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CD8 T cell function and
cross-reactivity explored by
stepwise increased peptide-HLA
versus TCR affinity

Petra Baumgaertner1,2*, Julien Schmidt1,2,
Carla-Marisa Costa-Nunes1,2, Natacha Bordry1,2,
Philippe Guillaume1,2, Immanuel Luescher1,2,
Daniel E. Speiser1,2, Nathalie Rufer1,2 and Michael Hebeisen1,2*

1Department of Oncology, Lausanne University Hospital and University of Lausanne,
Epalinges, Switzerland, 2Ludwig Institute for Cancer Research, Lausanne Branch - University of
Lausanne, Epalinges, Switzerland
Recruitment and activation of CD8 T cells occur through specific triggering of T

cell receptor (TCR) by peptide-bound human leucocyte antigen (HLA) ligands.

Within the generated trimeric TCR-peptide:HLA complex, the molecular

binding affinities between peptide and HLA, and between TCR and peptide:

HLA both impact T cell functional outcomes. However, how their individual and

combined effects modulate immunogenicity and overall T cell responsiveness

has not been investigated systematically. Here, we established two panels of

human tumor peptide variants differing in their affinity to HLA. For precise

characterization, we developed the “blue peptide assay”, an upgraded cell-

based approach to measure the peptide:HLA affinity. These peptide variants

were then used to investigate the cross-reactivity of tumor antigen-specific

CD8 T cell clonotypes derived from blood of cancer patients after vaccination

with either the native or an affinity-optimized Melan-A/MART-1 epitope, or

isolated from tumor infiltrated lymph nodes (TILNs). Vaccines containing the

native tumor epitope generated T cells with better functionality, and superior

cross-reactivity against potential low affinity escape epitopes, as compared to T

cells induced by vaccines containing an HLA affinity-optimized epitope.

Comparatively, Melan-A/MART-1-specific TILN cells displayed functional and

cross-reactive profiles that were heterogeneous and clonotype-dependent.

Finally, we took advantage of a collection of T cells expressing affinity-

optimized NY-ESO-1-specific TCRs to interrogate the individual and

combined impact of peptide:HLA and TCR-pHLA affinities on overall CD8 T

cell responses. We found profound and distinct effects of both biophysical

parameters, with additive contributions and absence of hierarchical

dominance. Altogether, the biological impact of peptide:HLA and TCR-pHLA

affinities on T cell responses was carefully dissected in two antigenic systems,
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frequently targeted in human cancer immunotherapy. Our technology and

stepwise comparison open new insights into the rational design and selection

of vaccine-associated tumor-specific epitopes and highlight the functional and

cross-reactivity profiles that endow T cells with best tumor control capacity.
KEYWORDS

cancer immunotherapy, vaccine peptide, melan-A/MART-1, NY-ESO-1, peptide-HLA
binding affinity, TCR-peptide-MHC affinity, human CD8 T cells
Introduction

Cytotoxic CD8 T cells play key roles in generating protective

and durable immune responses against pathogens and cancer.

The specificity of CD8 T cell responses relies on the recognition

by T cell receptors (TCR) of small immunogenic peptides

restricted by major histocompatibility complex (MHC)

molecules - termed Human Leukocyte Antigens (HLA) in

humans - at the surface of antigen presenting cells (APC).

Multiple factors and regulatory mechanisms control the

presence and function of CD8 T cells within tumors, greatly

influencing disease outcome in numerous human malignancies

(1). These factors can be T cell-extrinsic (e. g. inflammation and

suppressive mechanisms in the tumor microenvironment,

amount of tumor-derived neoantigens) (2, 3) or T cell-

intrinsic (e. g. reactivity of T cells to tumor antigens/

neoantigens, stem-like vs exhausted differentiation states,

functional avidity and proliferation capacities), all impacting

on how tumor-specific T cells will recognize and control/

eliminate tumor cells (4, 5). Molecularly, many T cell-intrinsic

factors initially depend on the interaction strength occurring

between the tumor-specific TCR and the peptide:HLA antigen

(i.e. the so-called TCR-pHLA affinity) (6, 7), which is itself

conditioned by the interaction characteristics of the antigenic

peptide within the HLA binding groove (i.e. the peptide:HLA

affinity) (8, 9). As such, both biophysical parameters within the

TCR-peptide:HLA complex are key determinants of TCR

triggering sensitivity and subsequent T cell responses, referred

to as “ T cell functional avidity” (i.e. EC50: the concentration of

peptide producing half-maximal T cell responses during in vitro

functional titration assay). Since functional avidity represents a

major hallmark of T cell-associated tumor clearance (10), its

systematic assessment in detailed cytokine or killing assays

represents a crucial readout for categorizing the tumor cell

recognition capacity of distinct cytotoxic T cells.

Natural tumor-reactive T cells mostly express TCRs of low

affinity for self/tumor epitopes (11). This is because central and

peripheral tolerance eliminate and control potentially toxic

cross-reactive T cells of high affinity against self-antigens. In

contrast, immune responses to non-self antigens (e.g. viral) are
02
dominated by cytotoxic T cells expressing high affinity TCRs,

which are functionally superior than low affinity T cells (12, 13).

T cells recognizing tumor-derived neo-epitopes have functional

avidities between the ranges of self- and non-self, depending on

the structural similarity or dissimilarity of the neo-epitope to

self-antigens (14). To improve efficacy of tumor recognition in

adoptive T cell immunotherapy, T cells were engineered to

express affinity-enhanced TCRs against various tumor-

associated antigens (15). Functional analysis highlighted that

optimization of T cell responses against cancer was achievable

when augmenting TCR affinity toward values observed for non-

self TCR, but at the cost of enhanced auto- and cross-reactivity

(16–19). Furthermore, engineering T cells with TCRs above the

upper natural affinity threshold triggered chronic TCR-HLA-A2

self-reactivity even in the complete absence of cognate antigen

(20). This generated T cells with an initial hyperactive state (20),

fo l lowed by a long-term to lerance/exhausted- l ike

hyporesponsiveness due to negative feedback mechanisms,

resulting in severe functional decline (21, 22). On the other

end of the spectrum, T cells with very low affinity TCRs,

although potentially reacting rapidly to tumor antigens, are

not useful because they fail controlling disease and preventing

tumor relapse (23). New strategies are currently being explored

to develop high killing potency T cells with minimal TCR

affinity-associated toxicity (24).

The characteristics and binding strength of the antigenic

peptide within the HLA binding groove (i.e. peptide:HLA

affinity) also impacts on the biological outcome and functional

avidity of T cells (10, 25, 26). Altered peptide variants (also

referred to as mimotopes or heteroclitic peptides) with increased

affinity for MHC/HLA showed superior T cell activation

potential and tumor cell control than the native peptide

antigen in mouse models (27–29), prompting their use in

clinical trials (30). However, vaccination with high affinity

peptide variants, even if recruiting higher fractions of T cells

with strong cytotoxic profiles, often remained therapeutically

inefficient in human. This is because reactivity of such T cells

toward the native, endogenous tumor antigen became limited,

suggesting vaccination-dependent biases in TCR repertoire

associated to altered cross-reactivity potential (13, 31). To
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assess the affinity of ligands to HLA, two types of experimental

designs have been developed: 1) cell-free peptide:HLA stability/

dissociation assays and 2) cell-based binding/functional

competitive assays, which would be superior in predicting real

peptide immunogenicity (32, 33). In the last decade, with the

increasing number of peptide:HLA structural complexes and

mass-spectrometry-based targets deposited in open-source

platforms, computational-based algorithms were developed to

calculate peptide:HLA stability and affinity with the ultimate

goal of predicting the immunogenicity of the entire HLA

peptidome (34). Although highly attractive for the field of

tumor immunology and vaccination, finding tumor-specific

antigens with high HLA binding score based on prediction

algorithms does not currently grant immunogenicity toward

endogenous targets and potential escape derivatives. This also

depends on additional parameters, such as expression and

presentation of the antigen, turnover, accessibility and affinity

of the complex to TCR (35). Indeed, strong divergences between

prediction and assay-based functional and immunogenicity

analyses were detected for series of endogenous cancer neo-

epitopes (36–38), as well as for NY-ESO-1-derived 8 to 11-mers

bound to HLA-A2*01 (39). Therefore, novel T cell epitope

prediction algorithms are currently being developed to

integrate additional biophysical parameters (40, 41).

