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Ferroptosis is a novel form of cell death precisely regulated by iron metabolism,

antioxidant processes, and lipid metabolism that plays an irreplaceable role in

the development of many diseases. Musculoskeletal disorders (MSKs), including

osteoporosis, osteoarthritis, rheumatoid arthritis, intervertebral disc

degeneration, sarcopenia, and rhabdomyolysis, have become one of the

most common causes of disability and a major burden on public health and

social care systems. The mechanism of ferroptosis in MSKs has recently been

elucidated. In this review, we briefly introduce the ferroptosis mechanism and

illustrate the pathological roles of ferroptosis in MSKs with a focus on how

ferroptosis can be exploited as a promising treatment strategy. Notably,

because the toxicity of compounds that inhibit or induce ferroptosis in other

organs is largely unknown, ferroptosis appears to be a double-edged sword.

We point out that more research is needed in the future to verify the

therapeutic effects based on ferroptosis in MSKs.
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Introduction

Classically, the regulation of cell death is assumed to be achieved by two main models:

accidental cell death (ACD) and regulated cell death (RCD) (1). ACD is usually triggered

by an unexpected injury or attack, which overwhelms any possible molecular control

mechanism (2). Whereas, the process of RCD, manifested as classical apoptosis, is

regulated by a number of molecules with genetically defined effector and precise signaling

cascades involving unique immunological, functional, and biochemical consequences. A

growing body of evidence in recent years reveals that many nonapoptotic forms of RCD,
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including pyroptosis, necrosis, autophagy, and ferroptosis,

contribute to various pathologies in humans (3).

In 2002, Dolma et al (4). performed a study of the Epithelial

cells expressing oncogenic Ras (RasV12) cell line and found that

erastin, a novel compound, initiates a cell death process displaying

no apoptotic features, such as fragmented nuclei, DNA laddering,

and activated caspase 3, which later came to be known as

ferroptosis. The cell death model ferroptosis was officially

recognized as a novel form of RCD in 2012 (5) (see Figure 1 for

a glossary of key terms in ferroptosis). Ferroptosis involves many

pathophysiological processes characterized by lipid peroxidation

caused by the accumulation of iron-dependent reactive oxygen

species (ROS) in cells. The mechanisms and regulatory pathways

of ferroptosis are complicated and involve a variety of signaling

molecules and metabolic pathways (Figures 2, 3). Of note,

ferroptosis participates in the occurrence and development of

various diseases.

Aging, a natural and complex physiological process, is generally

considered the greatest risk factor for many neurodegenerative,

metabolic, cardiovascular, and musculoskeletal disorders (MSKs).

Among these conditions, MSKs, including a wide range of

inflammatory and degenerative diseases such as osteoporosis,

osteoarthritis (OA), rheumatoid arthritis (RA), and sports

injuries, are some of the most common causes of chronic

disability worldwide (21). With a large number of cases, MSKs

remain a disease of international concern, which has resulted in an

enormous global disease burden (22). Therefore, therapeutic targets

linking aging and disease may extend the healthy life span of

patients and limit healthcare costs.

In recent years, neurological, cardiovascular, and neoplastic

diseases have been the focus of both ferroptosis research and

clinical applications (23–25). As a hot topic, ferroptosis is now
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known to play a critical role in multiple systems or organs (26).

Interestingly, a growing body of evidence has recently uncovered

links between ferroptosis and MSKs. However, there are

relatively few reviews in the field of MSKs, which gives us an

opportunity to remedy this major deficiency. Herein, we

summarize the basic pathological features of ferroptosis and

discuss its potential role in the pathophysiology of these diseases

and associated complications.
Mechanisms and regulation
of ferroptosis

The mechanism of ferroptosis has been summarized almost

perfectly (27, 28). In general, ferroptosis has its own

morphological, biochemical, and genetic characteristics.

Morphologically, mitochondrial shrinkage, which involves

decreased mitochondrial cristae and increased membrane

density, is a characteristic feature of ferroptosis (29).

Biochemically, ferroptosis is activated by the formation of

iron-dependent ROS, which can be inhibited by antioxidants

and iron chelators rather than apoptosis, necrosis, or autophagy

inhibitors (5). The broad biological processes include iron

metabolism, antioxidant processes, and lipid metabolism.
Iron metabolism

All these observations allowed the identification of iron as a

critical cofactor in various biochemical enzyme-catalyzed

reactions involved in the physiological regulation of oxygen

transport, energy metabolism, DNA synthesis, and repair. Iron
FIGURE 1

Key milestones in the literature of ferroptosis over time. The key discoveries related to ferroptosis in each year is indicated. GPX4, Glutathione
peroxidase 4; HSPB1, heat shock protein beta-1; SLC38A1, solute carrier family 38 member 1; FIN56, Ferroptosis inducing 56; ACSL4, acyl-
coenzyme A synthetase long-chain family member 4; BECN1, beclin 1; NF2, neurofibromin 2; YAP, Yes-associated protein; FSP1, ferroptosis
suppressor protein 1; ESCRT, endosomal sorting complexes required for transport; DHODH, dihydroorotate dehydrogenase.
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has implications in several disorders of phosphate and bone

metabolism (30). Hydroxyl radicals (HO·), generated by Fe2+

through the Fenton reaction, might be associated with damage to

proteins, lipids, and DNA.

