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Identification of cuproptosis
-related subtypes, the
development of a prognosis
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tumor microenvironment
infiltration in prostate cancer
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Cuproptosis, Copper Induced Cell Death, is a newly defined type of

programmed cell death, involving in the regulation of tricarboxylic acid (TCA)

cycle. Dysfunction of cuproptosis induces cytotoxicity and influences the

proliferation of multiple tumors. However, the direct prognostic effect of

cuproptosis related genes and corresponding regulating mechanisms amid

prostate cancer remains unknown. A multi-omics analysis strategy was

adopted to explore the role of ten cuproptosis related genes in The Cancer

Genome Atlas- Prostate Adenocarcinoma (TCGA-PRAD). Firstly, mRNA

expression, Copy Number Variance (CNV), mutation, DNA methylation and

prognostic power of the ten genes were illustrated. Based on transcriptomic

data, we developed a novel prognostic model named the Cuproptosis-related

gene score (CRGScore), Their biological functions were then detected by

enrichment analysis and unsupervised cluster analysis. Following that, their

correlation with Tumor Immune Microenvironment (TIME), immunotherapy,

Biochemical Recurrence (BCR) and chemotherapeutic resistance were

elaborated by relevant bioinformatics algorithms. Ten cuproptosis related

genes exhibited extensive alteration of CNV and DNA methylation and

showed significant influence on the prognosis of prostate cancer patients.

These genes mainly enriched in E2F and G2M targets and mitosis pathways,

Samples with high CRGScore showed enhancement resulting in the increased

infiltration of T cell, B cell, NK cells. They also demonstrated close correlations

with the BCR status, expression of eight immune checkpoints and

chemotherapeutic resistances in prostate cancer. Our comprehensive
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analysis of CRGScore revealed an extensive regulatory mechanism by which

they affect the tumor-immune-stromal microenvironment, clinicopathological

features, and prognosis. We also determined the therapeutic liability of

CRGScore in targeted therapy and immunotherapy. These findings highlight

the crucial clinical implications of CRGScore and provide new ideas for guiding

personalized immunotherapy strategies for patients with Pca.
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Introduction

Prostate cancer (PCa) is the second most common cancer in

men and there are 191930 new diagnosed cases and 33330

deaths due to PCa in 2020 (1). Despite initial success with

androgen-deprivation treatment, PCa patients gradually develop

resistance after 1-2 years and progress to castration-resistant

prostate cancer (CRPC), a condition that is incurable, ending up

with inevitable death because of distal metastasis or tumor

recurrence (2, 3). Hence, mining for novel biomarkers and

molecular mechanisms for the prognosis and treatment of PCa

is of great priority.

Cuproptosis (Copper Induced Cell Death) is a newly defined

type of programmed cell death, differing from traditional cell

death mechanism such as apoptosis, iron death and pyroptosis

(4–7). Copper is a required cofactor for enzymes that mediate a

host of essential cellular functions, including mitochondrial

respiration, antioxidant defence and the biosynthesis of

hormones, neurotransmitters and pigments (8), but at the

same time dysregulation of copper stores can induce oxidative

stress and cytotoxicity (9). Given the direct binding of copper to

the lipoylated components of TCA cycle, dysfunction of

cuproptosis can trigger cytotoxicity and influence the

proliferation of tumor cells (10–12). In some research revealed

cancer cells have a higher demand for copper compared with

non-dividing cells (13), Copper imbalance can not only impact

mitochondrial respiration but can also lead to changes in

glycolysis, insulin resistance and lipid metabolism (14, 15).

Beyond mitochondrial function, ATOX–ATP7A–LOX as

copper pathways, could promote metastatic expansion. In

addition, copper regulation of autophagy via ULK1 and ULK2

and/or protein quality control via UBE2D2 (16). However, the

direct prognostic effect of cuproptosis related genes and

corresponding regulating mechanisms amid prostate cancer

cells remains unknown.