In this study, we developed a peptide:HLA binding affinity

assay (defined as the “blue peptide assay”) to assess a panel of

peptide variants with a large spectrum of class I HLA binding

capacities in two tumor antigen-specific CD8 T cell model

systems relevant for cancer vaccination and adoptive cell

transfer immunotherapy. We first explored the cross-reactivity

profile of human CD8 T cells recruited after vaccination with

either the native or an affinity-optimized Melan-A/MART-126-35
peptide and found better control of potential escape epitopes by

T cells isolated from patients vaccinated with the native tumor

antigen. We then compared those results to the heterogenous

cross-reactive profiles obtained from tumor-primed T cell clones

derived directly from TILNs. Finally, we asked whether the

functional avidity was dominantly controlled by the peptide:

HLA binding strength or the TCR-pHLA affinity and found that

neither was the case. By testing and analyzing stepwise

combinations of increased peptide:HLA affinity (Ki) and TCR-

pHLA affinity (KD), we here dissected the molecular interactions

within the trimolecular TCR-pHLA complex that influence T

cell responses and cross-reactivity against potential

escape epitopes.
Material and methods

Ethics approval

Study protocol (LUD00-018) was designed, approved, and

conducted according to the relevant regulatory standards from
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(i) the Ethics Committee for Clinical Research of the University

of Lausanne (Lausanne, Switzerland), (ii) the Protocol Review

Committee of the Ludwig Institute for Cancer Research (New

York), and (iii) Swissmedic (Bern, Switzerland). Patient

recruitment, study procedures, and blood withdrawal were

carried out upon written informed consent prior to study

inclusion. Human peripheral blood cells were obtained from

healthy donors of the Interregional Blood Transfusion SRC Ltd.

All blood donors had previously completed the Swiss National

Medical questionnaire to verify that they fulfilled the criteria for

blood donation and provided written informed consent for the

use of blood samples in medical research after anonymization.
Culture of cell lines and primary
CD8 T lymphocytes

Melan-A specific CD8 T cell clones were generated from

melanoma patients included in the phase I clinical study

LUD00-018 (ClinicalTrials.gov Identifier NCT00112229).

Antigen specific CD8 T cells were sorted ex vivo from patient

PBMC or TILNs with phycoerythrin-labeled HLA-A*02:01/

Melan-A/MART-1 A27L peptide26-35 tetramer (peptide &

tetramer core facility, Department of Oncology, UNIL) and

CD8 APC-Cy7 (BD Bioscience). Individual clones were

obtained by limiting dilution (0.5 cell/well) in Terasaki plates

and cultured in RPMI medium with 8% HS and 150 U/ml IL-2,

10000 irradiated allogenic feeder cells per well and 1 mg/ml PHA.

The clones were tested for antigen specificity by tetramer

staining. TAP (transporter associated with antigen

processing)-deficient T/B hybrid HLA-A2pos T2 cells were

used as antigen presenter cells. T2 cells are defective in

processing endogenous self-peptides, but able to present

exogenously-pulsed peptides efficiently (42). C1R (deficient in

HLA-A and B expression (43), C1R-A2 and -A3 transduced cells

were used for assessing correct HLA restriction of the blue

peptide. C1R and TAP-deficient T2 cells were cultivated in

RPMI%10% FCS, Penicillin and Streptomycin and maintained

at 37°C and 5% CO2.
NY-ESO-1–specific TCR ab
constructs, lentiviral production,
and cell transduction

Cloning strategies and lentiviral production were performed

as described previously (44, 45). The full-length codon-

optimized TCR AV23.1 and TCR BV13.1 chain sequences of a

dominant NY-ESO-1157–165–specific T cell clone of patient

LAU155 were cloned in the pRRL, third generation lentiviral

vectors, as an hPGK-AV23.1-IRES-BV13.1 construct. Structure-

based amino-acid substitutions were introduced into the WT

TCR sequence using the QuikChange Mutagenesis Kit
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(Stratagene) and confirmed by DNA sequencing. Supernatant of

lentiviral-transfected 293T cells was used to infect primary CD8

T lymphocytes. PE-labeled A2/NY-ESO-1157–165–specific

multimers were used to sort transduced primary CD8 T cells

to purity. Integrated lentiviral copy number was found to be 1-2

copies/genome for each TCR variants.
Synthesis of unlabeled and blue peptides

Peptides were synthesized by the Peptide and Tetramer Core

Facility, UNIL-CHUV, Epalinges, Switzerland, by standard solid

phase peptide synthesis on a multiple peptide synthesizer

(Intavis, Germany). All peptides were > 90% pure as indicated

by UPLC-MS analysis. Lyophilized peptides were diluted in pure

DMSO at 10 mg/ml and stored at -80°C (stock solution). 10x

diluted aliquots (1 mg/ml in 10% DMSO) were prepared from

the stock and used for killing assay. Cy5-labeled HBVc peptide

(blue peptide) was prepared by alkylation of the cysteine in

position 6 of the native peptide with maleimide-Cy5 (Pierce,

Thermo Fisher Scientific) in Tris 0,1 M pH 7, for 2 h. The labeled

peptide was purified by RP-HPLC, analyzed by UPLC-MS and

kept lyophilized at -80°C.
In silico prediction of peptide binding
strength to MHC class I

The potential binding strength of the NY-ESO-1157-165 and

Melan-A26-35 peptide variants was determined in silico with

IEDB analysis resource Consensus tool (http://tools.iedb.org/

mhci/) (46), NetMHC 4.0 prediction algorithm (https://services.

healthtech.dtu.dk/service.php?NetMHC-4.0) (34) and the latest

PRIME2.0 algorithm (http://prime.gfellerlab.org) (41).
Peptide-driven soluble refolding assay

A peptide-driven soluble refolding assay was used to assess

the molecular stability of peptide:HLA complexes in a cell-free

environment. Refolding with HLA-A0201 heavy chain carrying

a C-terminal BirA substrate peptide (BSP), biotin-labeled b2m
and a test peptide were performed essentially as described (47).

Human b2m was mutated at S88C and after refolding, alkylated

with maleimide-PEG2-biotin (Pierce, Thermo Fisher Scientific)

in PBS at pH 7.4. Refolding reactions were performed in 96 well

plates at 4°C for 72 h in the presence of 10 µM peptide.

Incubation without peptide and with the Flu matrix58-66
peptide served as negative and positive controls, respectively.

After centrifugation (4’000 rpm, 5 min), the reaction mixtures

were transferred into 96 well plates coated with anti-BSP

antibody and saturated with 1% BSA. After 2 h, plates were

washed 5 times with PBS-Tween 0,05% and extravidin-alcaline
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phosphatase (Sigma) was added. After 1 h at room temperature,

plates were washed 5 times with PBS-Tween 0,05% and PNPT

substrate was added (Sigma). OD at 405 nm was read after

20 min on a 96 well plate reader using the Gen5 software. All

measurements were performed in triplicates and normalized to

Flu matrix58-66 value, which was set at OD = 1.
Blue peptide (Cy5-labeled HBVc) kinetic
and isotherm determination

The binding equilibrium dissociation constant (KD) of the

Cy5-labeled HBVc blue peptide on HLA-A2 molecules was

found through parallel binding association (kon) and

dissociation (koff) assessment, as well as binding equilibrium

assays using HLA-A2pos and HLA-A2neg presenting cells at 4°C

and at 37°C. In short, for kon measurements on T2 (HLA-A2pos)

and C1R-A3 (HLA-A2neg) cells, baseline Cy5 cell auto-

fluorescence was recorded for 30s with an LSRII instrument.