The maintenance of iron homeostasis is crucial for the

normal function of cells. Several studies have found that

abnormal iron metabolism as a result of iron overload is the

main characteristic of ferroptosis. Circulating iron binds to

transferrin receptor 1 (TFR1) on the cell membrane, and in

this reaction, ferric iron is reduced to ferrous iron by the six-

transmembrane epithelial antigen of prostate 3 (STEAP3).

Subsequently, divalent iron is released by divalent metal

transporter 1 (DMT1) into the labile iron pool (LIP) in the

cytoplasm. Of note, lysosomes, which store large quantities of

LIP, are considered the main organelles responsible for cellular

ferroptosis and represent promising potential disease targets

(31). Nuclear receptor coactivator 4 (NCOA4)–mediated

ferritinophagy increases the degradation of ferritin by

lysosomes, reduces iron storage, and promotes ferroptosis (32).

Excess bivalent iron is then transported extracellularly by

ferroportin 1 (FPN1) and stored in ferritin heavy chain 1

(FTH1) and ferritin light chain 1 (FTL1). In addition, both

treatments with the ferroptosis inhibitor ferrostatin-1 (Fer-1)

and hepatocyte-specific knockout of the metal transporter

Slc39a14 significantly reduce iron overload-induced liver

ferroptosis in transferrin knockout mice (Trf-LKO) mice (33).
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From a physiopathological point of view, ferritin is a strong

buffer involved in regulating iron deficiency and maintaining

homeostasis (34). The regulation of mitochondrial iron

metabolism is assumed to be achieved by mitochondrial

ferritin, and its overexpression can reverse ferroptosis induced

by erastin (35). Under pathological conditions, during the

process of Fenton and Haber–Weiss reactions, iron overload

induces ferroptosis by producing high concentrations of ROS

(36, 37).

Deferoxamine (DFO), an iron chelator, works by inhibiting

ferroptosis as a result of intracellular iron overload (38). In

addition, mitochondrial transferrin mitoferrin 1/2 is destroyed

on the inner mitochondrial membrane, which consequently

results in abnormal iron metabolism in the mitochondria (39).

In summary, increased iron intake, reduced stable iron, and

decreased iron outflow ultimately stimulate oxidative damage

and lead to ferroptosis.
Antioxidant systems

Glutathione peroxidase 4

Glutathione peroxidase 4 (GPX4), one of the eight

glutathione (GSH) peroxidases, serves as the primary

intracellular antioxidant buffer, which plays an indispensable
FIGURE 2

Schematic representation of the mechanism of ferroptosis. Ferroptosis is a novel form of cell death precisely regulated by iron metabolism,
antioxidant processes, and lipid metabolism. Fe3+ imported through the transferrin receptor is converted to Fe2+ in endosomes and released
from endosomes by DMT1 (also known as SLC11A2). Excess Fe2+ can induce ferroptosis through reactive oxygen species generated by the
Fenton reaction and Haber–Weiss reaction. GPX4 is the major endogenous mechanism that suppresses lipid peroxidation. Cystine enters cells
through system Xc-, and cystine is subsequently converted to cysteine, which generates glutathione (GSH), a cofactor for GPX4. Both LPCAT3
and ACSL4 also exert direct or indirect actions on lipid peroxidation of membrane PUFAs. TF, transferrin; TFR, transferrin receptor; STEAP3, six-
transmembrane epithelial antigen of prostate 3; SLC11A2/DMT1, divalent metal transporter 1; SLC7A11, solute carrier family 7 member 11;
SLC3A2, solute carrier family 3 member 2; system xc-, cystine/glutamate antiporter system; GPX4, glutathione peroxidase 4; GSH, glutathione;
PL-PUFA, phospholipid-bound polyunsaturated fatty acids; PUFA, polyunsaturated fatty acid; ACSL4, acyl-coenzyme A synthetase long-chain
family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3.
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role in antioxidant effects and ferroptosis regulation. It has

been demonstrated that selenium (Se) can improve GPX4

expression (40). The conversion of reduced GSH to oxidized

glutathione (GSSG) is achieved by either the conversion of free

hydrogen peroxide to water or the reduction of lipid peroxides

(L-OOH) to lipid hydroxyl derivatives (LOH), and both are

essential for the maintenance of cellular redox homeostasis

(41). In addition, both the GSH/GSSG ratio and GSH reflect

the oxidation resistance and are therefore associated with

ferroptosis (42).

