previous

study (Table S3). Compared to C2, C1 was inclined to the
B C

D

E

A

FIGURE 4

Development of necroptosis subtypes by consensus clustering in hepatocellular carcinoma (HCC). (A) Univariate Cox regression analysis of
necroptosis-associated lncRNAs (NALRs). (B) The consensus score matrix of necroptosis subtypes using consensus unsupervised clustering. (C)
The first rank (k = 2) in which proportion of ambiguous clustering (PAC) score displays the lowest was generally defined as the optimal rank. (D)
The silhouette statistic of necroptosis subtype with C1. (E) The silhouette statistic of necroptosis subtype with C2.
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‘immune-hot’ subtype, which harbored much more immune cell

infiltration in TME (Figure 9A). C1 also exhibited more elevated

expression of 27 ICP molecules, including the B7-CD28

superfamily, TNF superfamily, and other molecules

(Figure 9B). Numerous immunologic effector cells were

gathered in C1 subtypes, such as activated B cell, CD4+ T cell,

and CD8+ T cell, indicating stronger antitumor killing ability

(Figure 9C). In addition, co-stimulatory and co-stimulatory

ICPs have a prevalently high expression in C1 relative to C2

(Figures S4A, B). All these immune cell infiltrations and

molecule express ion have promising potent ia l for

immunotherapy. Both leukocyte fraction and TIS score were

higher in C1 rather than C2, implying more responsiveness to
Frontiers in Immunology 10
immunotherapy (Figures 9D, E). Owing to the elevated

expression of HLA molecules, we presumed that patients in

C1 possessed a better capability of delivering antigens

(Figure 9F). Furthermore, the Submap approach was executed

to identify populations of elevated response to immunotherapy,

and the results also indicated that C1 populations might gain

favorable clinical benefits (Figure 9G). Overall, all evidence

highlighted that C1 had enhanced immune repertories to

perform antitumor power and might be more applicable

to immunotherapy.

Subsequently, four immunotherapy datasets encompassed

41 responders, and 98 non-responders were used to estimate the

applicable potential of immunotherapy for C1 populations.
B

C

D E

A

FIGURE 5

The prognostic significance of necroptosis subtypes. (A) Kaplan–Meier curves of overall survival (OS) according to the necroptosis subtypes in
TCGA-LIHC dataset. (B) Kaplan–Meier curves of recurrence-free survival (RFS) according to the necroptosis subtypes in TCGA-LIHC dataset. (C)
Heatmap of 50 Hallmark gene sets among three clusters using the gene set variation analysis (GSVA) algorithm. (D, E) Based on previous
immune subtypes, Kaplan–Meier curves of OS and progression-free survival (PFS) according to different subtypes, respectively.
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According to characteristic genes of C1, a score was calculated

for each patient using the ssGSEA method; and all patients were

assigned into high and low groups by the median value. Of note,

patients in the high group displayed stronger sensitivity to

immunotherapy in GSE100797 (60% vs 18%), GSE35640 (54%

vs 25%), GSE91061 (26% vs 10%), and Nathnaon datasets (27%
Frontiers in Immunology 11
vs 8%) (Figure 10A). The accuracy of immunotherapy evaluation

was further examined by area under the curve (AUC) values in

GSE100797 (0.721), GSE35640 (0.718), GSE91061 (0.737), and

Nathanon datasets (0.750) (Figure 10B). Collectively, patients in

C1 were more suitable for immunotherapy.
B

C D

E F

A

FIGURE 6

The validation of necroptosis subtypes by nearest template prediction (NTP) approach. (A) Validation of two heterogeneous necroptosis
subtypes based on the nearest template prediction (NTP) analysis in GSE14520 dataset. (B) Kaplan–Meier curves of overall survival (OS)
according to the necroptosis subtypes in GSE14520 dataset. (C) Validation of two heterogeneous necroptosis subtypes based on the NTP
analysis in GSE116174 dataset. (D) Kaplan–Meier curves of OS according to the necroptosis subtypes in GSE116174 dataset. (E) Validation of two
heterogeneous necroptosis subtypes based on the NTP analysis in GSE10141 dataset. (F) Kaplan–Meier curves of OS according to the
necroptosis subtypes in GSE10141 dataset.
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Development of potential therapeutic
drugs for hepatocellular carcinoma
patients

