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Diagnosis and treatment for the
early stage of cytomegalovirus
infection during hematopoietic
stem cell transplantation

Jiaqi Cui †, Kui Zhao †, Yanling Sun †, Ruijuan Wen,
Xiangzhong Zhang, Xudong Li* and Bing Long*

Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
Cytomegalovirus (CMV) infection remains a frequent complication after

hematopoietic stem cell transplantation (HSCT) and causes significant

morbidity and mortality in transplantation recipients. In this review, we

highlight the role of major risk factors that are associated with the incidence

of CMV infection. Advances in immunosurveillance may predict CMV infection,

allowing early interventions to prevent severe infection. Furthermore,

numerous therapeutic strategies against CMV infection after HSCT are

summarized. A comprehensive understanding of the current situation of

CMV treatment may provide a hint for clinical practice and even promote the

development of novel strategies for precision medicine.
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1 Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered to be

the strongest curative treatment for malignant hematologic diseases. It begins with a

conditioning regimen that destroys cancer cells and the immune system, then allows the

recipient to accept an immune system-reconstituting infusion of donor stem cells. Before

the hematopoiesis and immune reconstitution, allo-HSCT recipients are susceptible to

infection by bacteria, fungi, or viruses, which affect the outcome after allo-HSCT. Among

those pathogens, cytomegalovirus (CMV) reactivation is considered one of the most

serious challenges during HSCT.

CMV, classified as the beta-human-herpesvirus type 5 (HHV-5), is prevalent

globally, with seroprevalences ranging from 30% to over 90% according to age and

geographical factors (1–3). Primary CMV infection typically progresses to latency in

human epithelial tissue, polymorphonuclear cells, myeloid progenitors, and T

lymphocytes, for it is normally inhibited by the host’s immune system. In those who
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have received HSCT, latent CMV is often reactivated in the early

stages of immune recovery, usually within 3-4 months after

HSCT (4). Early CMV infection before day 100 after HSCT leads

to numerous end-organ diseases, increases the risk of acute or

chronic graft-versus-host disease (GVHD), enhances invasive

fungal infection, contributes to graft failure and fatal outcomes

(5, 6). In post-transplant patients, early infection was also

mentioned to be associated with increased non-relapse

mortality, which appears to be linked to complex effects on the

post-transplant CMV-specific T cell recovery (7–9). Thus, in this

review, we focus on major risk factors, diagnosis, and

management of early CMV infection after HSCT.
2 Risk factors for CMV infection

As suggested by current studies, there are multiple risk

factors (Table 1) that predispose a patient to CMV infection,

such as the states of both donors and recipients, and the

strategies during HSCT. Among all the risk factors mentioned

above, four of them are considered major: CMV serostatus, acute

or chronic GVHD, type of donor, and in-vivo/ex-vivo T cell

depletion (10, 11).
2.1 CMV donor and recipient serology

In allo-HSCT recipients, the most important risk factor for

CMV infection is the CMV serological status of both donors and

recipients (12). CMV seropositive recipients (R+) have the

highest incidence of reactivation, especially when they were

transplanted from seronegative donors (D−) (13–15). The D−/

R− have the lowest risk of CMV infection (16). In D+/R+ patients,

reactivation may derive from endogenous latent CMV in the R+
Frontiers in Immunology
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and/or from latently infected cells transferred within the D+

stem cell graft. D−/R+ experience the incidence of invasive CMV

disease, which could be a consequence of delayed CMV-specific

immune recovery owing to the lack of pre-existing CMV-specific

memory T cells in the graft (14, 15). The CMV-specific memory

T cells transferred with D+ grafts facilitate antigen-driven

amplification in the recipient early after transplantation and

contribute to early control of the reactivation (14, 15). As a

result, whenever possible, attempts are made to match serostatus

in donors and recipients in current clinical practice. However,

there are debates on the benefits of transferred CMV-specific T

cell (17, 18). Some believed that the benefit is very limited for the

number of CMV-specific memory T cells transferred is small.