Titrated amounts of Cy5-labeled HBVc blue peptide (from 1 pM

to 1 uM final concentration) were then added to the tube and

association of the blue peptide to HLA-A2 was recorded for 5

minutes. For koff dissociation assays, 2x106 HLA-A2pos (T2) and

HLA-A2neg (C1R-A3) cells were stained with 1 mM blue peptide

and incubated for 1h in the dark. After washing, baseline Cy5

staining was recorded for 30s, before adding excess of FACS

buffer and recording fluorescence intensity (gMFI) for 1h under

temperature control. Additionally, isotherm titration

experiments were performed to validate the value of the blue

peptide dissociation equilibrium constant KD. Cells were stained

with titrated amounts of the blue peptide (from 1 pM to 1 uM)

for 1h at 4°C or 37°C. After washing, Cy5 gMFI was recorded on

an LSRII instrument to determine concentration-associated

maximal staining at equilibrium conditions (n = 5). All kinetic

and isotherm analyses were done with the corresponding best fit

equations using Prism software (GraphPad, v.9.1.1) and

correction of non-specific staining values found on control

HLA-A2neg cells (nonlinear regression for kon = association

kinetics - one conc. of ligand, for koff = dissociation/one phase

exponential decay and for KD = one site - total and

nonspecific binding).
Competition assay and Ki calculation

TAP-deficient HLA-A2+ T2 cells were incubated for 1h at

37°C and 5% CO2 with anti-HLA-class I antibody W6/32 in

RPMI at a concentration of 1 mg/ml to stabilize the MHC-

complex. The cells were washed and resuspended at 0.5x106

cells/ml for the test in RPMI/10% FCS and b2-microglobilin at a

final concentration of 1.5ml/ml. Meanwhile, a serial dilution

from 50mM to 0.1mM of the “competitor peptide” (peptide of

interest) was prepared in pure RPMI. The Cy5-labeled HBVc
frontiersin.org
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blue reference peptide was prepared at a fixed concentration of

0.2 mM final in pure RPMI to generate a sub-saturating MFI

signal of 80% of the maximum, which was found to provide

optimal sensitivity for peptide competition. Both, the competitor

and the reference peptides were incubated with the T2 cells for

4h at 37°C and 5% CO2. Cy5 fluorescence of the blue-HBVc

peptide bound on T2 after competition with titrated dose of the

competitor peptide was acquired by Flow Cytometry (BD

FacsArray). The data were analysed with the FlowJo 9.9.4

software. IC50 and Ki values were interpolated using the one

site Fit logIC50 or the one site Fit Ki nonlinear regression

equations using Prism software (GraphPad, v.9.1.1) under

Cheng & Prusoff conditions (48) with constant blue peptide

concentration = 200 nM and KD = 52.6 nM.
Killing assay

The specific lytic activity of the NY-ESO-1 CD8 T-cell lines

or Melan-A specific T cell clones was assessed by presentation of

HLA-A*02 peptide variants of NY-ESO-1157-165 and Melan-A26-

35 on
51Cr-labeled TAP-deficient T2 cells. T2 cells were labeled

with 51Chromium (Amersham Biosciences) for 1h, washed and

resuspended in culture medium. 51Cr-labeled cells were then

incubated for 4h at 37°C with effector T cells at an Effector :

Target ration of 10:1 with titrated amount of NY-ESO-1157-165
and Melan-A26-35 peptide variants At the end of the incubation

time, the supernatants were harvested and radioactivity was

counted in an automatic gamma-counter TopCount NXT

(Perkin-Elmer). The percentage of specific lysis was

determined using the formula: (experimental-spontaneous

release)/(maximum-spontaneous) x 100. Internal controls were

included in each assay to measure the spontaneous release

(target cells alone) and the total release (target cells with 1 M

HCl) (49).. Functional avidity (EC50 = peptide concentration

giving 50% maximal killing) was derived from the nonlinear log

(agonist) vs. response equation using Prism software

(GraphPad, v.9.1.1).
Statistical analysis

Correlations and statistics were performed using Prism software

(GraphPad, v.9.1.1). Correlations are given as R squared values

from original Pearson analysis. Regression lines were derived from

nonlinear least square fitting values using straight or LOG-LOG

lines depending on the XY axes. Slopes (DY/DX) correspond to the

steepness of the regression lines. Statistical analyses between native

(EAA) and analog (ELA) EC50 values and between linear regression

slopes were obtained following Mann-Whitney nonparametric

tests. Two-tailed p values were defined with a 95% confidence

level. Significance of the adjusted p value at a = 0.05 is given by the
Frontiers in Immunology 05
following symbols: ns (p > 0.05), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,

****p ≤ 0.0001.
Results

Selection of a panel of Melan-A/MART-1
and NY-ESO-1-specific peptide variants
displaying variable HLA binding affinities

To study the impact of the binding strength of peptide to

HLA molecules on the functional responses of human tumor-

reactive CD8 T cells, we generated two panels of HLA-A*0201-

restricted peptide variants of the tumor-associated (TA) antigen

Melan-A/MART-126-35 (EAAGIGILTV) and the cancer testis

(CT) antigen NY–ESO-1157-165 (SLLMWITQC) native peptides

(50, 51). Peptide binding to HLA-A*0201 is known to depend

mainly on the identity of the amino-acid at the dominant anchor

positions P2 and P9/10 (52). Translating knowledge from

functional alanine and substitutions scans (Supplementary

Figures 1A, B) (44, 53, 54), we modified these two positions to

generate multiple combinations of P2 and P9/10 substitution

variants for both Melan-A/MART-126-35 (EAAGIGILTV) and

NY–ESO-1157-165 (SLLMWITQC) peptides. Our aim was to

generate peptide variants able to bind HLA-A*0201 with

altered affinities and to trigger T cell activation. We selected a

total of 17 Melan-A/MART-126-35 and 21 NY–ESO-1157-165
variants covering maximal peptide:HLA binding range

(Table 1 and 2), which clustered into weak, intermediate and

strong HLA binders, as determined by soluble refolding

measurements (Figure 1A). Notably, Melan-A/MART-1-

specific variants showed mostly weaker molecular stabilities

than NY–ESO-1157-165 variants. For both antigenic variant

panels, the refolding values correlated with the algorithm-

based NetMHC4.0, IEDB and PRIME2.0 peptide:MHC

binding indexes (Figure 1A and Supplementary Figure 2A),

values expected to be associated with epitope presentation

quality and immunogenicity (34, 41).
The blue peptide assay, an upgraded
cellular competition assay to assess
peptide:HLA binding strength on
living cells

Although useful for initial screening, binding prediction

algorithms cannot replace measurements of interacting

molecules. Likewise, soluble refolding assays are exploited by

many laboratories and prove very informative for molecular

binding strength analyses, yet they might misrepresent the native

biophysical interactions occurring at the cell surface between

antigenic peptides and HLA molecules. To quantify the peptide:
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HLA binding strength more precisely in a cellular context, we

developed a novel and simple competition assay termed “blue

peptide assay”. The technology is based on the principles

published by Kessler et al., who used 5-(iodoacetamido)

fluorescein labelled reference peptides restricted to specific

HLAs to assess the binding strength of selected, unlabeled

competing peptide variants (33). For our assay, we synthetized

cyanine 5-labeled HLA-A2-restricted Hepatitis B virus (HBV)

cAg18-27 (FLPSDC*-(Cy5)-FPSV) decamers – the so-called blue

peptide – as our positive, reference peptide (Figure 1B). HLA-

A2-restriction and binding of the HBV cAg18-27 blue peptide was

confirmed on T2/HLA-A2 pos and absent on C1R/HLA-A3

controls (Figure 1C). Using pairs of HLA-A2pos and HLA-

A2neg cells tested in parallel, we determined both the binding

kinetics (peptide:HLA association kon = 2.3 x 104 M-1 • s-1 and

dissociation koff = 1.2 x 10-3 s-1 rates) and the equilibrium

dissociation constant (KD = 52.6 nM) of the reference blue

peptide, enabling precise quantification of strong and low HLA

binders by competition binding (defined thereafter as peptide:

HLA Ki affinity) (Figure 1D). To validate our technology, we first
Frontiers in Immunology 06
assessed the competition strength of native Melan-A/MART-

126-35-specific EAAGIGILTV peptide and its P2 ELAGIGILTV

analog variant, reported to bind with superior affinity to HLA-

A2 (54). As expected, both peptides displaced the reference blue

peptide in a concentration-dependent manner (Figure 1E, top),

with an exception seen at highest 50 mM concentration for ELA,

possibly due to saturation-associated peptide-HLA instability.

The modified ELA variant outcompeted the blue peptide at

lower concentration than the native EAA peptide, reflecting a

cell-based peptide:HLA Ki affinity that was 9 times stronger

(variant ELA=0.52 mM and native EAA=4.67 mM). We then

assessed all 17 selected HLA-A*02-restricted variants derived

from the native Melan-A/MART-126-35 peptide (Figure 1E

bottom, Supplementary Figure 1C and data not shown), plus

21 variants originating from NY–ESO-1157-165 (Supplementary

Figure 1D and data not shown). For Melan-A/MART-126-35
variants, the inhibition equilibrium dissociation Ki constants

ranged from 59 mM (low affinity n°5 variant EAAGIGILTM) to

0.37 mM (high affinity n°6 variant EMAGIGILTI), reflecting a

160-fold difference (Table 1). For NY-ESO-1157-165, the Ki
TABLE 1 Sequences, algorithm-based and biophysical values of HLA-A*0201-restricted Melan-A/MART126-35 P2/P10 peptide variants and Flu
Matrix58-66 control.

Melan-A/MART-126-35

peptide variant Sequence (decamer) IEDB pred. NetMHC 4.0 PRIME 2.0 refolding assay Peptide IC50 Ki affinity*

n° P2 P10 % rank mM % rank O.D. mM mM

1 (native) E-A-A-G-I-G-I-L-T-V 13.5 5.32 0.74 0.32 22.50 4.67

2 E-A-A-G-I-G-I-L-T-L 22 9.30 0.92 0.10 117.00 24.47

3 E-A-A-G-I-G-I-L-T-A 24 13.78 1.68 0.10 133.00 27.68

4 E-A-A-G-I-G-I-L-T-I 30 10.21 1.44 0.11 30.70 6.39

5 E-A-A-G-I-G-I-L-T-M 30 13.14 2.25 0.10 284.00 59.14

6 (analog) E-L-A-G-I-G-I-L-T-V 1.8 0.25 0.11 0.54 2.48 0.52

7 E-M-A-G-I-G-I-L-T-V 4.1 0.23 0.26 0.60 3.60 0.75

8 E-I-A-G-I-G-I-L-T-V 6.65 1.93 0.28 0.54 3.35 0.70

9 E-V-A-G-I-G-I-L-T-V 6.7 3.15 0.36 0.63 4.21 0.88

10 E-L-A-G-I-G-I-L-T-L 1.9 0.82 0.14 0.44 4.17 0.87

11 E-L-A-G-I-G-I-L-T-A 4.95 1.60 0.32 0.43 5.61 1.17

12 E-L-A-G-I-G-I-L-T-I 4.5 0.91 0.26 0.71 2.93 0.61

13 E-L-A-G-I-G-I-L-T-M 7.15 2.14 0.47 0.10 36.80 7.66

14 E-M-A-G-I-G-I-L-T-L 4.45 0.86 0.34 0.56 4.38 1.01

15 E-M-A-G-I-G-I-L-T-A 7.3 1.79 0.64 0.55 3.62 0.75

16 E-M-A-G-I-G-I-L-T-I 7.85 0.98 0.54 0.71 1.79 0.37

17 E-M-A-G-I-G-I-L-T-M 8.9 2.40 0.94 0.12 37.50 7.81

FluMA58-66 G-I-L-G-F-V-F-T-L 0.80 0.016 0.006 1.00 1.02 0.21
f

* Blue peptide KD = 52.6 nM.
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constants were generally stronger, ranging from 2.4 mM (low

affinity n°110 variant SALMWITQM) to 0.15 mM (high affinity

n°116 variant SMLMWITQI) and reflecting a 16-fold difference

(Table 2). Those Ki values correlated with the corresponding

NetMHC4.0/4.1, NetMHCpan-4.0 indexes, the IEDB Consensus

and PRIME2.0 percentile ranks, as well as with the OD values

obtained during molecular refolding (Figure 1F, Supplementary

Figure 2B and data not shown), indicating a good reliability of

our assay. For both specificities, the range of the Ki values was

larger than that obtained with the cell-free refolding assay,

especially for the Melan-A/MART-126-35 variants (1000x

greater for Melan-A/MART-1 and 1.5x greater for NY-ESO-1),

suggesting higher sensitivity and separation strength for the cell-

based quantification method. Overall, we show that the “blue

peptide” competition assay represents an accurate cellular

method for characterizing surface-based peptide:HLA

molecular affinity.
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Impact of peptide:HLA Ki affinity on T
cell priming and function in patients
vaccinated with native or analog Melan-
A MART-1 peptide

Peptide : HLA affinity is known to represent an important

biophysical parameter that modulates immunogenicity and T

cell function (9, 29). To assess the degree of correlation between

the blue peptide-derived Ki affinity and the responsiveness of T

cells recognizing those variants, we took advantage of a unique

collection of human Melan-A/MART-126-35-derived CD8 T cell

clones isolated during phase I vaccination trials in cancer

patients (13). Vaccination was performed with an emulsion of

IFA containing CpG together with either the native Melan-A/

MART-126-35 (EAAGIGILTV) or the HLA-A2 affinity-improved

Melan-A/MART-126-35 (ELAGIGILTV) antigenic peptide.

Previous studies on both T cell cohorts demonstrated that ex
TABLE 2 Sequences, algorithm-based and biophysical values of HLA-A*0201-restricted NY-ESO-1157-165 P2/P9 peptide variants and Flu Matrix58-
66 control.

