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Pemphigoid diseases are autoimmune chronic inflammatory skin diseases,

which are characterized by blistering of the skin and/or mucous membranes,

and circulating and tissue-bound autoantibodies. The well-established

pathomechanisms comprise autoantibodies targeting various structural

proteins located at the dermal-epidermal junction, leading to complement

factor binding and activation. Several effector cells are thus attracted and

activated, which in turn inflict characteristic tissue damage and subepidermal

blistering. Moreover, the detection of linear complement deposits in the skin is

a diagnostic hallmark of all pemphigoid diseases. However, recent studies

showed that blistering might also occur independently of complement. This

review reassesses the importance of complement in pemphigoid diseases

based on current research by contrasting and contextualizing data from in

vitro, murine and human studies.
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1 Introduction

The complement system is a complex network of more than

50 proteins, which hold crucial roles in host defense against

invading microorganisms as well as in tissue homeostasis, thus

representing a fundamental component of the innate immune

system. There are three distinct pathways of complement

activation: the classical (CP), lectin (LP), and alternative

pathway (AP) (Figure 1). Under physiological circumstances,

nonself recognition in an immunoglobulin (Ig)-dependent or

-independent manner triggers various proteolytic cascades that

result in the activation of complement component C3. All three

pathways generate a C3 convertase which elicits the immediate

(C3a) and downstream (C5a) release of potent proinflammatory

peptides (i. e., C5a, C3a), the opsonization of susceptible

pathogens (via C3b and C4b), and ultimately, the lysis of

microorganisms by the assembly of the membrane attack

complex (MAC; composed of C5b6789) (2, 3), thereby

contributing to their efficient elimination. Several soluble and

membrane-bound factors regulate complement activation on

different levels to protect healthy tissue from undesired damage.

C1-esterase inhibitor (C1-INH), C4b-binding protein (C4BP),
Frontiers in Immunology 02
carboxypeptidase N (CPN1), factor H (FH), factor I (FI), protein

S, and clusterin are soluble regulators of complement activation,

whereas complement receptor of the immunoglobulin

superfamily (CRIg), complement receptor 1 (CR1/CD35),

decay-accelerating factor (DAF/CD55), membrane-cofactor

protein (MCP/CD46), and protectin (CD59) mediate

complement activation and regulation on the cell membrane (4).

Deficiencies in complement components or impaired

complement activation pathways hinder efficient host defense

responses, resulting in an increased susceptibility to infections:

properdin deficiency and defects in the MAC formation are

associated with an increased risk of meningococcal infections,

whereas C3 deficiency is linked to recurrent infections with

Streptococcus pneumoniae (5–7). In contrast, C4 deficiency is

associated with systemic lupus erythematosus (SLE), but also

with repeated severe herpes infections (8, 9). In children,

deficiencies in mannose-binding lectin (MBL) result in

recurrent bacterial respiratory infections (10). Furthermore, a

defective C3-dependent opsonization increases the risk of

infections with Streptococcus pneumoniae and Haemophilus

influenzae, while a lack of CR3 enhances the likelihood of

recurrent skin infections (2, 11).
FIGURE 1

Schematic representation of the complement system. The classical pathway of complement activation is activated following to binding of the
recognition molecule C1q to ligands such as immune complexes. The lectin pathway is activated following to binding of recognition molecules,
such as mannose-binding lectin (MBL), collectins or ficolins, to their ligands, which include carbohydrate structures. Although the alternative
pathway is initiated spontaneously, properdin (not shown) might also serve as a recognition molecule for directing activation of this pathway.
Following activation via the initiating molecules a cascade of proteolytic activation steps leads to the formation of C3 convertases that cleave
C3 into the anaphylatoxin C3a and the opsonin C3b. Next, C5 convertases generate the potent pro-inflammatory anaphylatoxins C5a and C5b,
the latter of which, together with C6–C9, forms the membrane attack complex (MAC). This figure was obtained with permission from Trouw,
L.A., Pickering, M.C., & Blom, A.M. Nat Rev Rheumatol. 9, 538–547 (2017), (1).
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Impaired complement system activation or regulation has