To tailor individualized clinical treatment for each patient,

the ridge regression model and CMap database were employed
Frontiers in Immunology 12
to identify latent therapeutic drugs. One strategy used a ridge

regression model based on the pRRophetic package; drug

sensitivity data were calculated and quantified via half-

maximal inhibitory concentration (IC50), developing

candidate drugs. Our study determined that patients in C1

might harbor a superior response to sorafenib, obatoclax,
B

C D

E F

A

G

FIGURE 7

The landscape of genomic alternations in necroptosis subtypes. (A) The overview of somatic mutation with top 20 frequently mutated genes
(FMGs) by waterfall plot. The right panel shows the mutation rate, and genes are ordered by their mutation frequencies. (B) Comparison of top
20 FMGs between necroptosis subtypes. (C) Distributions of fraction of genome alteration (FGA), fraction of genomic gained (FGG), and fraction
of genome lost (FGL) between necroptosis subtypes. (D) Distributions of arm gain, arm loss, focal gain, and focal loss. (E) Distribution of tumor
mutational burden (TMB) between necroptosis subtypes. (F,G) The comparison of aneuploidy score (F) and homologous recombination
deficiency (HRD) (G) between necroptosis subtypes. ns, p >0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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lapatinib, and cisplatin because of lower IC50 values

(Figure 10C). In addition, patients in C2 displayed more

sensitivity to ABT.263, ATRA, BIBW2992, JNK.Inhibitor.VIII,

and PF.4708671 (Figures 11A–E). All these candidate drugs

might bring promising desirable efficacy for specific HCC

patients. Another approach was combining the CMap

database; seeking opposite expression patterns between

molecular subtype and disease phenotype was performed to

identify potential compounds and elucidate the mode of action

(MoA). A total of 22 drugs harbored individualized therapeutic

potential for necroptosis subtypes (Figure 11F). Moreover, the

pathways of these candidate drugs were described, which could
Frontiers in Immunology 13
be utilized to develop more curative drugs (Figure 11G).

Different drugs and targeted pathways might guide

individualized therapy patterns to improve clinical benefits.
Discussion

Currently, tumor heterogeneity is focused on clinical

‘decision-making’ mainly since patients display different

degrees of treatment response and distinct clinical outcomes.

Exploring the tumor heterogeneity is conducive to increasing the

knowledge of HCC and seeking more appropriate treatment
B C

D

E

A

FIGURE 8

The clinical characteristics of heterogeneous necroptosis subtypes. (A–C) Composition percentage of clinical characteristics, including age (A),
gender (B), and American Joint Committee on Cancer (AJCC) stage (C), respectively. (D) Multivariate Cox regression analysis of overall survival
(OS) in TCGA-LIHC dataset. (E) Multivariate Cox regression analysis of recurrence-free survival (RFS) in TCGA-LIHC dataset.
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strategies (29, 30). This study comprehensively elaborated on the

relationships between inter-tumoral heterogeneity and

necroptosis. Based on previously published literature, a total of

115 necroptosis-associated genes were enrolled. Subsequently,

using the WGCNA algorithm and univariate Cox regression

analysis, NALRs were identified, which were further employed to

decode heterogeneous necroptosis subtypes according to the

consensus clustering approach. With the aid of various

evaluation indicators, such as consensus score, CDF curve, and
Frontiers in Immunology 14
PAC, two necroptosis subtypes were determined. Moreover, the