Moreover, HSCT recipients are routinely treated with

immunosuppressive agents to prevent GVHD, which will also

inhibit the function of CMV-specific T cells.
2.2 GVHD

The incidence of GVHD increases the risk of CMV infection,

especially with its treatment by steroids (19, 20). Similar to

immunosuppressive drugs, steroids suppress the immune

system by inhibiting CMV-specific T cell activation. In return,

CMV infection may also increase the risk of GVHD. As

reported, CMV-infected cells promote the production of IL-6

and lead to GVHD (21, 22). Years ago, Styczynski’s project

showed that CMV infection occurred nearly twice as much in

patients with acute GVHD as in those without acute GVHD

[P<0.0001, 60.1% (885/1472) vs 32.1% (892/2780)] (23).

Moreover, enhanced transplant-related mortality and

decreased overall survival were reported in those R+ recipients

with acute GVHD (19).
2.3 Type of donor

Recipients of transplants from different types of donors

have been analyzed in multiple studies, including match-

related donors (MRD), match-unrelated donors (MUD),

haploids, and umbilical cord blood (UCB). Accordingly,

CMV infection occurred in less than 40% of MRD transplant

recipients (24–28), while in more than half of MUD (24, 25, 27)

and haploid cases (25–28), respectively. Clearly, the risk of

CMV infection was higher in MUD and haploid transplants

than that in MRD (OR 1.96, 95% 1.76-2.20, P<0.0001). One of

the reasons is that recipients from HLAmismatched donors are

prone to develop GVHD. Alloimmune responses mediated by

GVHD impair thymopoiesis, which delays the reconstitution

of CMV-specific T cells (29). Moreover, recipients of UCB

transplantation have the highest incidence of CMV infection,

with an infection rate of 74.5% (246/330) (30–33). The T cells

in cord blood grafts are naive and have impaired functional
TABLE 1 Risk factors for CMV infection in HSCT.

Recipients

CMV serostatus (R+)

age (elder)

Donor

CMV serostatus and match (mismatch)

human leukocyte antigen (HLA) match (mismatch)

type of donor (unrelated donor)

age (elder)

Pre-transplant

Conditioning regimen (Myeloablative conditioning regimen, MAC)

T-cell depletion (high dose of ATG/ATLG)

Post-transplant

prevention for GVHD (use of immune suppressors)

occurrence GVHD

treatment of GVHD (use of steroids and immune suppressors)
immune reconstitution (recovery of CMV CTLs)
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recovery, which contributes to prolonged reconstitution of

antigen-specific immunity and increased risks of viral

infection (34). Yet recipients from mismatch-unrelated

donors (MMUD) were seldom reported.
2.4 In-vivo/ex-vivo T cell depletion (TCD)

To prevent severe acute and chronic GVHD (aGVHD and

cGVHD), both in-vivo and ex-vivo TCD are used as part of a

myeloablative conditioning regimen prior to allo-HSCT in

malignant diseases. However, these approaches are associated

with delayed immune reconstitution and an increased risk of

infection (26). Compared to in-vivo TCD, traditional ex-vivo

TCD experiences a higher incidence of infectious complications,

and relapse (35). Thus in the current clinical practice, in-vivo

TCD, such as post-transplant cyclophosphamide (PTCy) and

anti-thymocyte (ATG), is the most frequently used method to

prevent GVHD. With the beneficial effect on severe aGVHD and

cGVHD, PTCy resulted in a higher incidence of CMV infection

than other in-vivo TCD approaches (26). ATG is generally

considered to deplete T cells effectively and allow great

expansion of regulatory T cells, which release inflammatory

factors (such as IL-10 and TGF-b) to inhibit GVHD (36).

Compared with patients not receiving ATG, this TCD was

reported to slow down the recipient’s reconstitution of CD4+

and CD8+ T cells in the peripheral blood (37, 38). Different ATG

regimens are applied in current studies, and CMV infections

vary, but many support that a lower dose decreases the risk of

CMV infection (39–41).