In this study, a multi-omics analysis strategy was adopted to

explore the role of ten cuproptosis related genes in PRAD.
02
Firstly, mRNA expression, CNV, mutation, DNA methylation

and prognostic power of the ten genes were illustrated. Their

biological functions were then detected by enrichment analysis

and unsupervised cluster analysis. Following that, their

correlat ion with TIME, immunotherapy, BCR and

chemotherapeutic resistance were elaborated by relevant

bioinformatics algorithms. The results of these analyses

suggested that the cuproptosis related genes could influence

the prognosis of PCa by involving in immune cell infiltration

and mediating mitosis of cancer cells. These findings uncovered

the role of cuproptosis and their underlying regulating

mechanism in prostate cancer.
Material and methods

Multi-omics data source and obtain of
ten cuproptosis related genes

Multi-omics datasets of prostate cancer were acquired from

TCGA-PRAD cohort (496 tumor samples and 55 normal

samples) at UCSC Xena website (17) (https://xenabrowser.net/

datapages/). Detailed information of CNV, somatic mutation,

DNA methylation (450k), RNA-seq in the format of TPM and

survival data were retrieved for further analysis. 10 Cuproptosis

related genes were collected, including DLAT, FDX1, MRF1,

DLD, LIAS, LIPT1, PDHB, GLS, PDHA1, CDKN2A. In parallel,

another cohort of prostate cancer from Gene Expression

Omnibus (GEO) dataset (GSE54460) was downloaded for

analysis to eliminate the heterogeneity of a single dataset.
Differential analysis of ten cuproptosis
related genes

R package limma (18) was utilized to seek out Cuproptosis

related differentially expressed genes (DEGs) between 496 tumor
frontiersin.or
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and 55 normal samples of TCGA-PRAD cohort. R package

ChAMP (19) was employed to identify differential methylation

loci simultaneously. |log2 Fold Change (FC)| > 1 and False

Discovery Rates (FDR) < 0.05 were set as the significant

threshold for both analyses.

single nucleotide variants (SNV) and CNV information of

the 10 Cuproptosis related genes were presented in the bubble

and pie diagrams, it was acquired from GSCA website(http://

bioinfo.life.hust.edu.cn/GSCA/#/drug). Meanwhile, correlation

analyses of CNV and DNA methylation with mRNA value

were conducted to reveal their impact on gene expression.
Cluster analysis with ten cuproptosis
related genes

To eliminate the heterogeneity of a single dataset, data of 496

tumor samples of TCGA-PRAD and 106 tumor samples of

GSE54460 were merged and normalized by R function scale

for further cluster analysis. Principal Component Analysis

(PCA) depicted the heterogeneity before and after combination.

Next, unsupervised hierarchical clustering analysis was

completed among the 602 tumor samples, with R package

ConsensusClusterPlus (20), by setting the mRNA value of 10

Cuproptosis related genes as input information. PCA plot

displayed the geometrical distance among sub-clusters.

Differences of clinical information among sub-clusters were

also illustrated in heatmap and boxplot.
Identifying the functional difference and
hub DEGs among three cuproptosis
related sub-clusters

To elucidate the functional difference of the three

Cuproptosis sub-clusters obtained from former cluster

analysis, Gene Set Variation Analysis (GSVA) (21) were

performed by using 50 Hallmarks-of-Cancer (22) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (https://www.

kegg.jp/) pathways as the background gene sets. Consequently,

activities of these gene sets were quantified in each tumor

sample. Next, heatmap was used to illustrated the differences

of pathway activity between every two Cuproptosis related

sub-clusters.

Furthermore, differential analysis was conducted between

every two Cuproptosis related sub-clusters by using R package

limma12. |log2 Fold Change (FC)| > 1 and FDR < 0.05 were set

as the significant threshold. Volcano plot was used to display the

DEGs of every two clusters. Following that, the intersected hub

DEGs were recorded by using R function “intersect”, with Gene

ontology (GO) (23) (http://wego.genomics.org.cn) and KEGG

enrichment analysis depicting their biological function.
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Identifying the TIME difference among
three cuproptosis sub-clusters

To identify the TIME difference among three Cuproptosis

sub-clusters, Estimation of STromal and Immune cells in

Malignant Tumours using Expression data (ESTIMATE)

algorithm (24) was executed to computing the Stromal Score,

Immune Score and ESTIMATE Score of each cluster. These scores

reflected the stromal cells infiltration, immune cells infiltration

and tumor purity respectively. Meanwhile, CIBERSORTx (25) was

also carried out to calculate the infiltrating proportion of 22 types

of immune cells among each cluster.
Prognostic value of the hub DEGs
among three cuproptosis sub-clusters

To test the prognostic value of the hub DEGs among three

Cuproptosis sub-clusters, survival analysis and univariable Cox

regression were implemented. Kaplan-Meier curve (K-M curve)

illustrated patients’ survival difference by stratifying them into

two groups, according to the median value of each hub DEG

with significant prognostic power.
Cluster analysis with seven hub DEGs

Whereafter, 7 hub DEGs with significant prognostic power

were subjected to the second time unsupervised cluster analysis,

resulting in two GeneCluster. K-M curve and heatmap were then

depicted to demonstrated the survival and clinic pathological

differences of the GeneCluster.
Prognostic value of the genecluster

To check the robustness of the GeneCluster, PCA was

performed to show the geometrical distance and patients were

stratified into two groups according to the median PCA score.