The overexpression of mitochondrial GPX4 inhibits

mitochondrial oxidative stress and mitochondrial-dependent

apoptosis, whereas its deficiency leads to massive cell death

(43). As a substrate of GPX4, RAS-selective-lethal-3 (RSL3)

serves as a ferroptosis-induced molecule that works by binding
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to GPX4 in an iron-, mitogen-activated protein kinase kinase

(MEK)-, and ROS-dependent manner. Genetically enhancing

tumor protein D52 (TPD52)–dependent lipid storage prevents

RSL3-induced lipid peroxidation and subsequent ferroptosis in

vitro and in vivo (44). However, the overexpression of GPX4

may induce resistance to RSL3. GPX4 activity is also inhibited

directly or indirectly by other chemical compounds, such as

ML162, ML210, Diphenyleneiodonium chloride (DPI)

compounds, buthionine sulfoximine, sirtuin 3, FINO2, and

FIN56 (45, 46). In addition, studies have shown that the

activation of transcription factor 4 (ATF4) leads to the

induction of HSPA5, which, in turn, binds to GPX4 and

prevents GPX4 protein degradation and subsequent lipid

peroxidation (47). On the basis of the existing scientific

research, HSP90 family members may act on GPX4, which
FIGURE 3

Ferroptosis regulatory pathways. The regulatory pathways of ferroptosis can be roughly classified into three types. The first involves iron
metabolism, including the regulation of ferritin degradation by NCOA4. The second is the GSH/GPX4 pathway, which includes system xc
inhibition, the transsulfuration pathway, and the glutamine pathway. The third is lipid metabolism, including ACSL4, ACSL3, and LPCAT3, which
are related to lipid regulation and ferroptosis. In addition, FSP1 inhibits ferroptosis independently of GSH, and the BH4–GCH1 axis effectively
inhibits lipid peroxidation and thereby defends against ferroptosis. Abbreviations: TF, transferrin; FTH1, ferritin heavy chain 1; DFO, defetoxamine;
LIP, labile iron pool; NCOA4, nuclear receptor coactivator 4; FPN, ferroportin; SLC11A2/DMT1, divalent metal transporter 1; STEAP3, six-
transmembrane epithelial antigen of prostate 3; NRF2, NF-E2–related factor 2; SLC7A11, solute carrier family 7 member 11; SLC3A2, solute
carrier family 3 member 2; system xc-, the cystine/glutamate antiporter system; Slc39a14, the zinc transporter Zip14; BECN1, beclin 1; BAP1,
BRCA-1–associated protein; ATF3, recombinant activating transcription factor 3; GCS, glutamylcysteine synthetase; GSS, recombinant
glutathione synthetase; TCA, tricarboxylic acid; OXPHOS, oxidative phosphorylation; GPX4, glutathione peroxidase 4; GSH, glutathione; HSPA5,
heat shock protein A5; HSP90, heat shock protein 90; RSL3, RAS-selective-lethal-3; FINO2, an endoperoxide-containing 1,2-dioxolane; FIN56,
ferroptosis-inducing 56; SIRT3, sirtuin 3; TPD52, tumor protein D52; Fer-1, ferrostatin-1; Lip-1, liproxstatin-1; FSP1, ferroptosis suppressor
protein 1; AIFM2, apoptosis-inducing factor mitochondria-associated 2; BH4, tetrahydrobiopterin; GCH1, GTP cyclohydrolase-1; PL-PUFA-OOH,
lipid peroxides; POR, NADPH-cytochrome P450 reductase; LOXs, lipoxygenases; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated
fatty acid; PL-PUFA, phospholipid-bound polyunsaturated fatty acids; ACSL4, acyl-coenzyme A synthetase long-chain family member 4;
LPCAT3, lysophosphatidylcholine acyltransferase 3; ACC, acetyl CoA carboxylase; AMPK, AMP-activated protein kinase.
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results in inhibition of the antioxidant capacity of GPX4 by

inhibiting its activity (48).
Cystine/glutamate antiporter system

The selective inhibition of the cystine/glutamate antiporter

system (system xc-) works by decreasing intracellular GSH,

exacerbating the accumulation of ROS, and eventually leading

to ferroptosis (49). System xc- is composed of solute carrier family

3 member 2 (SLC3A2) and solute carrier family 7 member 11

(SLC7A11), and the major negative effect of system xc- on

ferroptosis regulation appears to be due to its crucial role in the

synthesis of the antioxidant GSH, which allows the exchange of

exogenous cystine with glutamate in a 1:1 ratio. GSH is then

synthesized by cysteine, which is degraded from cystine (50, 51).