In conclusion, CMV infection should be regarded as a

consequence of the single or multiple risk factors mentioned

above. Optimization of these factors helps to achieve a lower

viral activation rate.
3 Post-HSCT immune recovery after
CMV infection

After the transplantation, neutrophils are the first cell line to

reconstitute, followed by monocytes, natural killer (NK) cells,

and T cells by day 100, and B cells take 1 to 2 years (42–44).

During the first 100 days after HSCT, NK cells and T cells are

reported to be the major immune cells that protect the recipient

from CMV infection (Figure 1). NK cells are the first

lymphocytes to recover in HSCT recipients, but are

functionally impaired. When CMV reactivates, it stimulates

and expands a distinctive NK cell population that is able to

secrete cytokines and be cytotoxic. These activated NK cells

express numerous activating and inhibitory receptors on their

surface, matching with the corresponding ligands on healthy

cells (45). One group of the inhibitory receptors, namely killer
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cell immunoglobulin-like receptors (KIRs), specifically

recognizes class I HLA, an inhibitory ligand expressed on

normal cells (45, 46). The balance of receptors and ligands is

essential to keep healthy cells alive. However, class I HLA is

down-regulated in CMV-infected cells, breaking down the

balance. Both the undermined inhibitory effect and the

superiority of activating receptors-ligands signals initiate

cytotoxicity of activated NK cells (45, 47). These NK cells also

secrete cytokines, including tumor necrosis factor-a (TNF-a)

and interferon-g (IFN-g), which likely contribute to the early

control of the CMV infection (45). Moreover, activated NK cells

provide an early source of IFN-g, promoting T helper cell type 1

(Th1) responses, which further enhances CD4+ T cell against

CMV infection by secreting IFN-g and TNF-a (48).

On the other hand, CMV-specific CD4+ and CD8+ T cells

also play an important role against CMV infection. The early

post‐transplant period is characterized by the peripheral

expansion of either donor T cells in the graft or recipient T

cells that survived conditioning. Their memory feature urges

them to react and proliferate rapidly soon after CMV infection,

thereby killing the infected cells. In response to lymphopenia,

proliferated T cells also secrete interleukin (IL) -7 and IL-15 to

promote their reconstitution. Yet, these T cells are with

restricted T cell receptor (TCR) repertoire, limited antigen

specificity, and are alloreactive, which is capable to cause

GVHD (29). In contrast, complete reconstitution of the TCR

relies on bone-marrow-derived and thymus-matured naive T

cells (29). Compared to the early period, this broadens the TCR

diversity of a de novo group of T cells. Intriguingly, this virus was

reported to directly infiltrate the thymic epithelium, activating

cytotoxic T-cell responses toward the thymus, and therefore

impairing this complete immune reconstitution (49).
4 Early detection for CMV infection

To include and benefit as many patients as possible,

particularly for those with inevitable high risks, monitoring

viral DNA is believed to be another crucial approach. Rapid

confirmation of CMV infection will alert the practitioners, and

clinical strategies will be made in time to reduce CMV-related

mortality early after transplantation. With the development of

technology, the ways of monitoring CMV status vary from time

to time.
4.1 Traditional methods for clinical
diagnosis

Over the years, several diagnostic methods have been

developed to detect CMV infection. The most commonly used

methods are detections of the CMV phosphoprotein (pp65)
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antigen by antigenemia assay and DNA viral load using CMV

Quantitative Nucleic Acid Test (QNAT) (50).

4.1.1 CMV antigen
Detecting this viral structural protein (51) was once a

feasible way to diagnose CMV infection for its operational and

economic advantages. However, it has been gradually replaced

by CMV QNAT, another detective approach that aims

specifically at CMV DNA.

4.1.2 CMV QNAT
The application of CMV QNAT has been increased in recent

years given its high sensitivity and quantification of viral load that

conveys important prognostic information of patients (52, 53).
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Yet, there are some limitations. For instance, the results vary

depending on the specimen types. Most CMV DNA in plasma

consists of small fragments, which increases the measured values

and causes bias. Studies suggested that most viral load values in

plasma are about 10-fold higher than that in the whole blood (52),

for both cell-free and intracellular virus DNA can be detected.