been observed inmany dermatological diseases, such as hereditary

(12) and acquired angioedema (13), cutaneous small vessel (14,

15) and hypocomplementemic urticarial vasculitis (16), SLE (17,

18), psoriasis (19, 20), acne vulgaris (21, 22) and hidradenitis

suppurativa (23). Moreover, the complement system is also

involved in the pathogenesis of autoimmune blistering

dermatoses (AIBD), in particular the pemphigoid group,

including bullous pemphigoid (BP), epidermolysis bullosa

acquisita (EBA), mucous membrane pemphigoid (MMP),

pemphigoid gestationis (PG), and, to a lesser degree, the

pemphigus group (24–28). C3 deposits along the dermal-

epidermal junction (DEJ) are observed in approximately 90% of

patients with pemphigoid diseases (PDs) (29–32). Interestingly,

complement activation seems to be mainly restricted to the skin

(33). In fact, the detection of C3 by direct immunofluorescence

(DIF) microscopy of perilesional skin is a highly valuable

diagnostic marker of all PDs. In BP, the activation of

complement at the DEJ, as a result of pathogenic autoantibodies

binding to collagen type XVII (BP180), initiates and maintains

inflammatory processes resulting in characteristic subepidermal

blistering (34). Consequently, complement components of both

the CP and AP have been detected at the DEJ and blister fluid.

Similarly, complement-induced separation at the DEJ has also

been demonstrated in EBA, MMP and PG (35, 36). In addition,

complement-fixating antibodies along the DEJ represent a

characteristic feature of PG, and DIF microscopy often

demonstrates rather linear C3 than IgG deposition along the

basement membrane (31, 37). Regarding pemphigus, DIF

microscopy shows intraepidermal deposition of IgG and/or C3,

and the pathogenic IgG autoantibodies belong to the IgG1

subclass, which is a notable complement activator, but also to

IgG4 (38).

By contrasting and contextualizing seemingly contradictory

data from in vitro-, murine- and human studies we will

corroborate the central role of complement, particularly in the

effector phase of PDs, with a special focus on BP, EBA and MMP

as prototypic PDs.
2 Complement-dependent
pathogenic pathways in PDs

2.1 Experimental lines of evidence

2.1.1 BP
BP is the most common autoimmune bullous disease that

mainly affects the elderly, usually in the 7th decade of life (24). It

is caused by autoantibodies targeting two hemidesmosomal

proteins, BP180 (collagen XVII, BPAG2) and BP230 (BPAG1),

resulting in characteristic subepidermal blister formation (39).

Clinical hallmarks range from generalized, pruritic, large skin

blisters to eczematous and urticarial lesions (24).
Frontiers in Immunology 03
Chorzelski and Cormane were the first to demonstrate that

complement binds in vivo to the basement membrane of BP

patients’ skin (40), followed by the substantial work of Jordon

et al., which significantly contributed to our current

understanding of the role of complement activation in the

pathogenesis of BP. By using DIF microscopy, Jordon and co-

workers showed that BP autoantibodies are able to fix not only

C3 (41–43), C1q and C4 (44), but also factor B (FB) and

properdin (45, 46), thus underlining the involvement of both

classical and alternative complement activation pathways.

Remarkably, C3 deposition was also seen in the absence of

skin-bound BP autoantibodies (47), indicating a high sensitivity

of the C3 staining. Furthermore, the same group demonstrated

that BP blister fluids exhibited both eosinophil and neutrophil

chemotactic activity, with the latter being inhibited by the use of

an anti-C5 antiserum, therefore suggesting for the first time the

role of complement, namely C5a, in the effector phase of BP (48).

Several studies followed that corroborated these findings, to the

extent that the detection of complement deposits in the skin is

now considered a highly valuable and important diagnostic

hallmark of BP (49–51).

Later on, Liu et al. provided experimental evidence by

transferring polyclonal rabbit antibodies against murine NC14A,

a homolog of the human NC16A domain of BP180, into neonatal

BALB/cmice, showing that subepidermal blistering did not occur if

either (i) serum complement was depleted by cobra venom factor,

(ii) mice were C5-deficient, or (iii) F(ab′)2-fragments derived from

the anti-murine BP180 antibody were used (52, 53). Similar results

were observed in the antibody transfer model of BP in neonatal

hamsters (54).Thesefindings suggest that complementactivation is

indispensable for blister formation in experimental antibody

transfer models of BP. Correspondingly, Nelson et al.

demonstrated, in the same model, that C4-deficient mice and

wild-type (WT) mice pretreated with anti-C1q-antibody were

protected from disease development, thereby underscoring the

importance of the classical pathway activation in the

pathogenesis of PDs (55). Interestingly, the same study showed

that FB-deficient mice developed delayed and less intense

subepidermal blisters, suggesting a minor role of complement

activation via the alternative pathway in experimental BP.