Afterwards, consistency of the two PCA group and the two sub-

clusters in GeneCluster were estimated in the Sankey diagram.

Survival difference of the two PCA group and correlation of PCA

score with immune cell infiltration was then analyzed after

computing the infiltrating proportion of 22 types of immune cells.
Correlation with biochemical recurrence
and immunotherapy

To explore the correlation of PCA score with BCR of

prostate cancer, BCR status of patients in two PCA groups

were presented in the boxplot. Then, expression difference of six
frontiersin.org
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immune checkpoints in two PCA groups was also detected to

test its correlation with immunotherapy. Following that,

correlation of PCA score with drug resistance was also

discovered by computing the IC50 of twelve typical

chemotherapeutics with R package pRRophetic (26).
Statistic and software

Data processing and analysis were accomplished by R 4.0.4.

[Package: limma, ggplot2, survminer, ChAMP, ggcorrplot,

GSVA, CIBERSORTx and so on (21, 27, 28)]. Student T test

and ANOVA test were applied for comparisons between groups,

while Pearson correlation were adopted to estimate the statistical

correlation of parametric variables. Two-sided P < 0.05 was

considered as significant threshold for all statistical tests.
Results

Differential expression, SNV, CNV and
DNA methylation of ten cuproptosis
related genes in prostate cancer

Figure 1 was showing the schematic diagram of analysis. Of

the ten Cuproptosis related genes, three were found to be
Frontiers in Immunology 04
significantly down-regulated in prostate cancer (Figure 2A).

MTF1 was the most frequently mutant gene (Figure 2B) while

DLD had the highest level of heterozygous copy number

amplification (Figures 2C, E, F).

A positive correlation between CNV and mRNA expression

was seen in DLAT, FDX1, MTF1 i.e., (Figure 2D). DNA

methylation, however, induced extensive down-regulation of

their mRNA expression (Figures 3A, B). Furthermore,

Correlation between expression and immune infiltrates in

PRAD was shown in Figure S1.
Three cuproptosis sub-clusters and their
functional differences

Different datasets were separated in the PCA plot because of

heterogeneity which was eliminated after normalization

(Figure 4A). Three of ten Cuproptosis related genes showed a

significant influence on patients’ survival outcome in the

combined data (Figure 4B). The merged dataset was then

divided into three categories by using the expression of ten

Cuproptosis related genes (Figure 4C). The PCA plot showed the

geometrical distance and different gene expression patterns were

seen among the three sub-clusters (Figures 4D, E). A general

high expression of Cuproptosis related genes was observed in

Cluster B and patients in cluster B seemed to have a better
FIGURE 1

The schematic diagram of analysis.
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A B

D E

F

C

FIGURE 2

Differential expression, SNV and CNV of ten Cuproptosis related genes in prostate cancer. (A) Differential expression of Cuproptosis related
genes in prostate cancer. (B) The frequency of deleterious mutations. (C) Pie plot summarizes the CNV of genes in indicated tumor types. (D)
The correlation between CNV with gene expression. (E) Figure provides the profile of homozygous CNV of genes in PRAD. (F) Figure provides
the profile of heterozygous CNV of genes in PRAD.
A B

FIGURE 3

DNA methylation of ten Cuproptosis related genes in PRAD. (A) Figure summarizes the methylation difference between tumor and normal
samples of in PRAD. (B) The correlation between methylation and mRNA expression of each gene.
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A

B

D E

F

C

FIGURE 4

Three Cuproptosis sub-clusters were performed. (A) Use PRAD in TCGA and GSE54460 to merge data and use R package “limma” and “sva” to
remove batch effects. (B) KM survival curve for each Cuproptosis related genes. (C) Unsupervised clustering analysis. (D) PCA diagram showing
the distribution of different sub-clusters. (E) Differential expression of Cuproptosis related genes between different sub-clusters. (F) heatmap
showing the relationship between clinical features, genes expression and sub-clusters. * represents p<0.05,** represents p<0.01,***represents
p<0.001, ns represents p>0.05.
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survival outcome when compared with cluster A and cluster C

(Figures 4E, F).

There were huge functional differences among the three sub-

clusters. Hallmark activities of E2F TARGETS, G2M

CHECKPOINT and MITOTIC SPINDLE were consistently

higher in cluster B than cluster A and C (Figures 5A-C).
Frontiers in Immunology 07
Tumor in cluster B also possessed a more active function in

CELL CYCLE and MISMATCH REPAIR than cluster A, as well

as increased activity of Ubiquitin Mediated Proteolysis pathway

than cluster C (Figures 5D-F).