Hence, a fixed sample type is recommended for serial viral load

monitoring. Moreover, there is no universal standard for viral

load, due to the lack of standardization among various

commercial and laboratory-developed assays. Although the

W.H.O. expert committee established an International Standard

(IS) for CMV QNAT in October 2010, some variability in the test

results still remains (54). Therefore, most transplant centers have

to establish their own threshold for preemptive therapy (55, 56).
FIGURE 1

Immune recovery in the early stage after CMV infection during HSCT. During the first 100 days after HSCT, NK and T cells play a crucial role in
controlling CMV infection. Matured NK cells directly lyse CMV infected cells or indirectly facilitate Th1 responses to control CMV infection. T cells
also exert their cytotoxic function through both existing and newly generated populations.
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4.2 Novel methods for prediction

The pathogenesis of CMV infection is complex, and it

interacts with the immune system in many ways, mainly

through cellular immunity and humoral immunity. As recently

reported, cytokines produced by CMV-specific CD4+ and CD8+

T helper cells, as well as CMV-specific antibodies produced by

the humoral immune response can be used to predict and

determine the CMV infection (57–60).

4.2.1 CMV-specific antibodies
Recipient CMV seropositivity is a known risk factor for

CMV infection after transplantation, some studies have reported

that CMV-IgG titers before transplantation can predict the risk

of CMV infection (57, 58, 61). However, the results were

contradictory in HSCT and solid organ transplantation (SOT).

In SOT, Bruminhent’s team proposed a lower risk of CMV

infection in patients with higher CMV-IgG titers (57). Yet,

Leonardo et al. argued that a higher recipient pre-

transplantation CMV-IgG titer was significantly associated

with the development of the CMV infection (58). The same

result was observed in another project (61). It retrospectively

analyzed 309 HSCT patients and found that CMV infection

occurred most frequently in the high-titer group. Based on the

observation of clinic practices, a higher CMV-IgG titer might

indicate humoral immunity against CMV itself in organ

transplantation and increased viral load of latently infected

CMV in HSCT recipients. The mechanism is still unclear, and

more projects should be carried out to identify the role of CMV-

specific antibodies in CMV infection.

4.2.2 CD4+/CD8+ specific T cell response
Until recent years, people start to be aware that the different

efficacy in antiviral treatment among recipients is closely related

to the CMV-specific T cell immune response. Assessment of

CMV-specific T cells may help evaluate the risk of CMV

infection, or monitoring of CMV-specific T cells during the

onset of CMV infection may help adjust the strategy of antiviral

therapy. Thus, attempts have been made to measure CMV-

specific-cell-mediated immunity (CMI) in HSCT recipients. In

current assays, CMV-CMI is mainly acquired by indirectly

quantifying cytokines (TNF a, IFN g, IL-2, etc.) or directly

measuring the number of those CMV-specific T cells.

QuantiFERON, an ELISA-based assay indirectly measures

CMV-specific IFN-g (62). The stimuli in this test include 23

CMV peptide epitopes, which allows it to cover a wide spectrum

of CMV subtypes (63). And its testing efficacy has been well

illustrated by multiple prospective studies (63–65). Another

IFN-g–based assay, ELISPOT, measures the cytokine of

mononuclear cells in peripheral blood following ex vivo

stimulation of CMV antigens (IE-1 and pp65). Its better

concordance with CMV infection in patients with a low CMV-
Frontiers in Immunology 05
CMI made it a sensitive approach (66, 67). However, it failed to

show a difference in the project of Barron et al. (68), therefore

the efficacy is still debatable. Flow cytometry with intracellular

cytokine staining (ICS) can not only measure multiple CMV-

specific cellular markers, but also the number of CMV-specific T

cells (69). However, it lacks standardization. In addition,

clinicians may obtain different results depending on the

method selected to measure CMV-specific CMI and large-scale

prospective studies are insufficient.