To reduce the shortcomings of the previously mentioned

antibody transfer mouse models, both Nishie et al. and Liu et al.

established humanized mouse models of BP, introducing either

human BP180 (56) or replacing murine BP180NC14A with the

homologous human BP180NC16A epitope cluster region (57). The

CP of the complement system appeared to be pivotal also in these

humanized mouse models: F(ab′)2-fragments derived from

pathogenic antibodies did not induce blisters, complement C3

depletion with cobra venom factor protected from disease

development, and transfer of humanized IgG1 against

BP180NC16A that were previously mutated at the C1q binding

site resulting in reducedC1q binding, induced less blisters compared

to the unmutated humanized antigen-specific IgG1 (57, 58).
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Another crucial pathway underlining the importance of

complement activation in BP is the interaction between C5 and its

receptors, C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2)

(Figure2A).By the injectionof anti-BP180IgGinadultmice,Karsten

et al. recently demonstrated thatC5 knockoutmice had anup to 50%

reduction in disease activity when compared to correspondingWT-

mice (59). Unlike previous findings, this intriguing result could be

explained by the use of exclusively murine models, as well as by the

opposing roles of the two receptors: C5aR1-deficient mice were
Frontiers in Immunology 04
protected from disease development, whereas C5aR2-deficient were

rather prone to develop inflammatory skin lesions (59). In addition,

the pharmacological inhibition of C5aR1 by the PMX53 peptide

mitigateddiseasedevelopment, butonlywhenapplied inapreventive

setting (59).

These findings emphasize the role of complement activation

in the early effector phase of the disease when neutrophils,

eosinophils and mast cells are attracted by C5a to the DEJ to

inflict characteristic tissue damage and subsequent blister
A

B

FIGURE 2

The role of complement in blister formation in pemphigoid diseases. (A) Complement-dependent pathways in pemphigoid diseases.
Complement-fixing autoantibodies target various structural antigens of the basement membrane. The complement system is activated, thus
leading to the recruitment and activation of various effector cells. C5a, which is the most potent proinflammatory peptide of the complement
cascade, will interact with these cells through their C5a receptors (C5aR1, C5aR2), enabling them to release several proteases and ROS, thereby
inflicting tissue damage and characteristic subepidermal blistering. (B) Complement-independent pathways in pemphigoid diseases. Non-
complement fixing autoantibodies (IgG4) and IgE against BP180 bind to the dermal-epidermal junction and (1) degrade BP180 by increasing the
expression of IL-6 and IL-8, which in turn will attract and activate neutrophils, as a major source of various proteases and ROS; (2) decrease the
BP180 hemidesmosomal content by internalization of the IgG-BP180 immune complex via macropinocytosis; (3) directly inhibit the adhesion
molecules of the dermal-epidermal junction.
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formation (60–63). Remarkably, the depletion of neutrophils

protected against BP in WT-mice, whereas the use of C5a and

interleukin (IL)-8 in C5-deficient mice made them susceptible

for disease development (64).

In fact, complement-dependent neutrophil infiltration in BP

is contingent on prior mast cell degranulation (65), which is also

induced by the activation of complement: upon the interaction

between C5a and C5aR1, mast cells degranulate and release

various pro-inflammatory cytokines that in turn attract

neutrophils and eosinophils, as well as proteases, including the

mouse mast cell protease-4 (mMCP-4) (63). The latter activates

the key neutrophil protease, matrix metalloproteinase-9, both

cleaving BP180 and thus, leading to blister formation (66, 67).

Given this, mice deficient in mast cells, mMCP-4, or C5aR1

failed to develop BP (63, 65, 66).

In addition to neutrophils and mast cells, eosinophils appear

to be involved in, at least, IgE-mediated pathology in BP, which

may occur independently of neutrophils and relies on prior mast

cell degranulation (61, 68). In this regard, eosinophils from most

BP patients do highly express the high-affinity IgE receptor

(FcϵRI) (69), and, as previously shown in a humanized FcϵRI
mouse model of BP, human anti-BP180 IgE autoantibodies

recruit and activate eosinophils via FcϵRI, resulting in

eosinophil degranulation and subsequent blister formation

(61). Of note, anaphylatoxins C5a and C3a can however

directly induce degranulation of eosinophils via selective,

receptor-mediated processes (70, 71), potentially connecting

complement and eosinophils in human disease.