NTP approach elucidated the robustness and reproducibility of

necroptosis subtypes. Further clinical and prognostic analysis

indicated that C1 presented a favorable prognosis while C2

displayed a poor prognosis and superior AJCC stage, and

necroptosis subtypes could serve as an independent prognostic

indicator. All these discoveries delineated that necroptosis might

play a key role in HCC tumorigenesis and increased interest in

more in-depth explorations.
B

C D E

F G

A

FIGURE 9

The immune landscape of heterogeneous necroptosis subtypes. (A) The infiltration abundance of 28 immune cell subsets was evaluated by
single-sample gene set enrichment analysis (ssGSEA) algorithm. (B) The immune checkpoint profiles of necroptosis subtypes, including B7-
CD28 superfamily, TNF superfamily, and other molecules. (C) Distribution of 28 immune cell infiltration between necroptosis subtypes in TCGA-
LIHC dataset. (D) The comparison of leukocyte fraction between necroptosis subtypes. (E) Distribution difference of T-cell inflammatory
signature (TIS) prediction scores between necroptosis subtypes. (F) Distribution of nine HLA molecular expressions between necroptosis
subtypes. (G) Submap analysis exhibited that C1 could be more sensitive to the anti-PD-1 therapy (p < 0.01) ns, p >0.05, *p < 0.05, **p < 0.01,
***p < 0.001.
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The heterogeneous clinical outcome is generally mirrored by

distinct molecular characteristics, such as genomic alterations

(31, 32). Two necroptosis subtypes displayed distinct genomic

variations in multi-omics levels. Through systematic

investigations on genomic variants burden, C1 was prone to

genomic stability, while C2 referred to genomic instability owing

to conspicuous genomic alterations including TMB, FGA, FGG,

and FGL and alterations at chromosome arm and focal levels.

The highly genomic instability is reported to be linked with

immune evasion, enriched proliferative phenotype, and worse

prognosis (32). The pronounced somatic mutations were also
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observed in patients in C2, including TP53, CTNNB1, TNN, and

CACNA1E. Previous studies had revealed that the mutation of

TP53 and CTNNB1 mediated cell cycle and WNT signaling

pathways, resulting in tumor progression (33). In addition,

underlying biological mechanisms regulate cancer biological

behaviors, which harbor intense association with prognosis

(34). With the use of enrichment analysis, the high genomic

instability phenotype C2 also possessed numerous proliferation

and metabolism-related pathways, further favoring malignant

features. The favorable prognosis phenotype C1 showed more

dynamic immune-inflammatory pathways, implying the
B

C

A

FIGURE 10

The evaluation of immunotherapy and drug-associated treatment. (A) The immunotherapy response ratio of risk scores measured by
characteristic genes in GSE100797, GSE35640, GSE91061, and Nathnaon datasets. (B) Receiver operating characteristic (ROC) curves of risk
scores to predict the benefits of immunotherapy in GSE100797, GSE35640, GSE91061, and Nathnaon datasets. (C) The promising therapeutic
agents for patients in C1. ***p < 0.001.
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superior potential for immunotherapy response. Based on

previous immune subtypes (23), we observed a higher

proportion of inflammatory C3 in the C1 subtype and

lymphocyte-depleted C4 in the C2 subtype. Therefore, all the

above findings suggested that C1 harbored more promising

potential to perform desirable benefits for immunotherapy as

compared to C2.

To further seek the optimal treatment option, we estimated

the immune landscape of each patient, encompassing immune
Frontiers in Immunology 16
cell infiltrations, expression of diverse ICPs, distribution of HLA

molecules, fraction of leukocyte cells, etc. In this study, C1 was

inclined to the ‘immune-hot’ subtype as harboring abundant

enrichment of numerous immune cells and various immune-

related molecules. Moreover, HLA molecules are widely

reported to strengthen antitumor ability by antigen

presentation (35), and leukocyte fraction was conducive to

enhancing cytolytic activity (36). Elevated expression of HLA

molecules and a high fraction of leukocyte cells in the C1 subtype
B C D

E F

G

A

FIGURE 11

The development of promising therapeutic agents and description of targeted molecules and corresponding pathways. (A–E) The promising
therapeutic agents for patients in C2, including ABT.263 (A), ATRA (B), BIBW2992 (C), JNK.Inhibitor.VIII (D), and PF.4708671 (E). (F) Heatmap of
enrichment score generated from potential therapeutic compounds. (G) The description of the mode of action (MoA) of compounds targeting
corresponding molecular pathways. ***p < 0.001.
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might arise in better immunotherapeutic response and more