DEGs among the three sub-clusters were demonstrated in

the volcano plots (Figures 6A-C). 180 hub DEGs were acquired
A

B

FIGURE 5

GSVA analysis. The (A) HALLMARK pathway, (B) KEGG pathway were downloaded separately from the Msigdb database and the pathways were
scored using the R package GSVA.
A B

D E F

C

FIGURE 6

GO and KEGG analysis. (A–C) Differential analysis of the three subtypes. (D) GO analysis was conducted and visualized. (E) KEGG analysis was
conducted and visualized. (F) the correction between genes and pathways in top5 KEGG results.
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after taking their intersection by R function “intersect”. Further

Go and KEGG analysis found the 180 hub DEGs were mainly

enriched in angiogenesis, focal adhesion, proteoglycans

pathways and so on (Figures 6D-F).
Different TME pattern among the three
cuproptosis sub-clusters

After computing the Stromal Score, Immune Score and

ESTIMATE Score of each cluster by ESTIMATE algorithm,

cluster B seemed to have the highest Immune Score and

ESTIMATES core (Figure 7A). That suggested a higher

proportion of immune cell in cluster B, keeping consistence

with the result of CIBERSORTx where cluster B demonstrated

more infiltration of CD4 T cell, B cell, NK cell and regulatory T

cell (Figure 7B).
Frontiers in Immunology 08
Prognostic value of the hub DEGs
among three cuproptosis sub-clusters

Seven of one hundred and eighty hub DEGs among the three

Cuproptosis sub-clusters demonstrated noticeable prognostic

power in Cox regression (Figure 8A). Close correlation was

observed among the seven hub DEGs (Figure 8B). Of them,

PEBP4 and ACPP seemed to be protective factors with a HR of

0.823 (0.737-0.918) and 0.836 (0.758-0.922) (Figure 8C). The

univariable Cox regression analysis was shown in Table S1.
The genecluster and its prognostic value

Two clusters were then obtained in unsupervised clustering

by setting the expression of seven hub DEGs as input

information (Figure 9A). The geneCluster well stratified
A

B

FIGURE 7

Different TME pattern among the three Cuproptosis sub-clusters. (A) Differences between Stromal Score, Immune Score and ESTIMATE Score in
different typologies. (B) Differences in immune cell infiltration between different subtypes. * represents p<0.05, ** represents p<0.01, *** represents
p<0.001, ns represents p>0.05.
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patients into two groups with considerable difference in survival

outcome (Figure 9B) and gene expression pattern

(Figures 9C, D).

To check the robustness of the GeneCluster, PCA was

performed where the PCA score also divided patients into two
Frontiers in Immunology 09
groups with significant survival difference (Figure 10A). In the

Sankey diagram, rather good consistency was seen for two gene

clusters to two PCA groups (Figure 10B). The PCA score also

differs in the three Cuproptosis sub-clusters (Figure 10C).

Moreover, the PCA score was positively correlated with the
frontiersin.or
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C

FIGURE 8

Prognostic value of the hub DEGs among three Cuproptosis sub-clusters. (A) Seven of one hundred and eighty hub DEGs among the three
Cuproptosis sub-clusters demonstrated noticeable prognostic power in Cox regression. (B) correlation was observed among the seven hub
DEGs (C) KM survival curve.
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major i t y o f infi l t r a t ing immune ce l l s excep t for

monocyte (Figure 10D).
Correlation with BCR, immunotherapy
and chemotherapeutics resistance

In terms of clinic pathological features, the PCA score also

showed certain ability to distinguish patients’ survival and

BCR status (Figures 11A, B). In addition, the T stage status

was shown in Figure S2. Then, in line with the extensive
Frontiers in Immunology 10
positive correlation of PCA score with most infiltrating

immune cells, there was increased expression of eight

immune checkpoints in the groups with higher PCA score

(Figure 11C). These results suggested a higher tendency for

patients in the high-score group to be responsive

to immunotherapy.