Taken together, all these data suggest that infiltration and

activation of specific effector cells responsible for the

characteristic BP skin pathology depend, at least indirectly, on

the activated complement cascade.

2.1.2 EBA
EBA is a rare autoimmune blistering disease, which is

characterized by autoantibodies against type VII collagen

(COL7) (72). Clinically, it can present with various

phenotypes, with the classical/mechano-bullous and the non-

classical/non-mechano-bullous variant being the most

common forms.

Our current understanding of the role of complement in the

pathogenesis of EBA is mainly relying on the use of experimental

murine models which, by design, mimic human disease

clinically, immunologically and histologically. EBA can be

induced in mice by either transfer of human anti-COL7 IgG

or rabbit anti-mouse-COL7 IgG, or by immunization of mice

with an immunodominant fragment of the murine COL7

antigen (73).

Sitaru et al. showed in the active EBA model, that diseased

mice presented with significantly higher C3 skin deposition

compared to non-diseased animals (36). Furthermore, the

complement-fixing IgG2a and IgG2b autoantibody subclasses

were considerably elevated in the diseased group (36), whereas
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F(ab′)2-fragments of pathogenic rabbit anti-COL7 IgG did not

induce blistering in the passive EBA mouse model (74). Similar

results were obtained for F(ab′)2-fragments generated from

affinity-purified anti-COL7 antibodies from EBA patients’ sera

(75), thus underlining a key role of the IgG-fragment

crystallizable region (Fc), likely mediating inflammation via

C1q interaction and CP complement activation in these

EBA models.

Experimental evidence also illustrates the involvement of the

AP in passive EBA. Mihai et al. demonstrated that FB-deficient

mice as well as WT-mice treated with an anti-FB antibody

developed a delayed and significantly less severe blistering

phenotype when compared to controls (76, 77). In contrast,

C1q-, C6- and MBL-deficient mice did develop the disease,

implying that the MAC formation and the LP may be

dispensable for blister formation. The rather unexpected

finding that C1q-deficient mice were not fully protected from

disease could be explained by either the presence of non-

canonical complement activation or by different Fc N-

glycosylation autoantibody patterns associated with

proinflammatory responses and high neutrophil activating

potential and ROS release (78–80). Moreover, the interaction

between T cells and antigen-presenting cells was shown to

unexpectedly induce the secretion of C3 or C5, as well as the

formation of their corresponding convertases, thereby

generating activated complement fragments and yielding

characteristic effector responses without depending on CP or

AP (i.e., non-canonical complement activation) (81).

Correspondingly, macrophage-generated C4 restored the

altered humoral response against tumor antigens in C4-

deficient mice (82). Interestingly, it was previously shown that

C5a can also be generated in the absence of C3-dependent

convertases (83). In addition, human keratinocytes are able to

express and produce various complement proteins, including

C3 (84).

Similarly to murine BP models, the C5-C5aR1 axis is

engaged in downstream tissue damage and subsequent blister

formation in EBA: C5-deficient mice were partially or fully

protected from developing EBA in the antibody transfer

model (74, 85), while the application of an anti-murine-C5

monoclonal antibody significantly reduced the blistering

phenotype in this system (77). Moreover, C5aR1-deficient

mice did not develop disease, and the pharmacological

blockade of this receptor also led to a notable improvement

of the blistering phenotype (77, 86). In contrast to the

protective role of C5aR2 in experimental BP, C5aR2-

deficient mice developed an attenuated disease phenotype in

the antibody transfer mouse model of EBA, with C5aR2 being

essential for neutrophil activation and recruitment by

regulating Fcg receptor (FcgR) expression levels in this

model (59, 87). In line with these findings, Sezin et al.

demonstrated that dual inhibit ion of both C5 and

leukotriene B4 (LTB4) with coversin (i.e., nomacopan)
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suppressed disease in passive EBA much more efficiently than

the inhibitor of LTB4 alone (88).

2.1.3 MMP
MMP is a group of pemphigoid diseases with predominant

mucous membrane involvement and a significant tendency

towards scarring (89). Autoantibodies target various antigens,

mainly BP180 and laminin 332. The mechanisms of blistering in

MMP were also studied in different animal models (73). In

contrast to BP and EBA, no immunization-induced mouse

models have been yet described, but are in the pipeline (89).