curative benefits. The CD8+ T cells are the main force and direct

effectors to fight against tumors (37, 38). The CD4+ T cells work

as helpers to activate CD8+ T cells, enhancing antitumor

performance (39). Some classical ICPs, CD274 and CTLA-4,

are immunotherapeutic targets, and the higher expression

implies more curative potential (40, 41). Subsequently, two

popular approaches, TIS and Submap, were exploited to

evaluate the immunotherapeutic efficacy of two necroptosis

subtypes. Consistently, C1 still had thrilling potential benefits

for immunotherapy relative to the C2 subtype. To yield more

insights on immunotherapy, our study enrolled three

immunotherapy datasets that contained both expression

profiles and immunotherapeutic clinical information, which

further provided immunotherapy recommendations for

specific populations. Overall, our study throws light on

precision medicine, and patients in C1 were encouraged to

undergo immunotherapy.

As described above, C2 possessed significant malignant

features, including worse prognosis, elevated proliferative and

metabolic activities, advanced AJCC stage, and highly genomic

instability. To fill this gap, we took more consideration to

improving prognosis and facilitating desirable efficacy for the

C2 subtype. Another matter that also needs to be considered was

that a subset of patients displayed sensitivity to specific drugs,

while some of them are suffering from side effects (42).

Therefore, we developed a ridge regression model to identify

potential therapeutic drugs for HCC patients. Based on

expression profiles and large-scale drug sensitivity data, five

potential therapeutic drugs were developed for C2, including

ABT.263, ATRA, BIBW2992, and JNK.Inhibitor.VIII, and

PF.4708671. Among these candidate drugs, ABT.263 is one

Bcl-2 protein family inhibitor, which could strengthen

autophagy to suppress tumor growth by enhancing LC3-II and

inhibiting p62 gene expression (43). The ATRA is a

differentiation inducer of tumor-initiating cells and plays an

antitumor role in tumorigenesis by anti-proliferative and pro-

apoptotic behaviors (44). The PF.4708671 is one S6K1-specific

inhibitor, which impacts pro-apoptotic function by blocking the

mTORC1-S6K1 signaling (45). The BIBW2992, also known as

afatinib, is a second-generation tyrosine kinase inhibitor (TKI)

that could target EGFR and HER2 molecules, resulting in tumor

suppression (46). Moreover, we delineated other representative

therapeutic drugs and latent mechanisms of action using Camp

datasets. Given the above, these potential therapeutic drugs may

provide novel hope for HCC treatment and deliver

precision medicine.

To improve clinical outcomes and provide treatment

recommendations, two necroptosis subtypes were ultimately

identified in this study. Although the strengths of our study

are promising, some limitations should be acknowledged. a) All

patients retrieved in the study were from retrospective studies, so

the conclusions need to be validated by multi-center prospective
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studies. b) Owing to multi-omics data being deficient in

validation datasets, more differences in genomic alterations

should be depicted in the future. c) Much more clinical trial

research is needed for further delineation and exploration, and

more eligible patients with treatment information need to be

enrolled in further studies.

In conclusion, this study uncovered the tumor heterogeneity

and provided two necroptosis subtypes in HCC. The

heterogeneous molecular characteristics were further revealed

in necroptosis subtypes, which harbored distinct clinical

outcomes, genomic landscape, biological behaviors, and

immune characteristics. Patients in C1 were more prone to

obtain conspicuous efficacy from immunotherapy. For patients

in C2, our study developed potential therapeutic drugs that had

desirable efficacy for patients, improving their prognosis.

Overall, this work afforded new insights into tumor

heterogeneity based on necroptosis and tailored individualized

treatment strategies for HCC patients.
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