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The cuproptosis-associated 13
gene signature as a robust
predictor for outcome and
response to immune- and
targeted-therapies in clear cell
renal cell carcinoma

Huiyang Yuan1*, Xin Qin1, Jing Wang2, Qingya Yang1,
Yidong Fan1* and Dawei Xu 3*

1Department of Urology, Qilu Hospital of Shandong University, Jinan, China, 2Department of
Urologic Oncology, The First Affiliated Hospital of University of Science and Technology of China
(USTC), Division of Life Sciences and Medicine, University of Science and Technology of China,
Hefei, China, 3Department of Medicine, Division of Hematology, Bioclinicum and Center for
Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm,
Sweden
Cuproptosis, the newly identified form of regulatory cell death (RCD), results

from mitochondrial proteotoxic stress mediated by copper and FDX1. Little is

known about significances of cuproptosis in oncogenesis. Here we determined

clinical implications of cuproptosis in clear cell renal cell carcinoma (ccRCC).

Based on the correlation and survival analyses of cuproptosis-correlated genes

in TCGA ccRCC cohort, we constructed a cuproptosis-associated 13 gene

signature (CuAGS-13) score system. In both TCGA training and two validation

cohorts, when patients were categorized into high- and low-risk groups

according to a median score as the cutoff, the CuAGS-13 high-risk group

was significantly associated with shorter overall survival (OS) and/or

progression-free survival (PFS) independently (P<0.001 for all). The CuAGS-

13 score assessment could also predict recurrence and recurrence-free

survival of patients at stage I – III with a high accuracy, which outperformed

the ccAccB/ClearCode34 model, a well-established molecular predictor for

ccRCC prognosis. Moreover, patients treated with immune checkpoint

inhibitors (ICIs) acquired complete/partial remissions up to 3-time higher

coupled with significantly longer PFS in the CuAGS-13 low- than high-risk

groups in both training and validation cohorts of ccRCCs (7.2 – 14.1 vs. 2.1 – 3.0

months, P<0.001). The combination of ICI with anti-angiogenic agent

Bevacizumab doubled remission rates in CuAGS-13 high-risk patients while

did not improve the efficacy in the low-risk group. Further analyses showed a

positive correlation between CuAGS-13 and TIDE scores. We also observed

that the CuAGS-13 score assessment accurately predicted patient response to

Sunitinib, and higher remission rates in the low-risk group led to longer PFS

(Low- vs. high-risk, 13.9 vs. 5.8 months, P = 5.0e-12). Taken together, the

CuAGS-13 score assessment serves as a robust predictor for survival,
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recurrence, and response to ICIs, ICI plus anti-angiogenic drugs and Sunitinib

in ccRCC patients, which significantly improves patient stratifications for

precision medicine of ccRCC.
KEYWORDS

ccRCC, cuproptosis, immunotherapy, immune checkpoint inhibitors, prognosis,
targeted therapy
Introduction

Clear cell renal cell carcinoma (ccRCC), derived from the

epithelial cells in the nephron, is the predominant subtype of renal

cell carcinoma (RCC) (up to 80% of all RCCs), and characterized

by the inactivation of the von Hippel Lindau (VHL) gene and

subsequent dysregulation of hypoxia-inducible factor (HIF)-

responsive genes (1–4). ccRCC incidence has increased over the

past decades worldwide (3), while fortunately, most patients are

diagnosed at early stages with localized disease, and thus

successfully resected (2). However, approximately 30% of these

patients will undergo recurrence post-operation (2). Traditionally,

patient clinicopathological features are applied to evaluate

recurrence risk and to predict prognosis (5). More recently,

efforts have been made to identify molecular biomarkers for

reliable outcome prediction of ccRCC (5). Towards this

purpose, several studies developed multigene expression

signatures, and these signatures, either alone or together with

the traditional stratification system, were shown to improve

ccRCC prognostication (5–11). Despite so, molecular and

clinicopathological parameters are still far from accurately

predicting patient outcomes. It is thus demanding tasks to

further develop new biomarkers or molecular tools for ccRCC

prognosis and personalized interventions.

ccRCC is intrinsically insensitive to chemotherapy, and

therefore, other treatment strategies have been applied (12).

For instance, interleukin 2 (IL2), as an immunotherapeutic

agent, has been widely used for metastatic ccRCC (mccRCC)

since decades ago, which achieved complete and durable

responses in a fraction of patients (13, 14). However, severe

side-effects significantly restricted the application of IL2

treatment (15). More recently, boosting anti-cancer immune

response using immune checkpoint inhibitors (ICIs) have

revolutionized the cancer therapy (15, 16). By targeting

immune checkpoint proteins PD-1/PDL-1 and/or CTLA4, the

ICI strategy shows clinical benefits in various cancer types.

Similarly, this approach has been successful in the treatment

of localized ccRCC as adjuvant therapy after nephrectomy and

mccRCC. However, response rates for ccRCC are in general less

than 50% (15, 17). The combined treatment of ICIs with targeted

therapeutic drugs such as Bevacizumab may improve efficacy
02
(18–20). ccRCC exhibits unique immunological features, and

high CD8 T infiltration correlates with poor prognosis, which

contrasts with favorable outcomes observed in other cancer

types (16, 21). In addition, tumor mutation burden (TMB)

predicts ICI response in many solid tumors, but not in ccRCC

(22, 23). PBRM1 mutations and expression of human

endogenous retroviruses (HERVs) were shown to be associated

with response in ccRCC by some studies but could not be

validated in other reports (22, 24–27). More recently, other

biomarkers have been developed to predict patient response to

ICIs (21, 28). Thus, identifying reliable predictors for ICI

response in ccRCC remains unmet demands. It is also poorly

defined which patients will benefit more from the combined

therapy of ICIs with Bevacizumab, which calls for

further investigations.