Since initial antibody transfer mouse models developed in the

90s were not completely replicating human disease, Heppe et al.

recently introduced a novel model by transferring rabbit IgG

against the middle and the C-terminal part of the murine

laminin a3 chain, that reproduced disease clinically and

immunopathologically (90–92).

Current evidence on the role of complement in experimental

MMP models is scarce and contradictory at this point of time.

Lazarova et al. showed that C5-deficient mice were not protected

from disease development (90). Moreover, F(ab′)2-fragments

from pathogenic rabbit anti-laminin 332 IgG elicited blistering

in mice (91). Conversely, a recent study by Heppe et al.,

demonstrated that C5aR1- and FcgR-deficient mice developed

little or no disease (92). The use of different mouse models for

MMP could explain these discrepancies: the first study group

induced MMP by passively transferring rabbit anti-laminin 332

IgG into neonatal mice, whereas the latter injected adult mice

with rabbit anti-laminin 332 IgG against 2 immunodominant

regions of laminin 332. Moreover, the latter mouse model was

shown to fully replicate human disease, and dapsone, which is

the first-choice in the therapeutic armamentarium of MMP, has

proven effective in this passive MMP mouse model, thus further

underlining its utility for the study of MMP (92, 93).

Nevertheless, more experimental studies are needed to clarify

the impact of complement in the pathogenesis of MMP.
2.2 Clinical lines of evidence

The detection of linear C3 deposits at the DEJ by DIF

microscopy studies is routinely used to diagnose PDs and

considered as the “gold standard” (31, 32, 94, 95).

In a large cohort study, Romeijn et al. demonstrated that over

80% of patients with BP showed C3c deposition along the DEJ in

their (peri)lesional cutaneous biopsies (30). Moreover, this finding

also significantly correlated with both clinical and serological

disease activity (96). Similar results were also obtained by Ständer

et al., who have shown that BP patients with C3 deposition had

higher levels of seropositivity and autoantibodies (97).

Other complement components and activation factors,

including C1q, C3, C3c, C3d, C4, C4d, C5, C5b-9, FB, FH,
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and properdin were also detected in the skin and blister fluid of

BP patients, thus pointing towards the involvement of both CP

and AP in the pathogenesis of human BP in vivo (42, 98).

Interestingly, the detection of the two complement split products

C3d and C4d at the DEJ by immunoperoxidase staining in

formalin-fixed paraffin-embedded tissue proved as an effective

novel diagnostic option for BP (99–103).

The pathogenic role of autoantibodies against BP180 is

intimately intertwined with the activation of complement.

Analysis of the IgG subclass distribution revealed that BP

patients present a predominance of IgG1 antibodies in the

skin (38). In addition, serum levels of IgG1 autoantibodies

against the NC16A domain correlated with disease severity in

these patients (104). Since IgG1 strongly binds complement via

the C1q binding site of the Fc region, this adds further evidence

to the decisive role of the CP in BP. Correspondingly, Sitaru et al.

demonstrated that F(ab’)2 fragments of pathogenic antibodies

against BP180-NC16A, which lack the Fc tail required for

complement activation, did not induce dermal-epidermal

separation in cryosections of human skin (105). Furthermore,

Chiorean et al. recently demonstrated that the functional

complement activation capacity of autoantibodies ex vivo in

BP correlates with disease severity and autoantibody levels (96).

An IgA autoimmune response to BP180 and BP230 was also

demonstrated in PDs, especially in MMP (106). It was shown to

induce dermal epidermal separation via FcaRI-mediated

neutrophil activation (107). However, there is contradictory

data regarding IgA’s potential to activate complement (108,

109). With regard to PDs, neither IgA1 nor IgA2 were able to

induce complement deposition at the DEJ in cryosections of

human skin. However, they still could amplify the complement

activation pathways via AP activation, which is a major source of

the proinflammatory C5a (110, 111). This might explain the

stronger ability of both IgA1 and IgA2 to activate neutrophils, as

well as to induce blistering without the CP activation.
3 Complement-independent
pathogenic pathways in PDs

3.1 Experimental lines of evidence

First evidence pointing towards direct, complement-

independent blistering in PDs was presented by Kitajima et al.:

Here, binding of anti-BP180 IgG to the lateral-apical cell surface of

basal cells led to internalization of the BP180-IgG immune

complex in both cultured keratinocytes and biopsy specimens

from BP patients (112, 113). Furthermore, Iwata et al.

