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Immunotherapy for food-allergic patients has been effective in inducing

desensitization in some populations, but long-term tolerance has remained

an elusive target. A challenge facing our field is how to differentiate immune

markers that are impacted by immunotherapy from those that are critical

biomarkers of tolerance. Data from recent clinical trials have identified several

biomarkers andmechanisms for achieving tolerance. These biomarkers include

younger age, lower food-specific IgE, lower food component-specific IgE,

specific linear epitope profiles, and subsets of food-specific CD4+ T cells.

Additional biomarkers under investigation for their relevance in tolerance

induction include TCR repertoires, gastrointestinal and skin microbiome, and

local tissue immunity. This mini-review highlights recent advances in

understanding biomarkers and mechanisms of tolerance induction in food

immunotherapy and how these are influencing clinical trial development.

KEYWORDS

peanut allergy, food allergy, tolerance, allergen immunotherapy (AIT), oral

immunotherapy (OIT)
Introduction

Global estimates of the rate of food allergy are as high as 11%, with higher prevalence

amongst children and inWestern countries (1–3). Despite the frequency of food allergies,

the most common clinical management strategy is to avoid the offending food and carry

an epinephrine autoinjector. Multiple small trials of peanut oral immunotherapy (OIT)

conducted from the 1990s to 2010s and assessed in a meta-analysis suggested that the

threshold of reactivity to peanut could be improved through OIT (4). The landmark

Peanut Allergy Oral Immunotherapy Study of AR101 for Desensitization in Children and
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Adults (PALISADE) trial, a phase 3 trial of OIT with AR101, a

peanut-derived powder, provided the confirmatory evidence in a

large clinical trial that we could modulate the immune system of

a large population of peanut-allergic patients and prevent their

reactions to peanut consumption (5). In 2020, the FDA

approved the first OIT product for peanut allergy based on

this trial (6). Importantly, the primary outcome of the

PALISADE trial was desensitization, defined as the ability to

consume a food without allergic reaction while still on therapy.

Subsequent trials have aimed to achieve tolerance, which is

defined as the ability to consume a food without reaction even

after stopping therapy. Numerous terms synonymous with

tolerance are used in the literature including sustained

unresponsiveness and remission.

Achievement of tolerance has proven to be relatively elusive,

leading to the investigation of new approaches including altering

the route of immunotherapy (e.g. sublingual, epicutaneous),

adding a biologic or adjuvant to immunotherapy, vaccines,

and peptide therapy. Mechanistic studies have been and are

being performed in association with clinical trials to elucidate

the immune mechanisms necessary to achieve desensitization

and subsequent tolerance. Improving our understanding of these

mechanisms is essential to moving this field forward. The aim of

this mini-review is to discuss known mechanisms to achieve

desensitization and/or tolerance with an eye on how this can

inform design of future clinical trials.
Immunologic response to
immunotherapy

Innate immune response

Examination of the innate immune response to

immunotherapy (IT) has revealed novel mechanisms of

desensitization and tolerance. Dendritic cells play an important

role in the pathophysiology of atopy through antigen presentation,

pro-inflammatory cytokine production, and preferential

promotion of Th2 differentiation over Treg differentiation (7).

Peanut OIT, SLIT, and milk SLIT all decrease TLR-induced pro-

inflammatory cytokine production of monocytic dendritic cells (8,

9). Peanut OIT has also been shown to lead to a partial

improvement in impaired IFN-a secretion by plasmacytoid

dendritic cells (7, 8, 10). It is likely that dendritic cells have roles

in tolerance, but replication of the above findings and additional

clarification of pro-tolerogenic roles is needed.
Cytokine response

Atopy, and food allergy specifically, is known to be mediated

primarily by the Th2 axis of the adaptive immune system. Most

early studies of food immunotherapy have shown that Th2
Frontiers in Immunology 02
cytokines are decreased by OIT. Specific cytokines for which food

immunotherapy causes decreases in peripheral blood levels include

IL-5 (11–14), IL-4 (13), and IL-13 (12, 14). However, IL-5 levels

have also been shown to increase in response to peanut OIT (15).