NY–ESO-1157-165

peptide variant Sequence (nonamer) IEDB pred. NetMHC 4.0 PRIME 2.0 refolding assay Peptide IC50 Ki affinity*

n° P2 P9 % Rank mM % Rank O.D. mM mM

101 (native) S-L-L-M-W-I-T-Q-C 3.4 0.66 0.41 0.36 4.45 0.93

102 (analog) S-L-L-M-W-I-T-Q-A 0.7 0.03 0.18 1.08 1.09 0.23

103 S-L-L-M-W-I-T-Q-L 0.4 0.02 0.04 0.91 1.97 0.41

104 S-L-L-M-W-I-T-Q-V 0.2 0.01 0.04 1.05 1.19 0.25

105 S-L-L-M-W-I-T-Q-M 1.3 0.05 0.28 0.38 2.38 0.50

106 S-L-L-M-W-I-T-Q-I 0.5 0.02 0.10 1.13 1.36 0.28

107 S-A-L-M-W-I-T-Q-A 7.3 2.25 1.19 0.39 2.28 0.47

108 S-A-L-M-W-I-T-Q-L 4.1 1.07 0.43 0.28 1.99 0.41

109 S-A-L-M-W-I-T-Q-V 2.9 0.25 0.36 0.79 1.70 0.35

110 S-A-L-M-W-I-T-Q-M 10 3.12 1.69 0.11 11.40 2.38

111 S-A-L-M-W-I-T-Q-I 5.8 1.15 0.73 0.31 2.03 0.42

112 S-M-L-M-W-I-T-Q-A 0.7 0.02 0.38 1.20 0.95 0.20

113 S-M-L-M-W-I-T-Q-L 0.4 0.01 0.11 1.13 1.34 0.28

114 S-M-L-M-W-I-T-Q-V 0.2 0.01 0.09 1.19 1.01 0.21

115 S-M-L-M-W-I-T-Q-M 1.8 0.04 0.56 1.07 1.57 0.33

116 S-M-L-M-W-I-T-Q-I 0.7 0.01 0.21 1.15 0.71 0.15

117 S-I-L-M-W-I-T-Q-A 2.7 0.21 0.50 0.78 1.92 0.40

118 S-I-L-M-W-I-T-Q-L 1.3 0.10 0.15 0.32 5.42 1.13

119 S-I-L-M-W-I-T-Q-V 0.5 0.02 0.13 0.88 1.06 0.22

120 S-I-L-M-W-I-T-Q-M 4.9 0.41 0.73 0.35 3.10 0.64

121 S-I-L-M-W-I-T-Q-I 2.2 0.10 0.29 0.48 2.70 0.56

FluMA58-66 G-I-L-G-F-V-F-T-L 0.80 0.016 0.006 1.00 1.02 0.21
f

* Blue peptide KD = 52.6 nM.
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vivo-derived T cells isolated after vaccination with the native

EAA formulation, although recruited at lower frequency, had

overall improved TCR affinity, resulting in better functional

recognition of the native tumor antigen compared to the ELA-

derived T cells (31, 55, 56). This functional advantage

disappeared when stimulation was performed with the higher

affinity ELA peptide, increasing responsiveness of both EAA and

ELA vaccine-derived T cells to comparably high levels (31). We

validated and consolidated those results by testing ex vivo 57

clones isolated from 9 melanoma patients vaccinated with either

EAA (n = 4) or ELA (n = 5) peptides. In average, EAA vaccine-
Frontiers in Immunology 08
derived T cell clones had superior functional avidity for

recognition of the native peptide (Figure 2A). To further

decipher the characteristics of those two sets of patient-derived

Melan-A/MART-126-35 specific T cell clones, we assessed their

capacity to recognize peptide variants with distinct Ki affinities

for HLA, which could hypothetically represent naturally

occurring escape epitopes. 18 representative clones isolated

from the 9 vaccinated melanoma patients were selected,

expanded and tested in parallel in vitro killing assays against 9

peptide variants having low, intermediate or high Ki affinity for

HLA-A2 (Figure 2B and Table 1). Overall, clones from native
A B
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C

FIGURE 1

Biophysical characterization of the HBV-specific blue peptide and selection of Melan-A/MART126-35 and NY-ESO-1157-165 -specific peptide
variants.(A) Correlation between NetMHC4.0 and binding assay refolding indexes: Melan-A26-35 peptide variants (left graph) segregate into weak
(blue circle) and intermediate (green circle) binding peptides. NY-ESO-1157-165 peptide variants (right graph) segregate into weak (blue circle),
intermediate (green circle) and strong (red circle) binding peptides. Native and analog peptides are shown in blue and red, respectively. Flu
Matrix58-66 control peptide is shown for comparison purposes (square). R square and p values were obtained from Pearson correlation analysis.
(B) Chemical structure and sequence of the HLA-A2-restricted Hepatitis B virus (HBV) cAg18-27 (FLPSDC*-(Cy5) FPSV) blue peptide. (C)
Representative experiment from concentration isotherm assays to characterize the KD binding affinity of the HBVc-Cy5 blue peptide for HLA-A2
(n = 5). (D) Principles of the HBVc-Cy5 blue peptide cell-based competition assay. The binding strength of peptide variants to HLA-A2 complex
was determined through competition assays on T2 cells between titrated amount of unlabelled competitor peptide and a fixed concentration of
HBVc-Cy5 blue peptide. Examples from competition with a strong or a weak binding peptide are shown. (E) Blue peptide assay readouts
showing titration Cy5 gMFI histograms (upper panels) at different Melan-A peptide concentrations (native EAAGIGILTV (n°1) and analog
ELAGIGILTV (n°6) are shown) and with competition peptide variants having distinct affinities for HLA-A2 (lower panel). Positive control is done
with the “blue”-HBVc-Cy5 peptide alone and negative control corresponds to the autofluorescence of T2 cells. (F) Correlation between Ki

affinities (mM) obtained from the cellular blue peptide competition assay and values obtained from the soluble refolding assay (OD) or from the
NetMHC4.0 algorithm for both NY-ESO-1 (left) and Melan-A/MART1 (right) variants. Native and analog peptides are shown in blue and red for
both peptides, respectively. Flu Matrix58-66 control peptide is shown for comparison purposes (square).
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EAA-vaccinated patients outperformed clones isolated from

ELA-vaccinated patients, reacting in average between 5x (for

the high affinity ELA peptides n°6) and 550x (for the low affinity

peptide n°5 EAAGIGILTM) stronger in terms of functional

avidity (EC50). This enhanced functional superiority was

particularly visible with peptides in the lower Ki affinity range

and accompanied by a lower number of outliers (Figure 2B).

Consequently, EAA-derived clones displayed flatter best-fit

regression lines (Figure 2C) and weaker slopes (Figure 2D)

than ELA-derived clones, because EAA-derived clones

responded strongly to all peptide variants even in the lower Ki

affinity range (Supplementary Figures 3A, B). Despite these

differences, positive correlations between peptide:HLA affinity

(Ki) and functional T cell avidity (EC50) were found for both

EAA and ELA-derived clones, at the global (Figure 2C) and

individual (Supplementary Figure 3) levels. Altogether, these

results show that T cell clones derived from patients vaccinated

with the native EAA peptide recognized a broader spectrum of

peptide antigen variants than ELA vaccine-derived T cell clones,

maintaining higher functional avidity capacities toward peptides

with lower HLA Ki affinities.
Frontiers in Immunology 09
Patient-derived, natural tumor-primed
Melan-A-specific CD8 TILN cells show
heterogeneous capacities to recognize
peptide variants

It is known that T cells can be naturally primed and activated

by tumor antigens-presenting APC within nearby lymph nodes

(3). To detect the spectrum of responsiveness of endogenous,

tumor-primed CD8 T cells towards epitope variants with

different Ki affinities for HLA, we generated 10 Melan-A/

MART-126-35-specific T cell clones derived from TILNs of 3

patients with spontaneous immunological responses toward

their melanoma. These clones were first characterized

functionally in killing assays against cell targets pulsed with

the native EAA and the analog ELA peptides. All except one

tumor-primed CD8 T cell clone showed higher functional

avidity when challenged with the high Ki affinity ELA variant

(Figure 3A). By testing functional avidity of all individual clones

with the entire panel of Melan-A/MART-126-35 peptide variants,

we found variable and broad EC50 values, spanning up to 6-log

differences for individual TILN clones (Figures 3B, C). Fine
A B
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FIGURE 2