In addition, Sunitinib, an inhibitor of multiple tyrosine-

kinase receptors, was approved by FDA for the first line

treatment of ccRCC in 2006 (29). Most patients benefit from

the treatment with longer progression-free survival (PFS), but

approximately 1/3 of ccRCCs exhibit intrinsic resistance to

Sunitinib (12). Distinguishing Sunitinib responders from non-

responders is clinically important.

One of the cancer hallmarks is an increased capacity for

survival (30). Evading apoptosis is the well-defined mechanism

for cancer cells to evade death fate (30). There exist other forms

of regulated cell death (RCD), such as ferroptosis, paraptosis and

pyroptosis, and they similarly play a part in modulating cancer

cell survival (31). More recently, a copper-dependent cell death,

so-called cuproptosis, was identified by Tsvetkov et al. (32).

Mechanistically, the reductase FDX1 and copper induce the

lipoylation and aggregation of mitochondrial enzymes

responsible for the tricarboxylic acid (TCA) cycle, and

promote Fe-S cluster protein degradation, thereby leading to

proteotoxic stress and cell death (32). It is currently unclear

whether cuproptosis contributes to the ccRCC pathogenesis and

has any clinical implications in ccRCC managements. The

present study is designed to address these issues. By analyzing

TCGA and other datasets, we identified the cuproptosis-

associated 13 gene signature (CuAGS-13) as a predictor for

patient survival, recurrence and response to ICI, Bevacizumab

and Sunitinib treatments in ccRCC.
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Materials and methods

Data collection and processing of ccRCC
tumors

The TCGA cohort of ccRCCs included 525 tumor samples

with survival information available and 72 nontumorous

adjacent renal tissues (11). Transcriptome, mutation, copy

number variations (CNAs) and clinical-pathological data were

downloaded from https://gdc.cancer.gov/. One hundred and one

patients with ccRCC were in the E-MTAB-1980 cohort (33), and

RNA array and clinical information were downloaded from

http://www.ebi.ac.uk. The ICGC-RECA-EU cohort included 91

ccRCC patients and their clinical and RNA sequencing data were

downloaded from https://dcc.icgc.org/. For RNA sequencing

data, mRNA abundances were expressed as Transcripts Per

Million (TPM). Microarray data of patient-derived xenografts

(PDX) models in GSE64052 were downloaded from the Gene

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/

geo/). For array results (determined by 4×44K v2 microarray kit)

from the E-MTAB-1980 cohort and GSE64052, probe-set values

were used to quantify mRNA levels. ccRCC patients receiving

ICIs, ICIs plus Bevacizumab, and Sunitinib treatments were

contained in IMmotion150 (34, 35), CheckMate025 (23, 24) and

IMmotion151 trials (18, 36). No ethics approval is required for

the present study.
Identification of cuproptosis-associated
genes using weighted gene co-
expression network analysis

For 525 tumors and 72 adjacent non-cancerous renal tissues in

the TCGA ccRCC cohort, the single sample gene set enrichment

(ssGSEA) analysis was carried out to calculate the cuproptosis

ssGSEA score in each sample according to expression levels of 10

cuproptosis genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1,

PDHB, MTF1, GLS and CDKN2A). The enrichment statistic (ES)

value in each sample (ssGSEA score) was calculated using GSVA

package based on standardized mRNA levels [log2(TPM+1)] of

each sample. WGCNA analyses were then performed to establish a

co-expression network based on the cuproptosis ssGSEA score

(Figure S1). Towards this end, hierarchical clustering by average

link first detected outliner samples for exclusion (Figure S1A) and

the Pearson’s correlation matrices were then applied for all pair-

wise genes followed by the construction of a weighted adjacency

matrix. The soft-thresholding parameter or b value, which

highlights strong correlations while penalizes weak correlations

between genes, was set at 6 (scale free R2 = 0.80) for a scale-free

net-work based on the scale independence and mean connectivity

(Figure S1B). The generated adjacency matrix was further

transformed into the topological overlap matrix (TOM). All genes

were categorized into co-expression modules according to TOM-
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method. The first principal component of expressionmatrix is set as

module eigengenes (Figure S1C). A total of 27 modules were finally

identified (Figure S1C). Among these modules, brown andmagenta

ones were highly correlated with the cuproptosis score (Figure 2A).

In addition, tumor and immune scores were integrated into the

analysis of the relationship between cuproptosis score and tumor/

immune scores (Figure 2A).
Construction of the CuAGS-13 risk score

Using the threshold for module membership correlation

>0.5 and gene significance Cor >0.2, we acquired a total of 872

genes, among which 771 genes (in brown modules) correlated

with while 101 genes (in magenta module) anti-correlated with

the cuproptosis score. The impact of these 872 gene levels on

progression-free survival (PFS) was evaluated using univariate

COX regression and K-M analyses and 315 genes were selected

for further analysis by the least absolute shrinkage and selector

operation (LASSO) regression. Thirteen genes were finally

acquired as the cuproptosis-associated gene signature or

CuAGS-13 after verification by the Cox proportional-hazards

model. We calculated CuAGS-13 score in each sample based on

the following formula:

Score = S bi × RNAi, where bi is the coefficient of the i-th
gene in multivariable Cox regression analysis, and RNAi is RNA

expression level of gene i. Patients were divided into the high-

and the low-risk groups using the median score as a cut-off.

Differences in survival (OS, PFS and RFS), recurrence, and

response to ICIs or Sunitinib between the high- and low-risk

groups were analyzed using packages of the R software. The

accuracy of the prediction is evaluated using the ROC curve. For

comparison with the ccA/ccB/ClearCode34 model, the

classification of the TCGA cohort was directly from published

data by Brook et al. (7) and Buttner et al. (8).