In addition, studies have verified that many exogenous

compounds or endogenous genes can activate or inhibit system

xc-. Genetically, system xc- could be positively regulated by NF-

E2–related factor 2 (NRF2) and ubiquitin thioesterase. In

addition, BRCA-1–associated protein (BAP1) and p53 can

negatively regulate system xc- (52). The ATF3 enhances the

ferroptosis induced by erastin via the repression of system xc-

(53), whereas AMP-activated protein kinase (AMPK)–mediated

beclin 1 (BECN1) phosphorylation increases ferroptosis by

directly inhibiting system xc- activity (54). Radiotherapy and

immunotherapy enhance lipid oxidation and the ferroptosis of

tumor cells by synergistically suppressing SLC7A11 (55).

Sorafenib and sulfasalazine inhibit system xc- function and

induce ferroptosis (56, 57), whereas GDF15 knockdown

facilitates ferroptosis induced by erastin via the attenuation of

SLC7A11 expression (58). Moreover, P53 can enhance ferroptosis

by inhibiting the expression of SLC7A11 (59).

Cysteine availability restricts GSH biosynthesis, whereas

cysteine starvation induces GSH depletion and ferroptosis.

When the available cysteine is limited, some cells utilize

the transsulfuration pathway to transform methionine to

cysteine (60). Glutamate is also an important regulator of

ferroptosis. At high concentrations, this compound suppresses

system xc- and triggers ferroptosis. Glutamine degradation (via

glutaminolysis) fuels the tricarboxylic acid (TCA) cycle and

provides the basis for necessary biosynthetic processes, such as

lipid biosynthesis (61).
Lipid metabolism

Lipid peroxidation is considered the primary factor

in ferroptosis. Lipid peroxides have the ability to destroy the

stability of the lipid bilayer and thus the disintegration of

cell membranes (62). Researchers have suggested that

polyunsaturated fatty acids (PUFAs) are susceptible to lipid
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peroxidation, possibly due to the presence of highly active

hydrogen atoms in methylene bridges. Hydroxyl radicals exert

direct effects on the formation of lipid peroxides by interacting

with PUFAs in membrane phospholipids, which then attack the

cytomembrane and trigger ferroptosis (63). Furthermore,

nucleic acids and proteins react with derivatives produced by

the decomposition of lipid peroxides, such as 4-hydroxynonenal

(4-HNE) and malondialdehyde (MDA), which could also lead to

cell destruction (64). These derivatives, which act as markers,

could also be useful for the detection of ferroptosis and lipid

peroxidation. NADPH (nicotinamide adenine dinucleotide

phosphate)–cytochrome P450 reductase transfers electrons

from NAD(P)H to oxygen to generate hydrogen peroxide,

which subsequently reacts with iron to generate reactive

hydroxyl radicals for the peroxidation of the PUFA chains of

membrane phospholipids, thereby disrupting membrane

integrity during ferroptosis (65). In addition, ferroptosis is

promoted by LOX-catalyzed lipid hydroperoxide generation in

cellular membranes (66). Mechanistically, AMPK regulates

ferroptosis through acetyl-CoA carboxylase (ACC) and PUFA

biosynthesis (67). Exogenous monounsaturated fatty acids

(MUFAs) potently inhibit ferroptosis. This effect requires

MUFA activation by acyl-coenzyme A synthetase long-chain

family member 3 (ACSL3) and is independent of lipid droplet

formation (68). In addition, lipid peroxidation is inhibited by

Fer-1, liproxstatin-1 (Lip-1), and vitamin E, which are free

radical scavengers that reduce lipid peroxidation and

effectively block ferroptosis (69, 70). Ferroptosis suppressor

protein 1 (FSP1) suppresses ferroptosis independent of GSH.

In the presence of NADPH, FSP1 reduces ubiquinone, also

called coenzyme Q10 (CoQ10), to ubiquinol, which can reduce

lipid peroxidation and promote ferroptosis (71). The synthesis

and recycling of tetrahydrobiopterin (BH4) is a dynamic

process, and GTP cyclohydrolase-1 (GCH1) is the rate-

limiting enzyme in the biosynthesis of BH4. GCH1-mediated

BH4 production prevents ferroptosis by inhibiting lipid

peroxidation, which indicates that BH4 exhibits antioxidant

activity during cell death (72).
Ferroptosis and MSKs

Osteoporosis

Osteoporosis is a common disease and a major public health

concern, which has heightened the fracture risk with an

increasing prevalence in elderly people regardless of sex or age.

The homeostasis and integrity of bone tissue require a balance

between osteoclast and osteoblast activity. In addition, the

remodeling of bone tissue is a continuous and cyclic process.