Despite the limitation, CMV-CMI seems to affect the

development and prognosis of CMV infection. Cellular

immunity mediated by T cells is known to be responsible for

controlling CMV replication, and the absence or delayed

recovery of CMV-specific T cells causes CMV infection and

CMV diseases (70–72). Even though more studies are necessary

before their practical applications, monitoring CMV-specific

antibodies and CMV-specific cell responses, may help in

determining the duration of prophylaxis and treatment,

thereby minimizing drug exposure.
5 Current therapeutic strategies for
CMV infection in HSCT

5.1 Preemptive treatment

Preemptive treatment is the most widely used strategy for

the prevention of CMV infection after HSCT, which is initiated

right after the early detection of CMV infection.
5.1.1 Antiviral agents for treatment
Antiviral agents serve as the backbone for CMV treatment in

transplant recipients (73): the first-line anti-CMV medication

includes intravenous ganciclovir or oral valganciclovir, while

foscarnet and cidofovir are considered second-line agents that

are reserved for treatment of resistant and refractory CMV.

Antiviral agents have been reported to achieve CMV elimination

in up to 70% of cases, which greatly reduces the incidence of

CMV disease, one of the most dangerous post-transplant

complications, whose current morbidity is nearly10% of HSCT

patients (23, 50). However, routine usage of preemptive therapy

also shows significant side effects including granulopenia/

agranulocytosis (ganciclovir and valganciclovir) and renal

dysfunction (foscarnet and cidofovir) (52, 74). Maribavir, a

novel antiviral agent for CMV, has been brought up recently.

It is a benzimidazole antiviral that inhibits viral replication by

inhibiting the viral protein kinase UL97 (64). After successful

Phase 1 and 2 trials, maribavir failed to show efficacy in the

initial Phase 3 clinical trial (75). Although maribavir is not

routinely used as a first-line preemptive treatment, it is

recommended as a second-line treatment for resistant CMV

infection, because its therapeutic efficacy has been proved in
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more than half of the refractory and drug-resistant cases in

Robin K Avery’s study (76). Recently, drug resistance has been

reported with the emergence of the mutations in the UL97

kinase, particularly the virus strains that resist ganciclovir and its

pro-drug valganciclovir, since they have been used as first-line

drugs in approximately 90% of patients (77). However,

resistance can develop with all antiviral drugs used for CMV

prophylaxis and therapy. Therefore, the resistance must be

considered in patients whose CMV load still increases even

though they are on appropriately dosed therapy for 2 weeks.

5.1.2 CMV intravenous immunoglobulin
(CMV-IVIG) for treatment

CMV-IVIG functions to prevent CMV from entering the

host cells. Besides, this CMV-specific antibody facilitates

cytotoxicity, phagocytosis, and complement-mediated cytolysis

(78–80). With these capabilities, strategies combining CMV-

IVIG and antiviral agents have been proposed for CMV

treatment: some found that, for preemptive treatment, this

IVIG reduced the high risk of CMV infection from 62% to

36% (81–83). Compared to antiviral agents, CMV-IVIG offers

an alternative option for CMV treatment without renal and bone

marrow impairment. However, according to the 2017 European

Conference on Infections in Leukaemia (ECIL 7) guideline, the

addition of CMV-IVIG to second-line or third-line treatment is

not recommended, except for the CMV pneumonia (1), for there

is still a lack of solid evidence.