Expression differences in CuAGS-13-containing 13 genes

were compared between ccRCC tumors and non-tumorous

adjacent renal tissues in the TCGA cohort. For RNA

expression, log2(TPM+1) based on RNA sequencing data was

form https://gdc.cancer.gov/ as stated above. Protein expression

data was obtained from Clinical Proteomic Tumor Analysis

Consortium (http://ualcan.path.uab.edu/index.html).
Development of a predictive nomogram
for survival and recurrence

Cox regression analysis was performed to determine the

impact of the CuAGS-13 score and clinical variables on survival

and recurrence. Thereafter, based on multivariate Cox regression

analysis results, we constructed a predictive nomogram that

included CuAGS-13 score, age, grade and stage to predict 1-, 3-,
frontiersin.org
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and 5-year survival (OS, PFS and/or RFS) and recurrence.

Predicted survival of the nomogram against observed ones was

plotted using the calibration curve. All nomograms and

assessments of their predicative powers were made using R

package regplot.
TIDE score analysis for response to ICIs

TIDE score is calculated based on myeloid-derived

suppressor cell (MDSC), macrophage M2, T cell Dysfunction

and Exclusion (37). TCGA ccRCC TIDE score was directly

downloaded from http://tide.dfci.harvard.edu/. TIDE score for

ccRCC cohort treated with Nivolumab was calculated online at

http://t ide.dfci .harvard.edu/. mRNA expression was

standardized by using the all sample average expression as the

normalization control prior to TIDE score analysis.
Gene set enrichment analysis

GSEA for KEGG (GSEA-KEGG) and Hallmark (GSEA-

Hallmark) pathways (version 4.2.1 www.broadinstitute.org/

gsea) was carried out to determine CuAGS-13 score-related

signaling enrichments. Adjusted P < 0.05 and FDR <0.25 were

defined as the activation or inhibition of signaling pathways.
Statistical analysis

All statistical analyses were carried out using R package

version 4.0.5. Wilcox and K-W sum tests were used for analysis

of differences between two groups and among multi groups,

respectively. Spearman’s Rank-Order Correlation coefficient was

applied to determine correlation coefficients r between two

variables. Survival analyses were made using log-rank test. The

Survival and Survminer packages were employed to draw

Kaplan–Meier survival curves for visualization of OS, PFS and

RFS. Univariate and multivariate Cox regression analyses were

used to determine the effect (HR and 95% CI) of various

quantitative predictor variables on OS, PFS or RFS. Time-

dependent ROCs and AUCs were made using Rpackage

timeROC. P < 0.05 were considered as statistically significant.
Results

Construction of a cuproptosis-associated
gene signature in the TCGA cohort
of ccRCC

Ten factors, which include FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A, have been
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identified to participate in the cuproptosis process (32)

(Figure 1A). Among these factors, FDX1 functions as a key

player to drive cuproptosis by reducing Cu++ to Cu+ (32)

(Figure 1A). Because it is currently unclear which roles

cuproptosis has in ccRCC pathogenesis, we first sought to

determine whether these 10 molecules were associated with

patient survival but failed to establish a satisfactory model in

the TCGA cohort of ccRCC (Supplementary figures 2 and 3). We

then made ssGSEA analysis to calculate the cuproptosis score in

each sample based on the expression of 10 genes above, followed

by the weighted gene co-expression network analysis (WGCNA)

to look for cuproptosis-correlated genes (Figure 1B). By doing

so, we identified that the cuproptosis score was (i) significantly

correlated with 771 while anti-correlated with 101 genes; (ii)

negatively associated with oncogenesis, indicating a tumor

suppressive role of cuproptosis; and (iii) significantly

correlated with immuneEstimate scores (Figure 2A). COX and

LASSO regression analyses were then carried out to assess the

impact of these 872 genes on patient progression-free survival

(PFS) (Figures 2A–C). We finally acquired 13 genes as the

cuproptosis-associated 13 gene signature, which we named as

CuAGS-13. These 13 genes include TMEM214, CCM2, P3H4,

FDX1, CDC42BPG, C11orf52, GNG7, PAQR5, ENAM,

WDR72, SDR42E1, BSPRY and KDF1. The cuproptosis score

was correlated negatively with the expression of TMEM214,

CCM2 and P3H4, while positively with the rest of them.

TMEM214, CCM2 and P3H4 expression was significantly

higher in tumors than in their normal counterpart tissues

(Figure 2D). In contrast, the expression of the rest 10 genes

was dramatically downregulated in tumors (Figure 2D). Further

CPTAC analyses of their protein expression (9 of 13 protein

expression data available) showed that differences in protein

levels between normal and tumors were largely similar to RNA

expression trends (Figure S4). Each of these 13 factors was

significantly associated with PFS when patients were divided

into high and low categories using a median value as the cutoff

(Figure 2E). In addition, the CuAGS-13 score was significantly

associated with multi clinical-pathological variables including

age, gender, grade, stage, metastasis and white cells in the TCGA

ccRCC cohort (Table S1).
The CuAGS-13 score for survival
prediction in ccRCC

We then sought to determine impacts of the CuAGS-13

score on OS and PFS in 525 ccRCC patients from the TCGA

dataset as a training cohort (Table S1). According to the CuAGS-

13 score in ccRCC tumors, patients were categorized into high-

and low-risk groups using the median score value as a cut-off (>

and ≤ median score, respectively). A Kaplan-Meier analysis

revealed that patients in the high-risk group had significantly

shorter OS and PFS (P<1e-11 and 1e- 20, respectively)
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(Figure 3A). The risk score exhibited a high accuracy in