In recent years, much attention has been focused on ferroptosis

in the pathogenesis of osteoporosis (Figure 4).
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Ferroptosis occurs in osteoclasts

In terms of physiological characteristics, osteoclasts are

multinucleated giant cells formed by the fusion of monocyte/

macrophage precursor cells derived from myeloid progenitor

cells in bone marrow with the indispensable involvement of

macrophage colony-stimulating factor (M-CSF) and RANKL.

RANKL is stimulated by increasing the expression of the

prostaglandin endoperoxide synthase 2 gene and MDA in bone

marrow–derived macrophages (BMDMs) and decreasing GSH

and iron levels, and iron accumulation is observed in

mitochondria. ROS activate intracellular MAPK signaling

pathways. ROS/MAPKs/nuclear transcription factor-kappa B

(NF-kB)/NLRP3 activation causes osteoclast-mediated bone

loss in diabetic osteoporosis (73). The activation of extracellular

signal–regulated kinase, c-Jun N-terminal kinase (JNK), and P38

in the MAPK pathway can promote osteoclastogenesis, which

leads to increased bone resorption (74). A recent study confirmed

that zoledronic acid exerts ferroptosis-induced effects on

osteoclasts by triggering FBXO9-mediated p53 ubiquitination

and degradation (75). The inhibitory effect of artemisinin

(ARS) compounds on osteoclast differentiation appears to be

due to its downregulation of pathways involved in RANKL-
Frontiers in Immunology 06
induced osteoclastogenesis. In addition, mechanisms associated

with intracellular iron, such as the cleavage of endoperoxide

bridges, oxidative damage, and ferroptosis, are involved in the

inhibition of osteoclast differentiation (76).
Ferroptosis occurs in osteoblasts

Osteoblasts play an essential role in bone regeneration and

play a leading role in the synthesis, secretion, and mineralization

of the bone matrix (77). The inhibitory effect of iron on the

osteogenic differentiation of MSCs has been described, and iron

overload in mice is correlated with increased ferritin and

decreased RUNX family transcription factor 2 (RUNX2) levels

in compact bone osteoprogenitor cells (78).

NF-kB induces inflammatory factors, inhibits Wnt signaling,

and activates Smad andMAPK signaling pathways in osteoblasts

to inhibit osteogenic differentiation (79, 80). Mitochondrial

ferritin (FtMt) is a protein that stores iron and intercepts toxic

ferrous ions in cellular mitochondria. Many studies have shown

that FtMt reduces oxidative stress and maintains intracellular

iron homeostasis (81). The overexpression of FtMt reduces

ferroptosis in osteoblasts under high-glucose conditions,
FIGURE 4

Relationship between osteoporosis and ferroptosis in osteoblast and osteoclast. The homeostasis and integrity of bone tissue require a balance
between osteoclast and osteoblast activity. Iron overload can generate ROS through the Fenton reaction, and ROS can activate multiple
intracellular signaling pathways, which, in turn, promote bone resorption and inhibit bone formation, thus leading to osteoporosis.
Abbreviations: MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor-kappa B; FtMt, mitochondrial ferritin; PINK1, PTEN-induced kinase
1; ROS, reactive oxygen species; OPG, osteoprotegerin; RANKL, receptor activator for nuclear factor-kB ligand; RANK, receptor activator for
nuclear Factor-kB; NLRP3, NOD-like receptor family pyrin domain containing 3; ERK, extracellular signal–regulated kinase; JNK, c-Jun N-
terminal kinase; FBXO9, F-box only protein 9.
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whereas the silencing of FtMt can induce mitochondrial

autophagy through the ROS/PINK1/Parkin pathway, which

leads to increased ferroptosis in osteoblasts (82).

A previous study revealed that iron overload inhibits MC3T3

cell viability and induces apoptosis (83). This result suggests that

iron overload may inhibit the activity of osteoblasts to some

extent and thereby affects their differentiation and

mineralization processes. Iron overload leads to excessive ROS

and thus activates intracellular signaling pathways that affect

cellular activity (84). A high dose of dexamethasone (10 mM)

exerts its ferroptosis-induced effects on osteoblasts and thus

downregulates GPX4 and system xc- (85). After induction with

high glucose, MC3T3 cells, which exhibit increased ROS and

reduced GPX4, have mitochondria that are generally smaller and

less tubular, and the membrane exhibited darker staining and

distinctly disrupted membrane folding. In a high-glucose

environment, MC3T3 cells could the ability to reduce

differentiation into osteoblasts and form mineralized nodules,

as has similarly been observed in osteoblasts in mice (82, 86). In

addition, it has been widely reported that advanced glycation

end products play an important role in OP, particularly in

diabetes−related OP, which may be caused by disruption of

osteoblast functions by the induction of ferroptosis (87).
Osteoarthritis

OA is a common disease that leads to pain, acute care

hospitalizations, disability, and socioeconomic costs worldwide

(88). Because of better understanding of its pathogenesis, the

focus of treatment is shifting to the prevention and treatment at

early stages. Studies have shown that OA does have some

features in common with ferroptosis, such as lipid

peroxidation (89), glutathione oxidation (90), mitochondrial

dysfunction (91), and increased activities of lipoxygenase and

cyclooxygenase in chondrocytes of OA cartilage (92).