5.1.3 Adopted T cell therapy
Since cellular immunity is essential for the control of CMV

infection, the use of CMV special cytotoxic lymphocytes (CTLs)

becomes an attractive emerging therapy. There are various ways

to generate CMV-specific T cells, which involve stimulation of

CMV-specific cells by using the viral peptides, protein, lysate, or

antigen-presenting cells. Then, CMV-specific T cells can be

expanded in vitro or by direct infusion into the recipients,

thus proliferating under a physiological environment in vivo

(84). As reported, adoptive CMV special T cells therapy can be

useful in controlling resistant and refractory CMV infection. In a

prospective multicenter clinical trial, HSCT patients with

refractory CMV infection received ex vivo CMV-specific T

cells, were all detected CMV epitope CMV-specific T cells

(85). Another study from a single center examined the CMV-

specific T cells expansion of 32 HSCT patients with refractory

CMV infection and showed that 27 of 32 (84.4%) patients had a

resolution of CMV infection within 4 weeks after adoptive T-cell

transfer, and did not experience further viral recurrence (86).

However, long-term in vivo persistence of transferred CMV-

specific T cells required the development of an endogenous

CMV-specific T-helper response. Therefore, the limitation

restrains these strategies from being popularized in the clinical
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practice (87). Moreover, current studies that used adoptive

special T cells for the treatment of resistant and refractory

CMV infection were limited by small numbers and lacked

comparison groups in the setting of randomized controlled

trials (85, 86, 88, 89). More studies are needed to assess

its efficacy.

Though preemptive treatment greatly reduces the risk of

CMV infection, several studies have demonstrated that CMV

infection after HSCT was associated with increased overall and

all-cause mortality, and the risk increases with the viral load (9,

90), independent of the use of preemptive therapy (90, 91).

Therefore, prevention of viral replication, rather than

surveillance-based preemptive therapy, is considered a more

suitable choice for allogenic transplant recipients at high risk

of CMV infection.
5.2 General prophylaxis

General prophylaxis usually refers to the usage of antiviral

agents to prevent CMV infection prior to HSCT. The antiviral

agent is administered shortly before transplantation, and

continued for at least 3 months (92, 93).
5.2.1 Antiviral agents for prophylaxis
In the 1980s and 1990s, anti-CMV prophylaxis with high-

dose acyclovir or valacyclovir was brought up for the first time

owing to the efficacy of suppressing the CMV infection (94). For

decades, effective agents to control CMV infection were limited

to those with significant toxicity, such as ganciclovir, foscarnet,

and cidofovir. And ganciclovir is the only drug that has been

evaluated as prophylaxis in randomized trials (17, 95, 96).

However, it failed to improve the overall survival due to severe

neutropenia, as well as secondary bacterial and fungal infections

(1, 18, 97). Thus, antiviral prophylaxis has not been considered a

routine or common approach for most centers.

Recently, clinical trials on novel antiviral agents for CMV

prophylaxis have been studied. Letermovir, a novel antiviral

agent that inhibits the viral terminase complex without major

toxic effects, is recently approved to decrease CMV infection

after HSCT in phase 3, randomized, placebo-controlled trial

(98). After the result of this trial, many centers have adopted the

use of letermovir prophylaxis to prevent CMV infection after

HSCT. The result of this trial has been replicated in the real

world too (99, 100). Despite its favorable clinical efficacy, there

appeared to be an increased rate of late CMV events after the

discontinuation of the letermovir prophylaxis (98). A

prospective study of 56 allogenic transplant recipients who

received letermovir as prophylaxis, compared to those who

received PCR-guide preemptive therapy, showed that

letermovir may delay CMV-specific T cell reconstitution,
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which is possibly related to decreased CMV antigen exposure

(101). Moreover, mutations in CMV UL56 terminase leading to

letermovir resistance in HSCT recipients have been reported

(102), yet further evaluation is still necessary. In addition to the

drug resistance, false-positive cases were also reported (103).

Letermovir inhibits the terminal phase of CMV replication by

targeting the CMV terminase complex. As a result, a very late

stage of CMV replication is inhibited and the long DNA

concatenator is unable to split into individual viral subunits,

producing noninfectious long DNA molecules, which can be

detected by the current highly sensitive CMV QNAT method in

the blood sample. Therefore, the results of CMV QNAT during

letermovir prophylaxis may be misinterpreted.