predicting 1-, 3- and 5-year survival, as assessed by a time-

dependent Receiver Operator Characteristic (ROC) curve

(Figure 3B). Univariate COX regression survival analyses were

further performed by including patient age, gender, stage, grade,

and white cells together with the CuAGS-13 model. As shown in

Figures 3C, D, stage, grade and CuAGS-13 score (high-risk) were

all significantly associated with shorter OS and PFS, while White
Frontiers in Immunology 05
cells were associated with longer PFS without affecting OS, and

female patients had longer PFS. Age was associated with shorter

OS but not PFS. Multivariate analyses revealed that stage, grade

and CuAGS-13 score (high-risk) were all independent

prognostic factors for shorter OS and PFS, while age remained

as a variable associated with shorter OS (Figure 3C). Based the

results above, we established a prognostic nomogram composed

of CuAGS-13 score, age, stage, and grade, which showed a highly
B

A

FIGURE 1

The Cuproptosis pathway and study workflow. (A) Left panel: Ten factors involved in cuproptosis. Right panel: The cuproptosis signaling pathway.
Extracellular copper Cu++ enters cells by binding to copper chelators and elesclomol serves as the most efficient Cu++ transporter. The reductase
FDX1 reduces Cu++ to Cu+, a more toxic form, while lipoyl synthase (LIAS) catalyzes lipoylation of the pyruvate dehydrogenase (PDH) complex
proteins including dihydrolipoamide S-acetyltransferase (DLAT) and others. Cu+ and lipoylation promote the protein aggregation. DLAT is one of the
key enzymes participating in the tricarboxylic acid cycle, and its aggregation results in mitochondrial proteotoxic stress and subsequent cuproptotic
cell death. Moreover, FDX1 and Cu+ induce the destabilization of Fe–S cluster proteins, further facilitating cuproptosis. Additionally, SLC31A1 and
ATP7B function as the Cu+ importer and exporter, respectively, and regulate cuproptosis by controlling intracellular Cu+ concentrations. (B) The
schematic workflow of the present study.
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B C

D E

A

FIGURE 2

The construction of the cuproptosis-associated 13 gene signature (CuAGS-13) for ccRCC prognosis. (A) Left panel: Gene modules correlated
with cuproptosis factors as determined using Weighted gene co-expression network analysis (WGCNA) and Pearson’s co-efficiency analysis.
(B) Scatter plot of module eigengenes in the MEBROWN (left) and MEMANGE (right) modules from (A). The genes in the upper right are selected
for further analyses. (C) Construction of the cuproptosis-associated 13 gene signature (CuAGS-13) for progression-free survival (PFS) prediction
in ccRCC. Top panel: LASSO coefficient profiles of the CuAGS associated with PFS. Bottom panel: Plots of the cross-validation error rates. Each
red dot represents a lambda value with its error bar (the confidence interval for the cross-validated error rate). The analysis identified 13
cuproptosis-associated genes most relevant to PFS. (D) Differences in the CuAGS-13 expression between ccRCC tumors and their non-
tumorous adjacent renal tissues in the TCGA cohort. (E) Kaplan–Meier survival analysis showing the impact of each gene contained in CuAGS-
13 on PFS in the TCGA ccRCC cohort. Patients are divided into high and low groups based on the expression of each gene in tumors using a
median value as the cutoff. ****p < 0.0001.
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H

FIGURE 3

The cuproptosis-associated 13 gene signature (CuAGS-13) model for ccRCC survival prediction. (A) Kaplan–Meier survival analysis showing the
significant association of the CuGAS-13 score with OS and PFS in the TCGA ccRCC cohort. Patients were classified into high- and low-risk
groups based on the CuGAS-13 score using a median value as the cutoff. (B) The ROC curve showing a high accuracy in predicting 1-, 3- and
5-year OS and PFS using the CuGAS-13 model. (C) and (D) Univariate and multivariate Cox regression analyses of OS and PFS in ccRCC,
respectively. (E) and (F) The nomogram composed of CuAGS-13 model, age, grade and stage for predicting 1-, 3- and 5-year OS and PFS,
respectively. (G) The validation of the CuGAS-13 model for the prediction of OS in the EMBA-1980 cohort of ccRCC. (H) The validation of the
CuGAS-13 model for the prediction of OS in the ICGC-RECA-EU cohort of ccRCC.
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accurate estimation of survival possibilities at 1, 3 and 5 years

(Figures 3E, F).

To confirm the findings in the TCGA ccRCC, we further

assessed the effect of the CuAGS-13 score on survival of ccRCC

patients from two other databases as validation cohorts. For the

E-MTAB-1980 cohort of 101 patients (33), OS data were

available, and their clinic-pathological characteristics were

listed in Table S2. The CuAGS-13 score high-risk group had

significantly shorter OS (P = 9.45e-105) and served as an

independent prognostic factor as revealed by the multivariate

Cox regression analysis (Figure 3G). The ROC curve further

showed a robust power in predicting 1-, 3- and 5-year survival

when the CuAGS-13 model was combined with age, grade and

stage (Figure 3G). The ICGC-RECA-EU cohort included 91

ccRCC patients (Table S3) (https://dcc.icgc.org/) and our

analysis results were very similar to those observed in E-

MTAB-1980 cohort (Figure 3H). In those 91 patients, adjacent

normal renal tissues from 45 were also analyzed for their

expression profile, and the comparison in 13 gene expression

between tumors and normal tissues showed largely same

patterns as seen in the TCGA cohort except CDC42BPG

(Figure S5).
The recurrence prediction of ccRCC
patients by the CuAGS-13 model

Approximately 30% of localized ccRCC (I – III stages) will

relapse after surgery, and it is clinically important to stratify

those patients with a higher recurrence risk. We thus assessed

the value of the CuAGS-13 score in recurrence prediction.

Because the ccA/ccB/ClearCode34 molecular classifier has

been successfully applied for such a purpose, we also made a

comparison between it and our CuAGS-13 score system. We

first analyzed all the patients at I -III stages in the TCGA cohort.