While mouse studies have shown that either maintenance of

adequate levels or increased levels of Th1 cytokines and the

regulatory cytokine IL-10 in OIT may be important for tolerance

development, there are few studies looking at this in humans (16,

17). One trial of peanut SLIT found no changes in IL-10 or IFN-g
in participants who received SLIT (11). Some trials of peanut

OIT found a reduction in IL-10 (13, 14), IFN-g (14), and TNF-a
(14), but one trial of peanut OIT had conflicting findings of an

increase in IL-10, IFN-g, and TNF-a (15). The role of these

cytokines in tolerance requires further study and is becoming

increasingly relevant in an era of targeted biologics.
Humoral immune response

It is well-established that food-specific IgE levels increase

transiently early in treatment with food IT but are thereafter

decreased (11, 18–21). IgE to food-specific components are also

decreased in response to immunotherapy (21–24). While lower

baseline food-specific IgE has been identified as a biomarker of

tolerance development (discussed below), no trials have found

that decreasing food or component-specific IgE below a

particular threshold led to tolerance.

Food and component-specific IgG4 are increased by food IT

(11, 12, 18, 20, 22, 23), but again, neither changes in IgG4 levels

nor the ratio of food-specific IgG4 to food-specific IgE have been

associated with tolerance development. It is also possible that IgG4

doesn’t correlate with tolerance because it is a reflection of

exposure to the allergen prior to IT initiation and is thus

reflective of less severe allergy at baseline. Food immunotherapy

trials have largely not measured other IgG subclasses (25), though

in vitro studies suggest that IgG2 & IgG3 are also relevant to

blocking mast cell degranulation (26, 27). Additional studies are

needed to measure IgG1, 2, 3, and 4 levels and relate them to food

immunotherapy outcomes.

Immunotherapy has also been shown to alter IgE binding to

sequential (linear) peanut epitopes. In a trial of milk OIT,

significant changes were induced in 73% of IgE-binding and

91% of IgG4-binding epitopes and epitope diversity was

significantly decreased for IgE but not IgG4-specific epitopes

(28). Overall, OIT-induced changes in epitope diversity were not

different between participants who achieved desensitization

without tolerance compared to those who achieved

desensitization and tolerance (28).

Studies of B cells in food IT are limited in part due to their

low frequency in peripheral blood (29). One study using

tetramer-based approach found that peanut OIT led to an

early increase in affinity matured, somatically hypermutated,

oligoclonal Ara h 2 specific memory B cells (30). Another study
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utilized sorting of Ara h 1 or 2 reactive B cells followed by deep

sequencing of the B cell repertoire and discovered that

immunotherapy induces somatic mutations in IgG4 (29). A

potential implication of this finding is that OIT may induce

IgG4 with a higher affinity to block IgE-mediated mast cell

degranulation. With recent technological advances, including

single cell omics and use of tetramers, we may be better able to

understand the role of B cells in response to immunotherapy.
T cell response

Antigen-specific Th2 CD4+ cells most critical to food allergy

pathogenesis and induction of tolerance are defined differently across

studies and it appears that there is heterogeneity within this

population of cells (21, 31–33). Regardless of whether these cells

are defined as IL-4 and/or IL-13 producing antigen-specific CD4+

cells, as antigen-specific Th2A cells (CD4+CD45RO+CD27-

CD45RBloCRTH2+CD49d+CD161+), or by their transcriptomic

signature, they exhibit a sharp decrease early (by 12 weeks) in IT

and a continued slower decrease thereafter (20, 21, 33). These cells

also drop to lower frequencies in patients who go on to develop

desensitization (32), implying that depletion of this cell population

may be a crucial step in the pathway to tolerance. However, whether

deletion, anergy, or exhaustion is required is still under investigation.

There are two studies to date that suggest development of an anergic

cluster of T cells is necessary for desensitization to food allergens (33,

34), but studies in mice and/or of aeroallergen desensitization in

humans provide mixed data about whether deletion, anergy, or

exhaustion is required (31, 35–38). One study of peanut OIT also

suggests that transient changes in antigen-specific Th2 CD4+ cells

may also be relevant for tolerance (39).

Conceptually, it would make sense that Treg cells are

important in tolerance development. However, data from

immunotherapy (IT) studies on Treg frequency differ with

some studies finding that IT leads to increases in Tregs (12,

40), others finding the opposite (21), and still others finding no

impact of IT on Tregs (11, 21). This may be in part due to

differences in how Tregs are defined or which subtypes are

evaluated in each study.