corroborated this finding by demonstrating that pathogenic

autoantibodies from BP patients not only significantly depleted

the hemidesmosomal BP180 content from cultured keratinocytes,

but also reduced their adhesive strength to the basement
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membrane, as determined in a standardized detachment assay

using vibration (114). Interestingly, the a6 and b4 integrin levels

of hemidesmosomes were not altered, thus underlining the

putative specificity of the anti-BP180 IgG-mediated effect. The

mechanism behind the internalization of the whole immune

complex is attributed to the macropinocytosis pathway via

calcium-dependent phosphorylation of the intracellular domain

of BP180 by the protein kinase C (115, 116) (Figure 2B).

In line, in a neonatal BP180-humanized mouse model,

Natsuga et al. were able to show that transfer of rabbit and

human F(ab′)2-fragments against the immunodominant human

NC16A domain of BP180 induced dermal-epidermal separation

by mechanical stress, and also reduced the expression of BP180

in mouse skin as shown by immunoblotting (117). However, not

all mice injected with F(ab′)2-fragments against NC16A showed

skin detachment, pointing towards several synergistic pathways

including Fc-mediated complement activation, potentially

contributing to autoantibody-induced tissue pathology in

BP (118).

Further in vivo data revealed that BP180 internalization

and degradation via the ubiquitin/proteasome pathway is

sufficient to induce blister formation in a C3-deficient

BP180-humanized mouse model (119). Mice injected with

a recombinant human IgG4 monoclonal antibody against the

human NC16A domain of BP180 developed blisters, even

though the IgG4 subclass does not fix complement, and also a

proteasome inhibitor was added simultaneously. These

results imply that BP180 internalization with subsequent

hemide smosoma l weaken ing , f o l l owed by BP180

degradation via proteasome pathway may suffice for blister

formation. Surprisingly, IgG4 antibodies from BP patients

were found to induce dermal-epidermal separation in human

cryosections, although with a much lower potential

compared to IgG1 antibodies (120). Conversely, Zuo et al.

suggested a protective role for IgG4 anti-NC16A antibodies

in BP. He showed that the transfer of human IgG4 anti-

NC16A to humanized BP180 mice inhibited human IgG1

and IgG3 induced complement activation with subsequent

neutrophil infi ltration, preventing both clinical and

histological blistering in a dose-dependent manner (121).

Correspondingly, IgG4 mitigates allergic diseases by

inhibiting the activity of IgE (122). Based on these findings,

it is tempting to speculate that IgG4 anti-NC16A might

abrogate complement-dependent blister formation in BP.

More studies are needed to fully clarify the role of IgG4

antibodies in PDs (38, 123).

Previously cited studies were nonetheless performed in

neonatal mice, making data interpretation difficult at times. It

was shown that neonatal mice do not entirely reproduce the

clinical disease, since the majority of patients with PDs are adults

and elderly, and lesions develop only with the application of

friction in neonatal mice (24, 124). Moreover, there are known

immunological differences between species, as well as in
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neutrophil function and skin physiology between neonatal and

adult mice, and between murine and human skin, respectively

(124, 125).
3.2 Clinical lines of evidence

Dainichi et al. reported two unusual BP cases with no

complement deposition at the DEJ (126). Both patients had

predominant IgG4 antibody involvement, which has restricted

complement activating abilities. In line, approximately 20% of

BP patients did not show C3 deposition at the DEJ in a large

cohort of patients, and of these, the majority had prevalent IgG4

antibodies (30). Moreover, BP patients presenting with the non-

blistering phenotype showed also less C3 deposition and

previous studies hinted towards a IgG4 predominance in C3-

negative cases (30, 127). In addition, BP-IgG4 antibodies

induced subepidermal split formation ex vivo (120). Therefore,

Dainichi et al. proposed a new entity in PDs, the so called “C3-

negative BP” or “IgG4-dominant BP” (128). Given that the

detection of C3 at the basement membrane is highly more

sensitive than IgG for the diagnosis of BP by DIF microscopy,

C3-negative DIF may require additional diagnostic methods or

reconsidering the initial diagnosis (39). On the other hand, Boch

et al. recently described 3 PD patients with weak or no C3

deposition, but with exclusive IgM reactivity at the cutaneous

basement membrane (129). Interestingly, these patients also

manifested with pruritic erythematous lesions without

macroscopic or microscopic blistering. Since IgM is usually a

strong inducer of complement activation, these findings further

suggest that the activation of complement at the DEJ is indeed

required for blister formation in PDs (108).