The time-dependent ROC curves showed comparable sensitivity

and specificity for predicting recurrence-free survival (RFS) with

both models when combined with age, stage and grade

(Figure 4A). However, these two models classified different

patient groups (<50% of overlapping) as revealed by the

Sankey diagram (Figure 4A right panel). Because patients at

stages II and III are more unpredictable, we further analyzed

these patients separately. As shown in Figure 4B, the CuAGS-13

score performed better, in all three time points. Moreover, we

employed multivariate and co-occurrence index (C-index)

analysis to predict recurrence in 377 patients at I – III stages.

Recurrence occurred in 69 patients with time information

available, and obtained results demonstrated that 56/69

(81.2%) and 44/69 (63.8%) were in the CuAGS-13 high-risk

group and ccB subtype, respectively (P = 0.05) (Figure 4C).

Patients at stage I and II-III were then analyzed separately.

Twenty of 216 stage I patients underwent recurrence, and the
Frontiers in Immunology 08
analysis results by these two models did not differ significantly

(Figure 4D), while the CuAGS-13 score significantly

outperformed the ccA/ccB/ClearCode34 model in predicting

recurrence for patients at stage II and III (CuAGS-13 score vs.

ccA/ccB: 85.7% vs. 65.3%, P = 0.04) (Figure 4E); A Kaplan-Meier

analysis also showed a better stratification of RFS in the stage II –

III patient group using the CuAGS-13 score, whereas the ccA/

ccB/ClearCode34 model failed to predict RFS in this group

(Figures 4F, G). Finally, we developed the CuAGS-13- and

ccA/ccB/ClearCode34-based nomograms to predict RFS in the

TCGA cohort of ccRCC (I – IV) (Figures 4H, I). The comparison

of these two nomograms showed that the CuAGS-13 score-

based nomogram exhibited a much higher consistence between

predicted and observed recurrences (Figures 4H, I, left panels).
The association between genomic
alterations and the CuAGS-13
score in ccRCC

We next wanted to probe a potential link between the

CuAGS-13 score and genomic alterations. Genomic data were

available in 330 of 525 ccRCC tumors and 271 of them (81.12%)

carried somatic mutations. The mutational landscape with 4% or

more mutated genes was shown in Figure 5A. The following

results were obtained from the analysis of ccRCC genomic

alterations: (i) The CuAGS-13 score was significantly

correlated with tumor mutation burden (TMB) in a positive

manner (Figure 5B), and high-risk score tumors carried

significantly a significantly higher frequency of BAP1 and

SETD2 mutations (Figure 5C). (ii) The score and aneuploidy

correlated positively with each other (Figure 5D). (iii)

Homologous recombination deficiency (HRD) was highly

correlated with the risk score (Figure 5E). In addition,

intratumor heterogeneity (ITH), one of the key drivers for

ccRCC evolution (38), was highly correlated with the CuAGS-

13 score (Figure 5F).
The enriched signaling pathways in
ccRCC tumors with high
CuAGS-13 score

We further sought to determine differences in signaling

pathways between CuAGS-13 high and low risk tumors. In the

TCGA cohort, the GSEA-KEGG and Hallmark analyses revealed

31 and seven pathways enriched in CuAGS-high tumors,

respectively (Figure S6), and these pathways were mainly

involved in metabolisms. Unexpectedly, the TCA cycle and

oxidative phosphorylation were also significantly enriched in

this group of tumors. The analysis of the E-MTAB-1980 cohort

showed very similar results (Figure S7).
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FIGURE 4

Comparison of predictive powers for recurrence and recurrence-free survival (RFS) between the CuAGS-13 and ccAccB/Clearcode34 models. (A) The
ROC curve showing accuracy in predicting 1-, 3- and 5-year RFS for patients at stage I – III using CuAGS-13 (Left) and Clearcode34 (Middle) models.
Right: The Sankey diagram showing different patient groups classified the CuAGS-13 and ccAccB/Clearcode34 models. (B) Left: The ROC curve
showing accuracy in predicting 1-, 3- and 5-year RFS for patients at stage II – III using CuAGS-13 (Left) and ccAccB/Clearcode34 (Right) models. (C):
C-index analysis showing higher sensitivity of CuAGS-13 than Clearcode34 models for predicting recurrence in all patients at stage I – III. (D) C-index
analysis showing no significant differences by CuAGS-13 and Clearcode34 models for predicting recurrence in patients at stage I (E) C-index analysis
showing higher sensitivities of the CuAGS-13 than Clearcode34 models for predicting recurrence in stage II-III patients. (F, G) Kaplan–Meier survival
analysis showing RFS predictive powers of CuAGS-13 (F) and Clearcode34 (G) models in patients at stage I and stage II – III, respectively. (H) The
CuAGS-13 model-based nomogram for predicting 1-, 3- and 5-year RFS in TCGA ccRCC patients (stage I – IV). (I) The ccAccB/Clearcode34 model-
based nomogram for predicting 1-, 3- and 5-year RFS in TCGA ccRCC patients (stage I – IV).
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The CuAGS-13 score as a predictor for
response to ICI therapy or combination
with Bevacizumab

ICI therapy has been applied to ccRCC patients, but there is

still lack of established biomarkers reliably predicting response.

We sought to evaluate whether the CuAGS-13 risk score could

serve as such a predictor. The IMmotion150 phase II trial (34,

35), which included 263 ccRCC patients, was analyzed as the

training cohort (Table S4). Among these patients, 86 received

Atezolizumab therapy, 88 were treated with Atezolizumab in

combination with Bevacizumab, and the rest 89 with Sunitinib.
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We first analyzed 86 patients treated with atezolizumab alone.