A recently identified subset of T follicular helper cells (Tfh),

Tfh13 cells, has been shown to have a key role in the

pathogenesis of food allergy through production of high-

affinity IgE (41). Unfortunately, evidence is again conflicting as

to whether these cell populations are altered by IT and whether

modulation of these cells is needed for tolerance (33, 39).
Basophil response

The basophil activation test (BAT) is a laboratory assay

whereby a participant’s basophils are stimulated with the

relevant allergen and measures of basophil activation
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(reactivity) are recorded (42). BAT is useful in the diagnosis of

food allergy and is often measured in clinical trials of food IT (9,

14, 20, 22, 40, 42–46). It has been well-established that oral

immunotherapy (OIT), sublingual immunotherapy (SLIT), and

epicutaneous immunotherapy (EPIT) all result in decreases in

BAT (14, 20, 43, 45). Lower basophil reactivity can be seen as

early as the build-up phase of immunotherapy and either

continues to decrease or remains stable during maintenance

(22, 43, 45). Several studies, including studies of peanut OIT and

milk OIT/SLIT have found that early decreases in BAT, during

or at the end of immunotherapy build-up, predict later

development of tolerance (43, 44). In the Peanut Oral

Immunotherapy Study: Safety, Efficacy and Discovery

(POISED) trial, lower basophil activation throughout the trial

correlated with development of tolerance (45). Notably,

decreases in basophil reactivity have been identified to be

transient, often rebounding after immunotherapy is

discontinued (9, 22, 45). Despite the rebound, participants

who achieved clinical tolerance in POISED and another trial,

the Peanut Oral Immunotherapy in Children (IMPACT) trial,

had less increase in basophil reactivity after discontinuation of

IT than did participants who did not achieve tolerance (22, 45).

Together, these data suggest that decreasing basophil reactivity is

necessary to achieve clinical desensitization and tolerance. It is

possible that we achieve low rates of tolerance in food

immunotherapy clinical trials in part because we have not yet

achieved a sufficient degree of basophil blocking and/or

suppression or the mechanism by which we accomplish

basophil blocking and/or suppression is not permanent.
Baseline biomarkers that predict
desensitization and tolerance

In addition to understanding mechanisms by which tolerance

can be achieved, there is utility in recognizing biomarkers that are

predictive of tolerance prior to initiation of immunotherapy.

Baseline biomarkers identified in clinical trials include food-

specific antibodies, basophil activation tests, and T cell subsets.

Clarification of such biomarkers would provide clinicians with tools

to select and appropriately counsel patients and their families

regarding likelihood of achieving a good clinical response to

immunotherapy. Clinical trials targeting biomarkers of poor

response with specific adjuvants to immunotherapy may be a

worthwhile approach to improve tolerance outcomes.
Age as a predictor of desensitization
or tolerance

Age has garnered much discussion in relation to food

immunotherapy outcomes. The Learning Early About Peanut

Allergy (LEAP) study, a primary prevention study of peanut
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allergy in high-risk infants, provided the first evidence that

peanut allergy can be largely prevented through early peanut

introduction (47). Multiple peanut OIT studies have shown

that tolerance can best be induced in patients with known

peanut allergy at younger ages (22, 48), however, trials in

older children did not find age impacted outcomes (24, 49).

This suggests an early immune malleability that disappears

with age.
Specific IgE as a predictor of
desensitization or tolerance

The most well-studied mechanistic biomarker of tolerance

has been food-specific IgE, and multiple trials of milk, egg, and

peanut OIT have shown that lower baseline IgE correlates with

better outcomes (18, 22, 24, 48, 50, 51) with rare exception (21).

Other immune globulins or immune globulin components likely

play a role as well. For example, in a trial of peanut OIT, a lower

total IgE and a higher peanut-specific IgG4:IgE ratio

independently associated with higher rates of tolerance (24).

Lower IgE to food components including ovalbumin, casein, and

Ara h 1, 2, 3 and 6 have also been identified as potential

biomarkers of desensitization and tolerance with varying

significance (18, 21–24, 50, 51).

IgE binding to sequential (linear) epitopes has been shown to

have a high diagnostic accuracy for diagnosis of peanut, milk, and

egg allergy (52–54). Further, the pattern of IgE-binding epitopes

identified at baseline for a cohort of participants undergoing milk

OIT differentiated those who achieved desensitization only,

desensitization and tolerance, or failed therapy (55).
Basophil activation as a predictor of
desensitization or tolerance

While BAT has demonstrated utility for predicting outcomes

during OIT, data regarding whether BAT prior to initiation of

immunotherapy is a useful biomarker of subsequent tolerance

are mixed, possibly due to variation in specimen type,

processing, or assay protocol (9, 21, 40, 42, 43, 45, 46).