Late-response upregulated genes are strongly enriched in the

ferroptosis pathway in an in vitro model of OA treated with

fibronectin fragments (FN-f) (93). A study pointed to a

progressive increase in the sensitivity of chondrocytes to

oxidative stress with decreases in GPX4, which suggests the role

of GPX4 in ferroptosis in OA. In addition, GPX4 can aggravate

extracellular matrix degradation through the MAPK/NF-kB
pathway (94). Furthermore, Guo Z et al. (95) found

that increased MMP13 expression and decreased collagen

II expression in chondrocytes can be stimulated by

chondrocyte ferroptosis.

Various novel treatments that inhibit ferroptosis are being

extensively researched. For example, DFO has the ability to

inhibit chondrocyte ferroptosis and promote NRF2 antioxidant

system activation (96), which are essential for the protection of

chondrocytes. In addition, activation of the system xc-/Gpx4

axis by icariin treatment can inhibit Gpx4, SLC7A11, and
Frontiers in Immunology 07
SLC3A2L expression and reduce TFR1 expression, which

significantly reduces the induction of cell death and inhibits

ferroptosis (97). Zhou et al. (98) found that D-mannose could

alleviate OA progression via HIF-2a–mediated inhibition of the

sensitivity of chondrocytes to ferroptosis. In addition,

stigmasterol reduces IL-1b–induced damage and ferroptosis in

ATDC5 cells through sterol regulatory element–binding

transcription factor 2, which can also enhance the inhibitory

effect of ferroptosis inhibitors on injury (99). The relationship

between ferroptosis and OA is shown in Figure 5.
Rheumatoid arthritis

RA is a relatively systemic common autoimmune disease

with manifestations that include irreversible peripheral joint

destruction and functional loss (100). Both genetic and

environmental risk factors participate in the development of

RA (101).

Oxidative stress and subsequent ROS-mediated cell death

have recently been found to possibly play a critical role in RA

development. Some evidence suggests that patients with RA with

high persistent activity have reduced GPX activity in

polymorphonuclear leucocytes (102). In addition, RSL3 can

aggravate synovitis by inducing ferroptosis in synovial cells

(97). Glycine can increase the S-adenosylmethionine (SAM)

concentration to modulate the ferroptosis pathway by

promoting SAM-mediated methylation of the GPX4 promoter

and reducing FTH1 expression in RA fibroblast-like

synoviocytes (103).

It has been indicated that serotransferrin-related molecules

may be a promising method for investigating refractory RA

(104). In addition, Tumor necrosis factor (TNF) signaling exerts

its effect on fibroblasts in different manners to protect them from

ferroptosis, such as promoting cystine uptake and increasing the

biosynthesis of GSH (105). Moreover, studies have shown that

CoQ10, a fat-soluble antioxidant, is a crucial regulator of

ferroptosis. Jhun et al. (106) used CoQ10-encoded liposome/

gold hybrid nanoparticles to attenuate RA progression by

targeting signal transducer and activator of transcription-3/T

helper cell 17 (STAT3/Th17).
Intervertebral disc degeneration

Intervertebral disc degeneration (IVDD) is a complex

pathological condition caused by intractable back pain or

secondary neurological deficits involving age-related changes

and tissue damage produced by multiple stresses (107, 108).

Because there is currently no fundamental treatment for the

disease, an indirect symptom relief strategy has been employed.

Of note, increasing evidence suggests that ferroptosis is involved

in IVDD, which provides a new direction for therapeutic targets.
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Zhang et al. (109) previously demonstrated that ferroptosis

is involved in IVDD. Ferroptosis in related tissue may appear to

be due to exposure to high levels of heme, which may be caused

by neovascularization in the prominent nucleus pulposus, and

the progressive degeneration of herniated nucleus pulposus is

also accelerated (110). Moreover, the levels of GPX4 and FTH1

in the degenerated disc tissues of IVDD rats are lower than those

in those of healthy rats (111). Studies have also shown that the

pathogenesis of IVDD involves ferritin degradation mediated by

ferritin phagocytosis and subsequent lipid peroxidation. The

disruption of iron homeostasis in degenerative disc tissue may be

driven by increased levels of autophagy and NCOA4‐regulated

ferritinophagy upon exposure to tert-butyl hydroperoxide. In

addition, homocysteine, as a novel contributor to IVDD, exerts

its effects on oxidative stress and ferroptosis in the nucleus

pulposus by enhancing GPX4 methylation (112).