Functional avidity of tumor antigen-specific CD8 T cell clones derived from patients vaccinated with native EAA or analog ELA Melan-A
peptides, and tested with Ki HLA-A2 affinity-enhanced variants. (A) Comparison of functional avidity (EC50) of Melan-A-specific T cell clones
obtained from patients vaccinated with native EAA (n=31) or analog ELA (n=26) peptide and tested in criss-cross experiments against native
(EAA) and analog (ELA)-pulsed targets. (B) Association analysis between functional EC50 avidity of T cells isolated from EAA (left, n=8) or ELA
(n=10) vaccinated patients and Ki affinity values of the target peptide variants. Symbols represent individual T cells clones isolated from four (EAA
vaccine), respective five (ELA vaccine) treated melanoma patients. (C) Correlation analysis for both EAA (blue) or ELA (red) vaccinated patients
between the mean EC50 values obtained from T cell killing assays against a given target variant and the Ki affinity values of the respective
peptide variants (n = 8 to 10). Average R square and slopes of the linear best fit regression line are given. Native peptide n°1 and analog peptide
n°6 are indicated. (D) Comparison of the individual slopes (DY/DX) obtained from the linear best fit regression lines of the distinct EAA and ELA
vaccine-derived T cell clones. Whisker boxes (5th and 95th percentile) with individual points, means and error bars are shown. ns p > 0.05 and *p
≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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comparison of the lysis curves obtained for TILN clones showed

that they could be separated in three groups. T cell clones from

group 1 reacted weakly to the Ki peptide variants (e.g. 9D10 and

6C5 from LAU465), while clones from group 2 were strongly

reactive to all variants (e.g. 6B7 and 2D2 from LAU377)

(Figure 3B, Supplementary Figure 3C). The third group of

clones recognized with incremental EC50 avidity cells pulsed

with peptides of increasing Ki affinities (e.g. 12C4 and 12F6 from

LAU465; 42 and 46 from LAU969), indicating stronger

association (Figure 3B, Supplementary Figure 3C). In line with

our findings for EAA/ELA vaccine-derived Melan-A-specific

clones, pooled data showed a global positive correlation

between peptide:HLA (Ki) binding strength and T cell

functional avidity (EC50) (Figure 3D). However, as natural

tumor-primed CD8 TILN clones showed much broader and

variable reactivities toward the Melan-A/MART-126-35 peptide

variants (Figure 3C), resulting in heterogenous linear regression

slopes (Figure 3E), the R square correlative value as well as the

average best-fit slope were weaker (Figure 3D). In summary, the

naturally derived, tumor-primed TILN clones showed a broad

heterogeneity of response patterns, ranging from overall very

poor responders (group 1) to peptide Ki affinity-dependent
Frontiers in Immunology 10
(group 3) and independent (group 2) responders when tested

against a panel of Ki affinity-matured peptide variants.
No hierarchical, but cumulative impact
of peptide:HLA and TCR-peptide:HLA
affinity on T cell responses

The affinity of the TCR for the antigenic peptide:HLA

complex (TCR-pHLA) also impacts on CD8 T cell function.

To identify a possible hierarchical dominance between peptide:

HLA Ki and TCR-peptide:HLA KD affinities in the control of T

cell functional avidity, we took advantage of a panel of primary

CD8 T cells expressing NY-ESO-1157-165-specific TCRs isolated

from LAU155, a long-term melanoma survivor (57) and

engineered from the natural TCC9 Vb13.1 TCR to have

incremental affinities for the peptide:HLA complex (44, 45).

Recapitulating previous findings, we found that stimulation of

those TCR-engineered T cells defined a functional bell shape

curve along the TCR-pMHC affinity axis, with maximal

functional avidity arising from the DMb and TMb TCR

variants, known to be of optimal affinity for the NY-ESO-1:
A
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FIGURE 3

Characterization of peptide reactivity by naturally tumor-primed Melan-A-specific T cell clones. (A) Comparison of the functional avidity (EC50)
of naturally tumor-primed Melan-A specific T cell clones (n=10) during parallel killing assays with targets presenting either native (EAA) and
analog (ELA) peptide. Symbols represent individual T cells clones isolated from the TILNs of three untreated patients with natural Melan-A
specific CD8 T cell responses. (B) Curves obtained from parallel cytotoxic killing assays of six clones isolated from three cancer patients against
targets presenting nine Melan-A peptide variants with increasing Ki affinity for HLA-A2. (C) Association analysis between functional EC50 avidity
of TILN-derived clones and Ki affinity values of the target peptide variants. The EC50 values in the gray area represent very low functional avidity
and were excluded from further analysis. Symbols represent individual T cells clones. Native peptide n°1 and analog peptide n°6 are indicated.
(D) Correlation analysis between the mean EC50 values obtained from TILN-derived T cell killing assays against a given target variant and the Ki
affinity values of the respective peptide variants (n = 10). Average R square and slopes of the linear best fit regression line are given. Native
peptide n°1 and analog peptide n°6 are indicated. (E) Projection of the slopes (DY/DX) obtained from linear regressions of the individual TILNs-
derived T cells clones. Whisker box (5th and 95th percentile) with individual points, mean and error bars is shown. **p ≤ 0.01.
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HLA antigen (Figures 4A, B, see wild-type peptide n° 101 EC50

curves). Five TCR-engineered CD8 T cells of incremental TCR

affinity for peptide:HLA (KD) were stimulated with our panel of

NY-ESO-1157-165 peptide variants of low, intermediate or high Ki

affinity for HLA (Figure 1A and Table 2). We found that for each

tested peptide variant (i.e. peptide 101 to 119), T cell functional

avidity was systematically defined as a bell shape curve along the

TCR-pHLA affinity range, although starting at distinct

functional levels (Figure 4B). In other words, for any given

peptide variant used on target cells, T cells expressing very low

and very high affinity TCRs consistently displayed a lower

functional avidity than T cells expressing optimal-affinity

TCRs (Figure 4B). Yet, when using peptide variants of higher

HLA Ki affinity (i.e. variants 119 and 114), significant functional

increases were detected for all TCR variants. In contrast to the

impact of TCR-pHLA affinity (KD), the impact of the peptide:

HLA affinity (Ki) on T cell functional avidity was linear and

generated positive correlations for all TCR-engineered variants

(Figure 4C), in line with the results obtained in the Melan-A

model (Figures 2, 3). The functional impact of Ki affinity was

quantitatively more important than the impact of TCR-pHLA

KD affinity. Indeed, peptide Ki differences of <10-fold (e.g.

between peptide 101 and 114) were capable of augmenting the
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resulting T cell functional avidity up to 1000-fold, while

variations in TCR KD affinity of up to 1000-fold led to a

maximal increase of 25-fold in functional avidity. Altogether,

we confirmed in a second model that peptide:HLA Ki affinity

quantitatively affects T cell function, with strong positive

correlations, contrasting to the qualitative impact of TCR-

pHLA KD affinity. By performing such criss-cross experiments,

we now uncovered that there is no hierarchical dominance of

one affinity parameter (peptide Ki or TCR KD) over the other,

but rather cumulative - positive and negative - effects within the

trimolecular TCR-peptide:HLA complex, all contributing to the

overall T cell function.
Discussion

Responses of CD8 T cells initially depend on intricate

biophysical interactions occurring within the TCR-peptide:

HLA trimolecular complex at the interphase of T cells and

antigen presenting cells. Both the affinity - or binding strength

- of the antigenic peptide within the groove of the HLA, and that

of the TCR to the peptide:HLA complex are key parameters that

determine TCR activation, TCR signaling and T cell
A B

C

FIGURE 4

Hierarchical analysis of TCR-pHLA KD affinity versus peptide:HLA Ki affinity. (A) Curves obtained from parallel cytotoxic killing assays of primary
CD8 T cells expressing five NY-ESO-1157-165-specific TCRs of incremental affinities (very low affinity KD of V49I < 100mM, wild type KD = 21.4 mM,
optimized DMb = 1.91 mM and TMb = 0.91 mM and very high affinity TCR wtc51 = 0.015 mM) against 8 NY-ESO-1157-165 peptide variants of
increasing (n = 4 to 8). (B) Functional avidity values (EC50) obtained from the parallel killing assays of the NY-ESO-1157-165-specific T cells plotted
against the KD affinity of the TCR for the pHLA. (C) Correlation analysis between the functional avidity values (EC50) of the NY-ESO-1157-165-
specific T cells and the Ki affinity of the respective target peptides. R square values are displayed.
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responsiveness. Here, we used the blue peptide competition

assay and a step-by-step analysis of two tumor-reactive model

systems in which both the peptide:HLA (Ki) and the TCR-pHLA

(KD) affinities can be selectively modified to interrogate their

respective functional and hierarchical impact. We found a

cumulative effect of both parameters on T cell responses, but

no hierarchical dominance.