Standardization is needed before we can determine the clinical

utility of baseline BAT in predicting tolerance outcomes.
T cell subsets as predictors of
desensitization or tolerance

Interrogation of Th2 cell subsets has led to correlation of

specific subsets with atopy (32) and ability to achieve tolerance
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in OIT trials (21). In CoFAR7, a lower number of peanut-specific

T cells expressing IL-4 or IL-13 separated those who were able to

achieve desensitization or tolerance from treatment failures.

Other baseline assessments including peanut-specific T cells

expressing IL-10 or IFN-g did not correlate with clinical

outcomes (21). Alternatively, Monian et al. found that

expression of Th2 gene signature was not associated with

tolerance, but that lower expression of gene module defined by

T cell activation and effector response (OX40, OX40L, Th17

function, STAT1, and GPR15), lower Th1-conv, and lower Th17

cells were associated with tolerance (33). Limited data have been

published on Tregs as predictors of OIT outcome. A study of egg

OIT, baseline Treg frequency did not correlate with outcomes

(21). Additional studies are needed to determine whether it is the

quantity of or function of T cell subsets at baseline that relate to

achieving tolerance.
Newer biomarkers/mechanisms of
tolerance under investigation

In addition to continuing investigation of the mechanisms of

immunotherapy and biomarkers of tolerance discussed above,

knowledge and technological advances are allowing us to expand

research into other potential mechanisms of tolerance. These

include TCR repertoires, the microbiome, and the role of the

epithelial barrier.

The TCR repertoire can now be reliably measured after

antigen stimulation to isolate food antigen-specific T cells (56,

57). In one study of 27 peanut-allergic individuals, there were

TCRb sequences shared across individuals suggesting that these

sequences could be important in the pathogenesis of peanut

allergy and specific epitope recognition (57). A follow-up study

examined the TCR repertoire in response to peanut OIT and

found that the repertoire was not dramatically impacted by

OIT (33).

The microbiome from the skin and gut are skewed in

individuals with food allergy. Specific gut microbes have been

correlated with the development of food allergy and recent studies

have suggested that these microbes relate to alterations in the

metabolome and subsequent immune deviation (58–65). This is

also an area that could be a potential therapeutic target, as peanut

OIT may expand the diversity of the gut microbiome (66).

The gut epithelial barrier is also known to play a role in the

pathogenesis of food allergy, largely through antigen uptake and

cytokine production (TSLP, IL-33, and IL-15). The gut

epithelium is also home to a many types of immune cells that

are postulated to be relevant to food allergy development and

tolerance induction. To date, only one clinical trial has examined

gut epithelial biopsies during food OIT and they identified that
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tissue eosinophilia often develops during OIT but is usually

transient (67).
How biomarkers influence
future clinical trial and therapeutic
drug development

In the current era of targeted drugs and biologics, one tactic for

tolerance induction is to add a targeted therapeutic medication

alongside OIT. Table 1 summarizes biomarkers of tolerance and

biologics that have preliminary evidence suggesting they may be
Frontiers in Immunology 05
useful for targeting of a specific biomarker. Ongoing and future

clinical trials will be needed to elucidate how well the biologics,

when used in combination with IT, actually influence a particular

biomarker and tolerance overall.

The most well-studied example of this is OIT plus omalizumab.

Studies have shown that adding omalizumab, thereby blocking IgE

from binding to mast cells, has been helpful for either reducing

adverse reactions during OIT up-dosing or for allowing expedited

up-dosing (50, 86, 87). It is not clear that this approach leads to

increased rates of tolerance, but additional trials are still underway

(NCT03881696, NCT04045301). A broader approach of immune

modulation or an approach targeted to another aspect of the allergic

immune response may be required to improve rates of tolerance.
TABLE 1 Biomarkers of tolerance in food allergy IT studies and potential corresponding IT adjuvants.

Biomarker Baseline biomarker Biomarkers during build-up and
maintenance OIT

Potential IT
adjuvant

Age Younger age (22, 48)
No age association (24, 49)

Total IgE Lower total IgE (24)

Food-specific IgE Lower psIgE level (18, 22, 24, 48)
Lower msIgE level (50, 68)
Lower esIgE level (23)
No esIgE association (21)

Anti-IgE (69)
Anti-IL4Ra (70)
JAK inhibitors (71)
Anti-IL-13 (72, 73)