With regards to chemotherapy, patients in the high-score

group were less likely to benefit from Bicalutamide and AKT

inhibitor VIII but more likely to benefit from multitarget kinase

inhibitors Ponatinib (AP24534), Bcl-2 inhibitor ABT.263 and

PARP1 inhibitor ABT.888 (Figure 12).
A B

C

D

FIGURE 9

The geneCluster and its prognostic value. (A) sub-clusters were performed with differential genes. (B) Survival analysis in PRAD. (C) Differential
expression of Cuproptosis related genes between geneCluster. (D) heatmap showing the relationship between clinical features, genes
expression and sub-clusters. * represents p<0.05, ** represents p<0.01, *** represents p<0.001, ns represents p>0.05.
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Discussion

In this study, multidimensional analyses were implemented

to explore the biological function, prognostic ability, correlation

with TIME, immunotherapy, BCR (Biochemical Recurrence)

and chemotherapeutic resistance of ten cuproptosis related

genes in PRAD The result suggested that cuproptosis could

influence the prognosis of PCa by involving in immune cell

infiltration and mediating mitosis of cancer cells. To our
Frontiers in Immunology 11
knowledge, this is the first study to elucidate the role of

cuproptosis and its potential regulating mechanism in

prostate cancer.

Surprisingly, seven of ten genes showed no expression

difference between tumor and control samples. However, this

does not weaken their importance as the alteration of SNV, CNV

or methylation they possessed are equally critical in prostate

cancer pathogenesis. Taking CDKN2A (Cyclin-Dependent

Kinase Inhibitor 2A) for example, it ranked high in the list of
A B

DC

FIGURE 10

Prognostic analysis. (A) Using PCA analysis, scores were calculated based on 7 genes, survival analysis between high and low scores was shown.
(B) Sankey diagram showing the relationship between staging, scoring and prognostic status. (C) Differences in geneCluster scores for
Cuproptosis sub-clusters and Differences cluster scores for 7 hub genes. (D) Correlation of immune cell infiltration. One asterisk (*) indicates p
value smaller than 0.05 (P< 0.05). Size and color of the circle represent the Pearson correlation coefficients. * indicates p value smaller than
0.05 (P< 0.05).
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homozygous deletion and methylation difference and was a

significant prognostic risk factor for PCa. Commonly,

CDKN2A was a well-known tumor suppressor which can

generates 14 alternative transcripts, the best known being p16

(INK4a), to induce cell G2 arrest and apoptosis in a p53-

independent manner (29). Thus, mutation and homozygous

deletion of CDKN2A make it an adverse prognostic factor in a

variety of cancers (30–33), which is in line with our result.

With regards to the biological function, cluster B

demonstrated increased activity of MITOTIC SPINDLE, more

infiltration of CD4 T cell, B cell, NK cell and regulatory T cell

with noticeable higher expression of DLD, DLAT, MTF1 and

GLS than A and C. Dihydrolipoamide S-Acetyltransferase
Frontiers in Immunology 12
(DLAT) was one of the components of the pyruvate

dehydrogenase (PDH) complex (34) and involved in glycolysis

and mitochondrial respiratory function of substantial cell types

including immune T cell (35). In parallel, DLAT expression was

also found to be positively correlated with immune B cell

infiltration and CD274 expression in clear cell renal cell

carcinoma (12). These alike evidences suggested a favourable

role of DLAT to promote antigen presenting and

immune response.

Our study has several advantages. Above all, this is the first

study to elucidate the role of cuproptosis and its potential

regulating mechanism in prostate cancer from multi

dimensions. Moreover, as cell death is fundamental to cancer
frontiersin.org
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FIGURE 11

Correlation with BCR and immunotherapy. (A) Ratio of BCR status and score. (B) Differences in BCR status and score. (C) Differential expression
of immune checkpoints in different subgroups.
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origin (36) and intracellular copper within a certain range has

exhibited a selectively killing tendency towards tumor cells (9),

our findings may bring us better therapeutic targets for the

treatment of prostate cancer. In addition, we employed

combined analysis of two datasets to eliminated the

heterogeneity from single repository as much as possible and

the extra PCA analysis confirmed the robustness of the

unsupervised clustering.

There were also several limitations in our study. First,

external validation for the expression and prognostic ability of
Frontiers in Immunology 13
relevant genes would make the results more convincing. Second,

the inherent fault of data-mining from public databases is

inevitable, further in vitro or in vivo biological evidences

are needed.

Our comprehensive analysis of CRGScore revealed an

extensive regulatory mechanism by which they affect the

tumor-immune-stromal microenvironment, clinicopathological

features, and prognosis. We also determined the therapeutic

liability of CRGScore in targeted therapy and immunotherapy.

These findings highlight the crucial clinical implications of
FIGURE 12

Analysis of drug sensitivity associated with CRGScore. Predicting IC50 values for multiple anti-cancer drugs.
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CRGScore and provide new ideas for guiding personalized

immunotherapy strategies for patients with Pca.
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