In the past, multiples technologies have been established

with the specific goal to measure binding affinity of peptide to

HLA class I and II molecules in the cellular context (58–62).

Binding or killing competition assays helped ranking the relative

binding strengths or the functional avidities of large series of

antigen peptide variants, but none of these assays could provide

accurate affinity values per se (33, 54). Consequently, we

developed the “blue peptide” assay - a precise peptide:HLA

competition assay - that enables flow cytometry-based and

direct quantification of peptide:HLA affinity at the surface of

T2 cells, combined to subsequent functional assays. Although

focusing on HLA-A2-restricted ligands, the blue peptide assay

can easily be translated to other HLA molecules by selecting

corresponding fluorescent-tagged antigens restricted by HLA I

or II complexes. Cyanine conjugation can be performed a priori

on any solvent-exposed amino-acid side chain of an HLA bound

peptide. Preferable are easily labeled residues (e.g. lysine and

cysteine) outside the P1-3 and omega anchor positions (63).

Choosing antigens with intermediate HLA affinity is optimal,

since it enables precise calculation of equilibrium inhibition

constant (Ki affinity) for virtually any unlabeled, native or

engineered, weak or strong competitor ligand (64). The affinity

value of the Hepatitis B virus (HBV) cAg18-27 [FLPSDC*-(Cy5)-

FPSV] blue peptide to the HLA-A2 cleft has such characteristics

(KD =52.6 nM), as it falls at the exact threshold (50 nM) of

peptides reported as weak or strong HLA binders (65).

We chose Melan-A/MART-126-35 and NY–ESO-1157-165
antigens to validate our assay, because these are two important

tumor antigens exploited in various active and passive tumor

immunotherapy strategies. 17 Melan-A/MART-126-35 and 21

NY–ESO-1157-165 peptide variants were synthesized with amino-

acid substitutions at primary HLA anchor sites known to

profoundly impact pHLA binding and consequent T cell

function (14, 66, 67), resulting in HLA binding Ki affinities

spanning their entire physiological range. Of course, it would

have been interesting to substitute additional amino-acid within

the 9/10mers since binding of peptides to HLA is typically a

composite of interactions of (i) canonical N and C-termini

anchors with the HLA protein, (ii) peptide side chains with

allele-specific HLA binding pockets and (iii) secondary peptide

side chains with HLA residues (68). With our collection of

peptide variants, we obtained good correlations without any

outliers between blue peptide-derived cellular Ki affinity and

soluble molecular HLA refolding results, which remain the

standard method for assessing molecular peptide:HLA binding

strengths in solution. The blue peptide assay also proved very
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sensitive, especially for Melan-A variants, with Ki affinities

ranging 3-log compared to 1 for the refolding test. As expected

from the literature, we found positive correlations between

peptide:HLA Ki affinity and functional avidity EC50 (i.e. T cell

sensitivity to recognize and destroy tumors cell lines), both for

patient-derived NY-ESO-1 and Melan-A/MART-1-specific

clones. However, the fact that NY-ESO-1 peptide variant n°

101 performed weaker than n°110, despite having a higher Ki

affinity, a better refolding value and a better predicted avidity

score, suggests that additional parameters besides the peptide:

HLA interaction strength can influence T cell functional avidity.

As such, other determinants including peptide structure and

flexibility within the HLA groove and/or influence off the

peptide:HLA complex on other surface immunomodulatory

receptors might also tune T cell responsiveness (69).

Many bioinformatic tools and algorithms based on

structural knowledge have been generated for the prediction of

peptide:HLA binding, T cell immunogenicity and function (70,

71). Noteworthy, we found a correlation between the blue

peptide-derived Ki affinity values and in silico algorithm

indexes, yet with multiple outliers. Surprisingly, the native

immunogenic Melan-A/MART-126-35 EAA epitope would have

been excluded by NetMHC4.0 algorithms based on its poor

immunogenicity index. Likewise, an endogenous mouse

neoantigen of very low affinity for MHC H2-Kd was also

categorized as non-MHC I-binder and non-immunogenic, yet

it was able to elicit CD8 T cell-dependent tumor rejection and

protection (37). Discrepancies between in silico predictions and

immunogenicity were also reported for multiple HLA-A2-

resticted NY-ESO-1 peptides (39), prompting ongoing

improvement of prediction tools (41). Our blue peptide assay,

or other robust affinity measurement technologies should be

used to validate bioinformatic predictions to screen for

potentially immunogenic peptides.

To assess the impact of Ki affinity on immunogenicity of

peptides in human, we took advantage of clinical trials in which

cohorts of melanoma patients were vaccinated with

formulations containing two different Melan-A/MART-1-

specific peptides: the native low Ki affinity EAAGIGILTV

peptide and the high Ki affinity ELAGIGILTV variant (13).

Clearly, tumor antigen-specific CD8 T cells isolated from both

cohorts showed increased functional avidity when stimulated

with peptide variants of higher HLA-A2 Ki affinities. As reported

previously (13), this study confirms that T cell clones derived

from patients after vaccination with the native, low affinity EAA

peptide were globally of higher avidity when compared to those

obtained after vaccination with the high affinity ELA peptide.

We also report that the EAA-specific CD8 T cells outperformed

the ELA-specific ones for recognition of a variety of single or

double amino-acid substituted peptide variants, especially those

having lower HLA Ki affinities. This higher cross-recognition

potential against peptides with subtle amino-acid and HLA-

binding changes might arise from the overall broader TCR b-
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chain repertoires and lower CD8-dependency found in T cells

after EAA versus ELA vaccination (31, 72). Structural analysis

and molecular dynamic simulations in the HLA-A2 and other

systems revealed that peptide binding to HLA I molecules can

induce significant and diverse allosteric changes, creating

molecular plasticity that can critically influence antigen

recognition by T cells and impact cross-reactivity (73, 74).

Specifically, the presence of the weak alanine anchor residue in

the native EAA peptide was shown to afford a larger number of

pHLA conformers than the analog ELA, including

configurations that enable induced fit, high affinity

interactions with the TCR (75, 76). Together, our findings

reinforce the idea that T cells raised against modified, high Ki

affinity variants (e.g. ELA) might be more specific to the

corresponding non-native mutated peptide, and are unable to

efficiently recognize tumors expressing the native or lower

affinity peptides (66).

Collectively, compared to the analog vaccination settings,

tumor-reactive CD8 T cells recruited after vaccination with the

native EAA peptide are of reduced frequency (13), yet they show

a higher T cell clonotype diversity with subtle CDR3b structural

differences (72), have TCRs of higher structural avidities linked

to CD8-independancy and enhanced function (31), and are in

average more cross-responsive to epitope-focused peptide

variants (1 or 2 amino-acid substitutions from the wild-type

sequence) having widespread Ki affinity (this study). These

beneficial T cell characteristics must initially arise by favorable

intrinsic peptide:HLA and TCR-pHLA-associated biophysical

mechanisms impacting T cell clonotypic recruitment and

functional potential. We propose that weaker HLA binding of

the native EAA peptide results in the requirement of stronger

TCR binding to pHLA to reach sufficiently strong

immunogenicity for T cell activation. Thus, vaccination with

the native EAA peptide is likely to select higher avidity T cells

during priming and/or boosting. For vaccine formulations, our

findings pinpoint to the use of low to intermediate affinity

peptides that minimally derive from the structure of the

corresponding native targets to maintain reactivity of the

recruited T cells to the native tumor epitope. If the native

peptide is not immunogenic, new strategies with careful

structural evaluation of peptide:MHC interactions should be

developed to generate peptide variants with increased MHC

affinity that generate T cells with strong cross-reactivity toward

the native, unmodified low affinity tumor-associated

peptide (77).