Patient responses to Atezolizumab were divided into complete/

partial remission (CRPR), stable disease (SD) and progressive

disease (PD). CRPR, SD and PD in the high-risk group were

14.6%, 39% and 46.3%, respectively, while 35%, 47.5% and 17.5%

in the low-risk group, respectively (P = 0.011) (Figure 6A). The

median PFS for high- and low-risk groups were 3 and 14.1

months, respectively (P = 0.004, HR, 2.6 (1.61 – 4.65))

(Figure 6A). For 88 patients treated with both Atezolizumab

and Bevacizumab, the CRPR rate increased robustly from 14.6%

to 30.2% in the high-risk group patients, while was largely same

in the low-risk group (35% vs. 36.6%) (Figure 6B). Nevertheless,
B C
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FIGURE 5

The association between genomic alterations and CuAGS-13 score in ccRCC. (A) The overview of the somatic mutations and relation to the
CuAGS-13 score and clinical-pathological variables in the TCGA ccRCCs. (B) The positive correlation between CuAGS-13 score and tumor
mutation burden (TMB) in the TCGA ccRCCs. (C) ccRCC tumors harboring BAP1 and SETD2 mutations exhibit significantly higher CuAGS-13
scores. (D) Positive correlation between the CuAGS-13 score and aneuploidy in ccRCC tumors. (E) Positive correlation between the CuAGS-13
score and homologous recombination deficiency (HRD) in ccRCC tumors. (F) Positive correlation between the CuAGS-13 score and intratumor
heterogeneity in ccRCC tumors.
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patients with PD during the treatment were 3-time higher in the

high- than low-risk groups (46.5% vs. 14.6%; P = 0.004)

(Figure 6B); and the median PFS for high- and low-risk

groups were 5.3 and 14.9 months, respectively (P = 0.025, HR,

1.8 (1.06 – 3.01)) (Figure 6B). Of note, in the CuAGS-13 high-

risk group, the median PFS increased from 3.0 to 5.3 months

when Bevacizumab was added, but this PFS increase was not

statistically significant compared with that in patients treated

with Atezolizumab alone (P = 0.20; HR, 1.36 (0.83 – 2.22)).

Patients receiving Atezolizumab alone and plus Bevacizumab

were then analyzed together, and increased CRPR while

decreased SD rates were the major changes in the high-risk

group compared with those in patients treated with

Atezolizumab alone. The treatment results between high- and

low-risk groups were CRPR, 22.6% and 35.8%; SD, 29.8% and

49.4%; PD, 47.6% and 14.8%, respectively (P = 6.7e-05)

(Figure 6C). The median PFS for high- and low-risk group

patients were 3.1 and 14.3 months, respectively (P = 1.6e-05; HR,

2.24 (1.52 – 3.29)) (Figure 6C). To probe how the CuAGS-13

score affects the efficacy of ICI therapy, we analyzed its

relationship with Tumor Immune Dysfunction and Exclusion

(TIDE) score, a computational framework to predict responses

to immune checkpoint blockade and determine mechanisms

underlying tumor immune escape (37). As shown in Figure 6D,

the total TIDE score was significantly higher in the high-risk

group. Consistently, exclusion, MDSC and CAF scores

except M2 score were all higher in this group, whereas there

were no differences in Dysfunction score between two

groups (Figure 6D).

For validation, 120 ccRCC patients who received Nivolumab

treatment in the CheckMate025 phase II trial (23, 24) were

analyzed for their efficacy (Table S5). CRPR, SD and PD in the

high-risk group were 13%, 37% and 50%, respectively, while

31.6%, 43.9% and 24.6% in the low-risk group, respectively (P =

0.01) (Figure 6E). The better efficacy in the low-risk group led to

significantly longer patient OS and PFS (Figure 6E). The median

PFS in the high- and low-risk groups was 2.1 and 7.2 months,

respectively (P = 0.0003; HR, 1.98 (1.33 – 2.94) (Figure 6E), while

OS was 17.9 and 38.4 months, respectively (P = 0.004; HR, 1.87

(1.21 – 2.89) (Figure 6E). These results were largely in accordance

with those obtained from IMmotion150. There were no

differences in the total TIDE score and T cell dysfunction score,

however, T-cell exclusion, MDSC and CAF scores were

significantly higher in the high-risk group (Figure 6F), which

was cons i s tent wi th the ana lys i s resu l t obta ined

from IMmotion150.

To further determine the relationship between the CuAGS-

13 and TIDE scores, we analyzed the TCGA cohort of ccRCC.

The total TIDE, dysfunction, exclusion, MDSC and CAF scores

were all significantly higher, while TAMM2 score was lower in

the high-risk group (Figure 6G). These findings favor an

increased TIDE score in the CuAGS-13 high-r isk

group patients.
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The CuAGS-13 score as a predictor for
response to Sunitinib treatment

We also evaluated whether the CuAGS-13 score model could

predict the efficacy in patients treated with Sunitinib. As

documented above, Sunitinib was applied to 89 patients in the

IMmotion150 cohort (34, 35), and the analysis results showed

that the total CR and PR rate was more than 4-fold higher in the

low- than high-risk groups (47.4% vs. 13.6%) (P = 0.004)

(Figure 7A). The median PFS for high- and low-risk groups

was 5.8 and 11 months, respectively (P = 0.03; HR, 1.77 (1.04 –

3.03) (Figure 7C). In the second cohort of 416 ccRCC patients

treated with Sunitinib (IMmotion151) (18, 36) (Table S6), we

obtained similar results (low- vs. high-risk: CRPR, 44.3% vs.