Food component-
specific IgE

Lower Ara h 1-specific IgE level (18, 21)
Lower Ara h 2-specific IgE level (18, 21, 51)
Lower Ara h 3-specific IgE level (21, 51)
Lower Ara h 6-specific IgE level (21)
Lower ovomucoid-specific IgE level (23)
No ovomucoid-specific IgE association (21)
No ovalbumin-specific IgE association (21, 23)
No Ara h 1-specific IgE association (22)
No Ara h 2-specific IgE association (22)
No Ara h 3-specific IgE association (22)
No Ara h 6-specific IgE association (22)

Anti-IgE (69)
Anti-IL4Ra (70)
JAK inhibitors (71)
Anti-IL-13 (72, 73)

Linear epitope
profile

Lower levels of peanut epitope-specific IgE (55)

Food-specific IgG4:
IgE ratio

Higher peanut-specific IgG4:IgE ratio (24)

Basophil activation
test

Lower basophil activation (9, 45, 46)
No basophil activation association (21, 40, 43)

Lower basophil activation at end of build-up or during
maintenance (43–45)

Anti-IgE (74)
JAK inhibitors (71)
BTK inhibitor (75,
76)
Anti-IL-13 (77)
Anti-TSLP (78)

Dendritic cells Decreased DC secretion of IL-6 (8) Anti-TSLP (79)

Food-specific T
effector cells

Lower number of psTeff cells producing IL-4 and/or IL-13 (21)
Lower expression of gene module defined by T cell activation
and effector response (33)
Lower frequency of peanut-specific Th1-conv cells (33)
Lower frequency of Th17 cells (33)
No association with psTh2 cells (33)
No association with IL-10 producing psTeff (21)
No association with IFN-g producing psTeff (21)

Evidence of CD4+ T cell anergy in maintenance phase of
OIT (33, 34)
Transient increase in activated psTh2 cells (39)
Transient increase in TGF-b producing psTh2 cells (39)

JAK inhibitors (80,
81)
Anti-OX40 (82)
Anti-TSLP (83)

T regulatory cells No Treg cell association (21)

T follicular helper
cells

Tfh13 and Tfh2-like cell frequencies did NOT associate
with tolerance (33, 39)

Anti-IgE (84)
Anti-OX40 (85)
IT, immunotherapy ps, peanut-specific; ms, milk-specific; es, egg-specific; DC= dendritic cell; Teff, T effector cells (154+CD4+ cells after antigen stimulation); Treg, T regulatory; Tfh, T
follicular helper.
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Additional OIT plus trials include the Adjuvant Treatment

with abatacept to Promote Remission During Peanut Oral

Immunotherapy (ATARI) trial (NCT04872218) and a phase

2a trial of dupilumab plus Palforzia (NCT03682770).

Abatacept is a CTLA-4-immunoglobulin fusion protein that

binds to CD80 and CD86 on antigen presenting cells thus

preventing T cells from receiving the activating signal they

need to respond to antigen presentation (88). Without this

signal, the balance of T effector, regulatory, and helper cells

could be restored and in studies of autoimmunity, abatacept

has been shown to decrease T follicular helper cells and T

regulatory cells (88). Dupilumab is an IL-4 receptor alpha

antagonist and blocks signaling of both IL-4 and IL-13. In

atopic individuals, dupilumab leads to a reduction in a number

of biomarkers of type 2 inflammation, including serum and/or

plasma levels of thymus and activation-regulated chemokine

(TARC), eotaxin-3, periostin, and total IgE, which could

provide an immune environment that is more conducive to

the induction of tolerance (70).

Ongoing trials of biologics as monotherapy for food allergy

are also paving the way for subsequent OIT plus studies and

include a pilot of abrocitinib, a selective JAK inhibitor, for

adults with peanut allergy (NCT05069831). A number of

cytokines relevant to food allergy signal through JAK1

including TSLP, IL-4, IL-13, and IL-9 (80). JAK inhibitors

have already been shown to modulate these cytokines in atopic

dermatitis trials (81) and by blocking signaling of these

cytokines abrocitinib has the potential to decrease Th2

induction, induce Tregs, inhibit IgE class-switching, and

inhibit mast cell expansion.

Potential future candidates for OIT plus trials include BTK

inhibitors, Anti-OX40 antibody, anti-IL-13 antibodies, anti-

TSLP antibody, and other JAK inhibitors.
Conclusions

Performing mechanistic studies in conjunction with food

immunotherapy clinical trials has taught us about mechanisms

of tolerance and has helped to identify biomarkers of tolerance.

This information is guiding the development of current and

future clinical trials. It is imperative that we continue to

perform mechanistic assays to improve our understanding of

tolerance if we want to move beyond inducing only

desensitization and tolerance to only one bite of a food

with immunotherapy.
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