Another novel antiviral agent, brincidofovir, is a lipid

conjugate prodrug of cidofovir, which reduces the nephrotoxic

and marrow toxic side effects of cidofovir. A phase 3 randomized

controlled trial that compared brincidofovir to placebo for CMV

prophylaxis in HSCT patients failed to show a reduction in

clinically significant CMV infection at 24 weeks. The agent was

also associated with an increased incidence of GVHD (104), and

its use was not approved for this indication. In addition, current

antiviral agents do not target CMV during latency, but viral

replication. This highlights the potential for clinically relevant

recurrence of CMV infection following therapy cessation.
5.2.2 CMV-IVIG for prophylaxis
After HSCT, the deficiencies of cellular and humoral

immunity give chances to viral infections. Owing to the

immune deprivation before immunological reconstitution or

persistent immune dysfunction in post-HSCT, several studies

started to focus on CMV-IVIG in preventing CMV infection and

disease in the past decades. There was evidence from the 1980s

to 1990s indicating that prophylactic use of CMV-IVIG was

associated with reduced incidence of CMV infection and

improved disease condition (105, 106). Following these

studies, randomized controlled trials and large meta-analyses

refuted the role of CMV-IVIG in preventing CMV infection, for
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it found no significant effect on CMV infections or overall

mortality (107, 108). As a result, CMV-IVIG was not included

in the updated guidelines for CMV prevention after HSCT.

However, with the development of HSCT technology including

reduced-intensity conditioning and the elder population of

patients receiving HSCT, present clinical practice in HSCT

may differ from the previous one (107). In addition, recent

technical development of immunoglobulin production has

improved intact CMV-IVIG preparations with normal half-

lives, effector functions, higher pathogen safety, and fewer

coagulating factors (109). Taken together, the previously

available data may not be adequate to inform current HSCT

practices. Accordingly, several recent clinical trials have

suggested that prophylactic CMV-IVIG showed a significant

reduction in CMV infection (83, 110, 111)(Table 2). Given the

well-established mechanisms and its safety profile as well as less

toxicity, CMV-IVIG has a promising future as prophylaxis in

selective patients who are susceptible to CMV infection.

Likewise, further randomized controlled trials also are needed.
5.2.3 Adopted T-cell therapy
CMV CTLs immunotherapy has been used more frequently

in HSCT. Some centers have investigated its use as a prophylactic

measure to prevent CMV infection in HSCT recipients, and

showed that adoptive T cell therapy is beneficial to prevent

CMV infection (112, 113). In one study, prophylactic adoptive

transfer of ex vivo CTLs was given to nine R+ HSCT recipients.

Two R+ developed CMV viremia, while none of them required

antiviral treatment and were cured (112). Another study showed

that infusions of low-dose donor memory T-lymphocytes may

lead to the expansion of CMV CTLs, and therefore prevent CMV

infection in HSCT transplantation (113).

However, these studies were limited by insufficient sample

sizes and the lack of comparison groups in the setting of

randomized controlled trials. Before clinical practice,

additional large-scale studies are necessary to further evaluate

its efficacy and side effects.
TABLE 2 Trials of CMV-IVIG prophylaxis for CMV infection in the past five years.

CMV infection

References Cohort Eligibility criteria Cases CMV-
IVIG
Dose

Regime Control
group

Treatment
group (%)

Control
group (%)

Follow-
up

Gal et al. (2017)
(110)

Israelite first-time allo-HSCT
HLA-identical sibling

109 500mg/kg Day -7 to 0, then qw till
+100d

No
treatment

10 (12.2%) 11 (40.7%) 1 year

Danniel et al.
(2019) (111)

American CMV D+/R− allo-HSCT 53 200 mg/kg on Day -8, -6, 0, 7, 14,
21, 28, 42, 56, 70

No
treatment

7 (29.2%) 12 (41.4%) 100 days

Michele et al.
(2019) (83)

Italian allo-HSCT
received at least one
dose of CMV-IVIG

92 50UI/kg Different schedules No
treatment

0 (0%) 59 (75.6%) 100 days
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5.2.4 CMV vaccines
The development of an effective and safe vaccine against

CMV remains an important medical priority. Few vaccine trials

for prophylaxis of CMV infection are currently underway (114,

115). ASP0113, the DNA vaccine, is the most studied in HSCT

recipients. ASP0113 contains two types of plasmids encoding the

CMV antigens tegument pp65 and gB: the former is a major

structural protein of CMV, and it is also a dominant CMV

antigen recognized by CD4+ and CD8+ T cells (116); the latter is

a surface protein that is neutralized by antibodies (117).