An increase in the nuclear translocation of metal-regulated

transcription factor 1 is achieved by restoring FPN function,

eliminating intercellular iron overload, and thus protecting cells

from ferroptosis. In addition, the process can be enhanced by

hinokitiol through inhibition of the JNK pathway, which results

in improving the progression of IVDD in vivo (113). It has been

confirmed that IL-6 and its receptor led to chondrocyte

ferroptosis by inducing cellular oxidative stress and interfering

with iron homeostasis, which can be inhibited by overexpression

of miR-10a-5p, and these findings suggest that the IL-6/miR-
Frontiers in Immunology 08
10a-5p/IL-6R axis could be a potential therapeutic target for

intervention in IVDD (114).
Sarcopenia

Sarcopenia is defined as low muscle mass together with low

muscle function. Diseases that can lead to secondary sarcopenia

include malignancies, chronic obstructive pulmonary disease,

heart failure, and kidney failure. Thus, further research is needed

for the development of appropriate methods for the

management of sarcopenia (115).

Soaring evidence supports the role of ROS accumulation and

decreased endogenous antioxidant mechanisms in the

progression of sarcopenia (116–118). Previous studies have

reported associations among muscle iron accumulation, ROS

production, and muscle wasting (119–121). Studies have also

revealed that skeletal muscle atrophy induced by iron overload is

related to ROS-mediated ubiquitin–proteasome system

activation (122). Notably, iron plays a crucial role in

ferroptosis triggered by P53-Slc7a11 in muscles, which

suggests a therapeutic strategy for targeting iron accumulation

(123). Interestingly, the release of iron mediated by macrophages

can facilitate muscle regeneration (124), whereas oxidative stress

and skeletal muscle atrophy have been found in mice with

chronic iron injection for 14 days (125). In addition,
FIGURE 5

Relationship between ferroptosis and osteoarthritis. In cellular environments stimulated by iron overload, hyperlipidemia, and inflammation, the
expression of Gpx4 in chondrocytes decreases. These changes lead to the accumulation of reactive oxygen species and lipid peroxides to
ultimately induce ferroptosis. Ferroptosis, in turn, can progressively exacerbate the inflammatory response, leading to the increased expression
of MMP-13 and decreased expression of collagen II in chondrocytes to accelerate the progression of OA. Abbreviations: ROS, reactive oxygen
species; Col II, Type II collagen; MMP-13, matrix metalloproteinase-13.
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supplementation with DFO, an iron chelating agent, has the

ability to reduce oxidative stress and inflammation in the

diaphragm muscle of mice with Duchenne dystrophy (126).

The latest research has shown that satellite cell–specific deletion

of TFR1 impairs skeletal muscle regeneration by activating

ferroptosis (127). Given the effect of iron on ROS production,

the role of iron in the homeostasis of muscle satellite cells

deserves more attention.
Rhabdomyolysis

Rhabdomyolysis (RM) is a common disease associated with

myoglobinuria, electrolyte abnormalities, and acute kidney

injury (AKI). The aims of the related treatments are to stop

further skeletal muscle damage, prevent acute renal failure, and

rapidly detect potentially life-threatening complications

(128, 129).

A recent study has implicated ferroptosis in RM-related

kidney damage in vivo and in vitro (130). RM results in the

release of muscle cell components, including myoglobin, into the

bloodstream, and the resulting myoglobin is freely filtered by the

glomerulus and reabsorbed by the proximal tubule, which results
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in the promotion of ferroptosis-mediated cell death and leads to

AKI. Moreover, the severity of AKI can be inhibited by Fer-1

treatment through the reduction of myoglobin-derived iron

accumulation and lipid peroxidation (131). In animal models,

iron chelators also have the ability to protect functional and

histologic RM (132). Another previous study indicated the

protective role of ACSL4 in mediating ferroptosis in the

development of RM following EHS, which suggests that

ACSL4 may also be a novel therapeutic target in RM (133).