Both IgG1 and IgG4 against the NC16A domain of BP180

antibodies prevail in BP, and their serum levels significantly

correlate with disease severity and poor prognosis (38, 104, 123).

Interestingly, the IgG4 subclass was the first to be detected as

well as the most prevalent in the prodromal, papular and

urticarial BP variant (130). Since almost half of the IgG4

positive BP patients had also other IgG subclasses, and that

IgG4 prevented IgG1 and IgG3 induced complement activation

and final blister formation in mice, one might easily assume that

IgG4 antibodies may play an essential role in disease induction,

especially in the non-blistering phase, exerting also potential

inhibitory effects as shown by Zuo et al. (121, 130). Conversely,

the antibody switch to complement-fixing IgG subclasses will

promote characteristic blister formation in BP (38, 107). Despite

the fact that IgG4 antibodies do not fix complement, all patients

with the non-blistering phenotype and IgG4 predominance still

presented C3 and/or C5-9 deposition, suggesting early

complement activation even with less IgG deposition at the

DEJ and without blister formation (130). These findings

underscore the utility of complement detection in the

diagnosis of PDs, even in earlier disease stages. Recent data
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suggests that IgG4 might unexpectedly activate complement

through both the CP and LP (131).

The report of a C4-deficient BP patient further questioned

the role of complement as a prerequisite for blister development

(132). Interestingly, this patient still showed linear C3 deposition

at the basement membrane, implying non-canonical

complement activation pathways. In contrast, C4-deficient

neonatal mice were protected from BP development (55, 132).

However, the administration of IL-8, which is an important

polymorphonuclear neutrophil chemoattractant, restored

disease susceptibility of these C4-deficient mice (55, 64). In

line with this, cultured NHEKs with BP-IgG or -IgE anti-NC16A

antibodies directly induced the expression of IL-6 and IL-8,

whereas control IgG or BP180-deficient keratinocytes did not

(133, 134). These findings suggest that the binding of BP180 IgG

may induce blister formation without complement activation,

rather by attracting neutrophils, which release various proteases

and ROS that inflict characteristic tissue damage. Accordingly,

neutrophils were shown to be indispensable for dermal-

epidermal separation in both ex vivo murine cryosections and

in vivo passive mouse models of PDs (64, 105, 134–136). In this

sense, complement may at least maintain the inflammatory

response in PD patients in a positive feedback loop pattern

(39, 59, 117). On the other hand, it was shown that

proinflammatory cytokines (i.e., IL-6) may actually activate

complement (137, 138). More studies are needed to evaluate

these complement-dependent and -independent pathways

concomitantly, since one does not rule out the other, and most

PD patients do feature complement fixation at the DEJ.

Notwithstanding the critical role of neutrophils in mice,

eosinophil-predominant inflammatory infiltrates in the papillary

dermis and eosinophilic spongiosis represent the main

histological hallmarks of BP in humans (39). Furthermore, the

majority of BP patients show also elevated levels of eosinophils

and IgE antibodies in their sera, skin and blister fluid,

respectively (139, 140). In addition, about 70% have specific

IgE autoantibodies against both the NC16A and non-NC16A

domains of BP180 (139, 141). Eosinophils are considered the

liaison between IgE autoantibodies and skin blistering in BP. Lin

et al. showed in a humanized IgE receptor mouse model of BP

that IgE-mediated blistering relies on eosinophils, since

eosinophil-deficient mice were protected from IgE-induced

blister formation (61). Moreover, the degree of eosinophil

infiltration correlated with disease severity. It seems that

eosinophils are most prevalent in early urticarial lesions and

that they degranulate at the basement membrane before blister

formation (142). Given the fact that IgE antibodies are indicative

of type I hypersensitivity responses, together with eosinophils

they may be the driver of the prodromal, non-blistering phase of

BP, which could not be unraveled by the clearly established IgG

deposition-induced complement activation and immune effector

cells recruitment paradigm. Even though IgE antibodies do not

activate complement, both in vitro and in vivo data
Frontiers in Immunology 08
demonstrated that specific anti-BP180 IgE antibodies were still

able to induce dermal-epidermal separation (62, 134, 143).