28.8%; SD, 43.8% vs. 42.4%; PD, 11.9 vs. 28.8%. P = 0.0004)

(Figure 7B). In accordance with the findings above, patient PFS

was significantly shorter in the high- than low-risk groups, and

median PFS was 5.8 and 13.9 months, respectively (P = 5.0e-12;

HR, 2.26 (1.78 – 2.88)) (Figure 7C). To determine whether

Sunitinib affects the cuproptosis signaling, we analyzed the

cuproptosis score in tumors derived from patient-derived

xenografts (PDX) models in GSE64052 (39). Microarray data

were available in five untreated and four Sunitinib-resistant PDX

tumors and expression levels of 10 cuproptosis genes were listed

in Table S7. As shown in Figure 7D, the Sunitinib-resistant

tumors expressed lower cuproptosis scores than untreated ones,

however, the difference was not statistically significant.
Discussion

Approximately 30% of ccRCC patients with localized disease

relapses after nephrectomy, and therefore stratifying recurrence

risk is important, especially for patients at stage II and III whose

clinical behaviors are precarious (2, 4). On the other hand, up to

30% ccRCC patients present metastasis at diagnosis and

systemic treatments are required (2, 4). During the last decade,

tyrosine-kinase inhibitors such as Sunitinib, VEGF antibody

Bevacizumab and ICIs have been applied to metastatic or

relapsed patients and good efficacy observed in a subset of

ccRCCs (15, 17). Reliable biomarkers are required to

accurately stratify recurrence risk, and to predict response to

targeted therapeutic drugs and ICIs. In the present study, we

addressed these issues by analyzing ccRCCs from the TCGA and

other datasets to construct a cuproptosis-associated model for

prediction of survival, recurrence and response to ICIs,

Bevacizumab and Sunitinib.

Cuproptosis is copper-dependent cell death resulting from

FDX1-mediated mitochondrial protein lipoylation. FDX1

reduces Cu++ to Cu+, while lipoic acid pathway effectors,

especially lipoyl synthase (LIAS), together with FDX1,

promote the lipoylation of the pyruvate dehydrogenase (PDH)

complex-containing enzymes in the TCA cycle (32). The PDH
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FIGURE 6

The CuAGS-13 score prediction of patient response to immune checkpoint inhibitors (ICIs) and combination with Bevacizumab in ccRCC.
(A–C) The CuAGS-13 score prediction of patient response to Atezolizumab alone or Atezolizumab plus Bevacizumab in IMmotion150 trial.
Differences in response rates and PFS between the CuAGS-13 high- and low-risk group patients treated with Atezolizumab alone (A),
Atezolizumab plus Bevacizumab (B) and all together (C). (D) TIDE score analyses showing differences between the CuAGS-13 high- and low-risk
group patients in IMmotion150 trial. (E) Differences in response rates and survival (OS and PFS) between the CuAGS-13 high- and low-risk group
patients treated with Nivolumab in CheMate025 trial. (F) TIDE score analyses showing differences between the CuAGS-13 high- and low-risk
group patients in CheMate025 trial. (G) TIDE score analyses showing differences between the CuAGS-13 high- and low-risk group patients in
the TCGA ccRCC cohort.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2022.971142
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2022.971142
B

C

D

A

FIGURE 7

The CuAGS-13 score prediction of patient response to Sunitinib in ccRCC. (A) Differences in response rates between the CuAGS-13 high- and
low-risk group patients treated with Sunitinib in IMmotion150 trial. (B) Differences in response rates between the CuAGS-13 high- and low-risk
group patients treated with Sunitinib in IMmotion151 trial. (C) Significant association between shorter PFS and the CuAGS-13 high-risk group
patients treated with Sunitinib in IMmotion150 trial (left) and IMmotion151 trial (right). (D) The lower cuproptosis score in Sunitinib-resistant PDX
tumors. Microarray data in five untreated and four Sunitinib-resistant PDX tumors were analyzed for their cuproptosis score. Left panel:
Heatmap showing expression of 10 cuproptosis factors. Right panel: The cuproptosis score in untreated and Sunitinib-resistant PDX tumors. A
cuproptosis score was calculated using ssGSEA.
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complex includes dihydrolipoamide S-acetyltransferase (DLAT),

pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and

pyruvate dehydrogenase E1 subunit beta (PDHB), and their

lipoylation is required for enzymatic function (32). However,

Cu+ directly binds to the lipoyl moiety in these lipoylated

proteins, and if excessively accumulated, results in lipoylated

protein aggregation, proteotoxic stress and eventual cell death

(32). In addition, FDX1 and Cu+ facilitates degradation of Fe–S

cluster proteins, which further enhances onsets of cuproptosis

(32). It is currently unclear whether cuproptosis, like apoptosis

or other types of RCD, has any roles in oncogenesis. Our

analyses of the TCGA cohort of ccRCC showed that higher

FDX1 expression is significantly associated with longer OS and

PFS, and moreover, its downregulation occurs in ccRCC, which

collectively indicates that cuproptosis may act as tumor

suppressor in this cancer type. Moreover, according to

correlation with cuproptosis factors, we identified a panel of

cuproptosis-associated genes and developed the CuAGS-13

score model that could predict patient OS/PFS and recurrence

risk with a high accuracy.

Gene expression patterns have been shown to improve

cancer classification and prediction of patient outcomes, and

several groups have developed expression profiling-based

molecular tools for ccRCC prognostication (5–10, 40). For

instance, Rini et al. introduced a 16-gene score for recurrence

risk stratification in ccRCC patients at stage I - III (10), and

Buttner et al. set up the S-3 score (the 97 gene signature based on

gene expression in the terminal part of proximal tubules) for

survival assessment (8). More recently, a 13-gene signature was

constructed to predict risk and survival of ccRCCs. However,

these expression signatures have not been well validated

independently. There is another molecular classification score

so-called ccA/ccB/ClearCode34 model (6, 7), which have been

evaluated in several clinical observations, and consistently

showed their robustness in outcome prediction of ccRCC (41).