Overall, we point out that ferroptosis may play a vital role as a

fundamental mechanism in a variety of MSKs (Figure 6).
Discussion

With advancing aging, the burden of MSKs will undoubtedly

increase. In addition, the prevalence of people not paying

attention to their diet, lifestyle, health, and physical activity

contributes to the disease burden (134). Unclear pathogenic

mechanisms for age-related MSKs challenge clinical

practitioners (135). Raising the public awareness of risk factors

and increasing their understanding by the medical and scientific

community are pragmatic approaches to address these issues.
FIGURE 6

Ferroptosis may play a vital role as a fundamental mechanism in a variety of MSKs. Ferroptosis is critically involved in the pathogenesis of various
MSKs. In different tissues and cells, ferroptosis -related molecules could be promising targets for treating these diseases.
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Ferroptosis, a novel and unique form of RCD, is broadly

involved in the development of cancers, kidney diseases,

neurological diseases, and MSKs. In this review, we summarized

the classic pathways of ferroptosis, including iron metabolism,

antioxidant systems, and lipid metabolism, with a focus on affected

disorders such as osteoporosis, OA, RA, IVDD, sarcopenia, and

RM. Of note, iron, lipids, and ROS play an irreplaceable role in cell

survival. However, excessive dependence is a double-edged sword.

These three factors maintain normal body function in a steady

state and strike a deadly blow to cells when metabolic disorders

occur. The complex biological processes involved in ferroptosis are

induced by an imbalance among antioxidants, iron, and lipid

dynamics, but their role and contribution to the occurrence and

metastasis of MSKs remain unclear.

Exploring the underlying mechanisms of ferroptosis in MSKs

appears to have diverse favorable effects (136); however, before we

move to related clinical applications, various issues need to be

addressed. First, the fact that the current studies on ferroptosis and

MSKs only scratch the surface of phenomena and results remains

a challenge for precision medicine, and the detailed role of

ferroptosis in the occurrence and development of MSKs has not

been thoroughly studied. Second, most studies of MSKs have

investigated ferroptosis only in cells and animal models and lack

validated clinical evidence. Thus, clinical studies are imperative to

solidify a conclusive role of ferroptosis in humans as soon as

possible. Finally, ferroptosis appears to be a double-edged sword

for MSKs. The inhibition of ferroptosis relieves the symptoms of

osteoporosis or OA. However, the toxicity of ferroptosis-inhibiting

or ferroptosis-inducing compounds on other organs is largely

unclear. This evidence indicates that the role of ferroptosis is

different in MSKs. Hence, although several characteristics and

biomarkers of ferroptosis have been proposed, the specific and

accurate quantification of the ferroptosis response, particularly in

vivo, remains a major challenge.

In summary, ferroptosis is critically involved in the

pathogenesis of various MSKs. With ongoing research, we

point out that ferroptosis will be an area worthy of in-depth

study and will play a vital role in the subsequent development

and clinical translation of new drugs for MSKs.
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MSKs Musculoskeletal disorders

ACD Accidental cell death

RCD Regulated cell death

ROS reactive oxygen species

OA Osteoarthritis

RA Rheumatoid arthritis

HO· Hydroxyl radicals

TFR1 Transferrin receptor 1

STEAP3 Six-transmembrane epithelial antigen of prostate 3

DMT1 Divalent metal transporter 1

LIP Labile iron pool

NCOA4 Nuclear receptor coactivator 4

FPN1 Ferroportin 1

FTH1 Ferritin heavy chain 1

FTL1 Ferritin light chain 1

Fer-1 Ferrostatin-1

DFO Defetoxamine

GPX4 Glutathione peroxidase 4

GSH Glutathione

GSSG Oxidized glutathione

L-OOH lipid peroxides

LOH lipid hydroxyl derivatives

RSL3 RAS-selective-lethal-3

ATF4 Activation of transcription factor 4

system xc- the cystine/glutamate antiporter system

NRF2 NF-E2-related factor 2

BAP1 BRCA-1-associated protein

ATF3 The activation of transcription factor 3

BECN1 beclin 1

TCA Tricarboxylic acid

PUFAs Polyunsaturated fatty acids

4-HNE 4-hydroxynonenal

MDA Malondialdehyde

MUFAs Monounsaturated fatty acids

ACSL3 acyl-coenzyme A synthetase long-chain family member 3

Lip-1 liproxstatin-1

FSP1 Ferroptosis-suppressor-protein 1

NADPH Nicotinamide adenine dinucleotide phosphate

BH4 tetrahydrobiopterin

GCH1 GTP cyclohydrolase-1

M-CSF Macrophage colony-stimulating factor

PTGS2 Prostaglandin endoperoxide synthase 2

BMDMs Bone marrow-derived macrophages

DOP Diabetic osteoporosis

ARS Artemisinin

RUNX2 RUNX family transcription factor 2

FtMt Mitochondrial ferritin
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AGEs Advanced glycation end products

FN-f Fibronectin fragments

ECM Extracellular matrix

STM Stigmasterol

SREBF2 Sterol regulatory element binding transcription factor 2

SAM S-adenosylmethionine

FLSs Fibroblast-like synoviocytes

STAT3/Th17 Signal transducer and activator of transcription-3/T helper cell 17

IVDD Intervertebral disc degeneration

MTF1 Metal-regulated transcription factor 1

AKI Acute kidney injury
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