Therefore after being vaccinated, pp65 induces T cell-mediated

responses, while gB causes the release of viral-specific antibodies,

representing the activation of host cellular and humoral

immunity respectively (118). The prophylactic effectiveness of

this CMV vaccine has been proved in a phase 2 study (115), yet

its phase 3 study is being still carried on. Even though CMV

vaccine development is promising, it appears that the translation

to clinical practice may still take years.
5.3 CMV disease treatment during early
CMV infection

Since the prevalence of therapeutic strategies against CMV

infection, the incidence of CMV disease in the early stages of

HSCT has been reduced, and the current morbidity rate is nearly

3% (119). The most common CMV disease has switched from
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CMV pneumonia to CMV gastrointestinal disease. Despite the

rareness, the mortality of CMV pneumonia remains high. Once

the diagnosis is confirmed, a combination of intravenous

ganciclovir and high-dose IVIG is standardly recommended

(120–122). However, given the non-randomized setting of

these studies, the efficacy of IVIG is still debatable. For other

CMV diseases, ganciclovir is the first-line choice. When the toxic

effects or drug resistance restrain the usage of ganciclovir,

foscarnet and cidofovir can be chosen as substitutes (1).

Maribavir is recommended as a second-line treatment for

resistant CMV infection (76).
6 Summary

CMV is a highly prevalent, opportunistic pathogen that

continues to cause CMV infection and CMV disease, whose

increased morbidity and mortality are considered as a big

challenge for HSCT. To better prevent and control its

infection, further understanding of the conditions that

enable its susceptibility to infection is required. Future

strategies of diagnosis might involve plasmatic metabolomics

profiling to predict the emergence of CMV infection. Though

current treatment against CMV has been summarized

(Table 3), novel therapies for CMV infection are actively

being pursued and these will benefit the HSCT recipients in

the near future.
TABLE 3 Preemptive and prophylaxis treatment for CMV infection.

Preemptive Prophylaxis

Ganciclovir Dose 5mg/kg iv q12h Day 0-5 5mg/kg iv q12h;
Day 6-100 5mg/kg iv qd

CMV infection/disease NA/4.8%-14% (95, 96) 3% (91)/2.7% (95)

Side effect 11% (severe neutropenia) (96) 30% (severe neutropenia) (92)

Valganciclovir Dose 900mg po bid 900mg po qd

CMV infection/disease 40%/NA (123) 28%/2% (94)

Side effect 40% (hematological toxicity) (123) 7-8% (Nausea and Vomiting) (94)

Foscarnet Dose 60mg/kg iv q8h or 90mg/kg q12h NA

CMV infection/disease NA/4.5% (96) NA

Side effect 5% (impaired renal function),
4% (severe neutropenia) (96)

NA

Letermovir Dose NA 480mg po qd(240mg if with CsA)

CMV infection/disease NA 16%/1.5% (98)

Side effect 18.5% Vomiting and 14.5% edema (98)

CMV-IVIG Dose 100mg/kg, within 3 days after CMVemia different schedules (83, 110, 111)

CMV infection/disease NA/4.8% (92) 0-29.2% (83, 110, 111)/NA

Side effect Infusion reactions Infusion reactions

Adopted T cell therapy Graft ex vivo CMV CTLs ex vivo CMV CTLs or donor memory T-lymphocytes

outcome 84.4%-100% responded (83, 84) 64.5%-66.7% responded (112, 113)

Side effect Infusion reactions No significant adverse event
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