To test the stratification ability of the CuAGS-13 score, we

further analyzed the same cohorts of ccRCCs from TCGA and

E-MTAB-1980 using the ClearCode34 score and compared the

predictive effectiveness as assessed by both models. The obtained

results demonstrated that the CuAGS-13 score outperformed the

ClearCode34 classifier in predicting recurrence risk and RFS.

Further studies of additional cohorts of ccRCC are required to

confirm the present findings.

Efforts have been made to search for predictors of ICI

response in ccRCC patients, and several molecules are shown

to be useful in some reports but fail to be validated by others

(22–27, 42, 43). Intriguingly, the presence of high CD8 T cells in

tumors is associated with poor prognosis (16). More recently,

other biomarkers have been introduced to predict response to

ICIs (28). Here we observed that the CuAGS-13 score

assessment helped stratify ICI responders in two cohort

patients who received either Atezolizumab or Nivolumab. In

both cohorts, the CRPR rate was more than two-fold higher in
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the low- than high-risk group. Consistently, patients in the low-

risk group had significantly longer PFS. The TIDE analysis

revealed significantly higher T cell exclusion, MDSC and CAF

scores while lower TAM M2 score in the high-risk group from

both cohorts, which may contribute to poor response to ICIs in

this group. It is currently unclear whether cancer

immunotherapy is involved in cuproptosis. Recent studies

showed that CD8 T cells promoted tumor cell lipid

peroxidation and ferroptosis in patients treated with

nivolumab (44, 45). It is thus worth probing the mechanistic

relationship between cuproptosis and ICI efficacy, and if this is

indeed the ant i- tumor mechanism underly ing ICI

immunotherapy, targeting the cuproptosis pathway in

combination with ICIs may be a novel therapeutic strategy.

Combination of anti-angiogenic therapy and ICIs has been

shown to synergistically inhibit tumor growth and progression

(19, 20). Targeting angiogenesis convert the tumor-immune

environment from immune-suppressive to immune-

supportive, thereby promoting the efficacy of ICIs. On the

other hand, ICIs exert an anti-angiogenic effect (19, 20).

However, it remains poorly defined which patients will benefit

from this combination protocol (19). Interestingly, we observed

that the combined treatment of Atezolizumab and Bevacizumab

doubled a CRPR rate in CuAGS-13 high-risk group patients

without improving the efficacy in low-risk group patients.

Moreover, the increased CRPR seen in the high-risk group

with the combined therapy was mainly derived from SD

patients, because the PD rate was largely same between

patients treated with Atezolizumab alone and Atezolizumab

plus Bevacizumab. Based on the present findings, the

Atezolizumab/Bevacizumab combination is suggested to apply

to the CuAGS-13 high-risk patients.

Sunitinib has been widely used for ccRCC treatment (18, 36).

We observed that patients who acquired CRPR were more than

3-time higher in the low-risk group compared with those in the

high-risk group in IMmotion150 cohort treated with Sunitinib.

The analysis of IMmotion151 cohort similarly showed

significantly higher numbers of CRPR patients coupled with

longer PFS in the low-risk group. These findings strongly suggest

that the CuAGS-13 model can be used to predict Sunitinib

responders in ccRCCs. It is currently unclear whether Sunitinib

is associated with cuproptosis induction. Our preliminary results

of GSE64052 PDX tumor analyses showed that Sunitinib-

resistant tumors tended to have a diminished cuproptosis

score, indicating possible escape of cuproptosis. Further

cellular experiments and comparison of cuproptosis between

Sunitinib-sensitive and resistant tumors are required to draw

solid conclusions.

In our investigations, ccRCC tumors carrying BAP1 and

SETD2 mutations exhibited higher CuAGS-13 scores. BAP1 is

responsible for deubiquitinating H2K119, thereby impairing

regulatory function of the polycomb repression complex1

(PRC1) in transcription, while SETD2 demethylate H3K36,
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leading to altered gene transcription (11, 38). During the ccRCC

evolution, both BAP1 and SETD2 act as drivers for disease

progression (38). It will be interesting to explore whether their

mutations result in dysregulation of cuproptosis factors and

escape of cuproptosis in ccRCCs. In addition, aneuploidy and

HRD were significantly correlated with CuAGS-13 scores.

Because BAP1 and SETD2 are required for genomic stability

(38), their mutations may contribute to the correlation between

them observed above. In addition, CuAGS-13 high-risk scores

are significantly associated with male sex, senior age, higher

grade tumors and advanced stages. Taken together, the CuAGS-

13 model is a molecular classifier with many integrate features

of ccRCC.

Metabolic reprogramming is a key feature of ccRCC due to

the VHL inactivation and aberrant accumulation of HIF1/2a.
Indeed, the GSEA analysis revealed that the enriched pathways

were mainly involved in metabolic alterations in ccRCC tumors

with CuAGS-13 high-scores, however, the enrichment of TCA

and oxidative phosphorylation pathways were also observed in

these tumors, which was unexpected. It was observed that

SETD2 loss triggered a switch from glycolysis to OXPHS in

ccRCC cells (46), while tumors with high CuAGS-13 score

exhibited higher frequencies of SETD2 mutations, which

might provide potential explanation. Likely, other unknown

factors make contributions, too and further studies are

required to elucidate this issue.

In summary, cuproptosis is the newly identified form of

RCD, and based on its signaling molecules, we developed the

CuAGS-13 score model that provides a robust tool to predict

patient survival, recurrence, and response to ICIs, Bevacizumab

and Sunitinib in ccRCC. This model, although derived from

cuproptosis-related genes, is a classifier integrated with

molecular and many other features of ccRCC. The present

findings strongly suggest that the CuAGS-13 score system

might significantly improve patient stratification for precision

medicine of ccRCC, and it is worthy of validating these

observations in clinical practices.
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