However, many BP patients have both specific IgG and IgE

antibodies in their sera, with the latter predominantly found on

eosinophils and mast cells, and very rarely, in a discontinuous

pattern along the basement membrane (144–146). Since

eosinophils express the high-affinity IgE receptor FcϵRI, this
might explain how anti-BP180 IgE antibodies can activate them

(69). On the other hand, in vitro studies showed that full-length

Ig as well as F(ab’)2 fragments from BP-IgG and -IgE are able to

decrease the hemidesmosomes number by cytokine secretion,

thereby contributing to blister formation in a FcR-independent

manner (134). Moreover, BP-IgE antibodies seem to target the

same NC16A domain as pathogenic IgG antibodies (146).

Interestingly, Messingham et al. demonstrated by using a

cryosection model of BP that eosinophil localization along the

DEJ is dependent on IgG and complement deposition rather

than on IgE (147). No subepidermal split was however observed

in this study. To induce blister formation eosinophils required

IL-5 mediated activation, also prompted by IgG deposition and

complement fixation (148). Considering that most BP patients

have both IgG and IgE antibodies, and that each of them may

not fully explain all pathologies observed in blister formation, a

potential way to integrate all the above-mentioned findings is the

following: to induce blistering, specific anti-BP180 IgE

autoantibodies require the presence of eosinophils, which are

recruited and activated mainly as a result of IgG deposition and

subsequent complement activation. Given these results, future

studies should sequentially connect and integrate these distinct

pathways rather than dissect and presume the existence of solely

one in the intricate pathophysiology of blister formation in PDs.
4 Complement – useful or
dispensable?

In the 90s numerous studies showed that complement is

indispensable for blister formation in ex vivo cryosections and in

vivo experimental mouse models of PDs (52, 53, 64, 90, 95, 149).

Furthermore, the detection of C3 along the basement membrane by

DIF was used since then as an important diagnostic hallmark of

PDs (24, 30, 32). However, Iwata et al. questioned the necessity of

complement by demonstrating that BP autoantibodies were able to

deplete BP180 content in cultured keratinocytes, which in turn led

to an increase in cells’ detachment implicating loss of function

(114). Further research showed potential complement-independent

pathways also in experimental mouse models (117, 119). However,

these studies were performed in neonatal and complement knock-

out mice, with the former exhibiting many limitations when

compared to adult mice, and the latter being not physiologic,

since patients with PDs with an additional complement

component deficiency are rather an exception than the rule.

Notwithstanding that Natsuga et al. demonstrated that BP
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antigen specific human or rabbit derived F(ab′)2-fragments were

still able to induce disease, this reflects merely a theoretical potential

of antibodies than a suggestion of the dispensability of complement,

considering that full, complement-activating Ig molecules are

prevalent in human sera and tissue, whereas F(ab’)2 fragments

are artificial (117, 150).

Even though these data may refute the necessity of complement

in PDs, they rather provide new insights into PD pathogenesis,

suggesting that complement-dependent and -independent

mechanisms may indeed coexist in patients at the same time.

Even if complement is not absolutely indispensable to induce

blister formation, we propose that it is essential in the

amplification of characteristic inflammation and tissue damage,

thus contributing to disease severity. Therefore, eliminating

complement activation in PDs may significantly ameliorate

disease, as data from in vitro and in vivo studies suggest (151, 152).

In view of this, different complement-targeting therapies have

been specifically developed for PDs. Among these are sutimlimab

and nomacopan. In a phase I trial, sutimlimab, a humanized

monoclonal IgG4 antibody directed against the C1s subunit of

human complement component C1, was shown to partially or

completely abrogate C3 deposition along the DEJ in BP patients

(153). Nomacopan (formerly known as coversin) is a bifunctional

inhibitor of both C5 and leukotriene B4 (88, 154). EBAmice treated

with coversin were almost completely protected from disease

development mainly due to the C5-inhibitory effect of this

compound (88). More recently, Sadik et al. demonstrated in a

phase IIa clinical trial that nomacopan successfully reduced the

clinical disease severity in BP patients, without any serious adverse

event (152). Furthermore, several other complement-targeting

treatments have been developed that so far have not been

evaluated in preclinical and clinical settings (151, 154).

Piecing these data together, we conclude from the evidence

published so far that complement remains an important and, in

most cases, an indispensable hallmark of both human and

experimental models of PDs and that complement-targeting

therapies are effective and safe treatment strategies for these patients.
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