We succeeded in isolating dozens of natural tumor-primed,

Melan-A/MART-1-specific T cell clones derived directly from

TILNs of cancer patients. By testing them against the native

Melan-A/MART-1 EAA peptide and the eight Melan-A peptides

variants with distinct Ki affinities for HLA-A2, we found that

TILN cells were versatile both in their recognition capacities and

cross-reactivity profiles toward the other variants. We found up

to 10’000-fold variation in wild-type EAA-pulsed target
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recognition capacities between TILN clones. As detected in the

vaccination settings, most clones performed better when

triggered by peptides with higher Ki affinities, with some

exceptions. LAU465 clone 9D10, for instance, performed best

against the native EAA and the ELA peptide, but failed in global

recognition of other Ki affinity variants (group 1). Some clones

(e.g. LAU969 clone 42) generated steep regression slopes (group

3), indicating strong specific biases and preferential reactivity

toward peptides with high HLA-A2 Ki affinities, reminiscent of

the profiles detected with ELA vaccination-induced T cells.

Other clones (group 2) generated elevated and flat regression

lines (e. g. LAU969 clone 14) like T cells obtained after

vaccination with low affinity EAA peptide, suggesting higher

cross-reactive potential toward peptide variants. As such,

additional studies based on clonotype repertoires and CDR3

structural patterns relative to the T cells induced by the two types

of vaccines (72) and whether their TCR-pHLA affinity correlates

with functional avidity and/or off-target cross-reactivity are

highly relevant, but are beyond the scope of this manuscript.

Moreover, we used standard SPR and reversible multimers

technology to assess TCR-pHLA structural affinities (31, 78),

however, it would also be interesting to see how other binding

parameters, including 2D affinity (79, 80) and catch-bond

formation (81), would categorize those vaccine- versus tumor-

derived CD8 T cells. We believe that the epitope-focused cross-

reactivity detected in tumor-derived T cells might be favorable in

checkpoint blockade therapy, where T cell clonotypes with such

diverse functional profiles would become reactivated and

recognize target cells expressing native or escape epitopes,

providing clinical benefit.

An important finding of our study is that there is no

hierarchical dominance of peptide:HLA Ki affinity or TCR-

pHLA KD affinity in terms of functional avidity, but rather

cumulative inputs, contributing to overall T cell response. By

testing the NY-ESO-1 peptide variants on our panel of TCR-

engineered, NY-ESO-1-specific T cells, we show that both

biophysical parameters provide cumulative inputs to overall T

cell function. Quantitatively, T cell functional avidity is largely

and linearly dependent on peptide Ki affinity for HLA, yet it is

qualitatively calibrated by the TCR KD affinity for pHLA

complexes, which seems to control the extend and sensitivity

range of T cell responses. Furthermore, our findings indicate that

the functional hyporesponsiveness linked to nonspecific chronic

interactions between HLA and very high affinity TCR (e.g.

wtc51m) (20) can be readily reversed by peptides with high Ki

affinity for HLA. In other words, increased peptide:HLA Ki

affinity on the target side of the trimolecular TCR-pHLA

complex can overcome preexisting TCR affinity-associated T

cell functional impairments. The rapidity of this reversal (4h for

a cytotoxic assay) argues against epigenetic or transcriptional/

translational control of such T cell hyporesponsiveness. Our

current findings are in line with previous observations showing

that very high affinity TCR signaling and associated function can
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be partially restored with high concentration of native target

peptide (44, 82). Collectively, these data indicate that this type of

functional impairment is likely controlled very proximally, at the

TCR complex itself through post-translational modifications,

potentially by phosphorylation and/or ubiquitination events on

proximal signaling molecules (83).

Our study suggests that vaccination with native,

intermediate Ki affinity peptides, which induce tumor antigen-

specific CD8 T cell clonotypes of high functional avidity and

killing capacity should be favored because they generate better

recognition of putative tumor-derived, neo-antigen-like targets,

which might become escape variants. Yet, careful analysis of the

responding TCRs should be performed to avoid toxic cross-

reactivity against tumor-irrelevant epitopes. In that regard,

Karapetyan et al. studied the clinically-relevant high-affinity

NY-ESO-1c259 TCR, and performed functional assessment of

epitope variants bearing all possible substitutions at each

position, associated to algorithm-based prediction for genome-

wide off-target activity, to select safe therapeutic epitopes and

TCRs (84). Alternatively, careful engineering of tumor-specific

TCRs with modified bond lifetime to pMHC enabled selection of

highly potent TCRs, while maintaining overall low affinity and

avoiding adverse cross-reactive events (24). Dissecting the

contribution of both TCR-pHLA and peptide:HLA parameters

within the overall TCR-peptide:HLA hetero-trimeric complex

and understanding the biophysical and biological rules

generating safe, efficient and protective T cell responses has

clear implication in the field of cancer immunotherapy. Our

stepwise analysis of those biophysical variables will help to

identify and generate optimal therapeutic peptides and TCRs.
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SUPPLEMENTARY FIGURE 1

Functional substitution scan and competition assay. (A) Representative
example of a cytotoxic killing assay obtained with a Melan-A26-35-specific

T cell clone and targets pulsed with Melan-A native or variant peptides
bearing amino-acid changes at anchor position 2/9 (B) Alanine scan

cytotoxic killing assay obtained with a NY-ESO-1157–165-specific T cell

clone and targets pulsed with a titration of NY-ESO-1 native (in blue) or
alanine-substituted peptide variants (P2 and P9 substitution curves are

shown in green and orange, respectively). (C) Representative example of
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the cell-based blue peptide competition assay showing titration curves
obtained for the different Ki affinity peptide variants. The gMFI decrease

along the competitor peptide concentration reflects the competition of
the peptide variant with the “blue”-HBVc reference peptide, allowing to

determine the half-maximal inhibitory concentration (IC50) and the
competition-derived affinity Ki. (D) Representative example of the cell-

based blue peptide competition assay performed with distinct NY-ESO-1
peptide variants.

SUPPLEMENTARY FIGURE 2

Correlation analysis between PRIME2.0 and peptide:HLA affinity (A)
Correlation between PRIME2.0 and binding assay refolding OD indexes.
Melan-A26-35 (left graph) and NY-ESO-1157-165 (right graph) peptide

variants are shown with the respective native and analog peptides
highlighted in blue and red. R square and p values were obtained from
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Pearson correlation analysis. (B) Correlation between Ki affinities (mM)
obtained from the cellular blue peptide competition assay and percentage

rank values obtained from the PRIME2.0 algorithm for both NY-ESO-1
(left) and Melan-A/MART1 (right) variants. Native and analog peptides are

shown in blue and red for both peptides, respectively.

SUPPLEMENTARY FIGURE 3

Correlation analysis between functional avidity and peptide:HLA

affinity.(A, B) Correlation analysis between functional avidity EC50 values

and peptide:HLA Ki affinity from the individual cancer patient-derived T
cell clones isolated after EAA or ELA vaccination. (C) Correlation analysis

between functional avidity EC50 values and peptide:HLA Ki affinity from
the individual cancer patient-derived T cell clones isolated from TILNs.

Individual R square values and slopes from best fit linear regression lines
are indicated.
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