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Gardnerella subgroup dominant
microbiomes are associated
with divergent cervicovaginal
immune responses in a
longitudinal cohort of Kenyan
women
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Justen N. H. Russell2,4, Riley H. Tough1,2, Sarah J. Vancuren5,
Janet E. Hill5, KAVI-ICR6, Walter Jaoko6, Lyle R. McKinnon1,2,7,
Paul A. Sandstrom1,2 and Kelly S. MacDonald1,2,3,4*

1Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg,
MB, Canada, 2JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada, 3Department of
Internal Medicine, University of Manitoba, Winnipeg, MB, Canada, 4Department of Immunology,
University of Toronto, Toronto, ON, Canada, 5Department of Veterinary Microbiology, University of
Saskatchewan, Saskatoon, SK, Canada, 6Kenyan AIDS Vaccine Initiative-Institute of Clinical
Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya, 7Centre for the AIDS Program of
Research in South Africa (CAPRISA), Durban, South Africa
Most cervicovaginal microbiome-immunology studies to date have relied on 16S

rDNA microbial profiling which does not resolve the molecular subgroups of

Gardnerella, believed to be central to the pathogenesis of bacterial vaginosis (BV)

and subsequent risk of HIV acquisition. Here we used the cpn60 universal target

which in addition to other microbial taxa, resolves four Gardnerella subgroups, for

cervicovaginal microbial profiling in a longitudinal cohort of Kenyan women to

examine associations with cellular and soluble markers of inflammation and HIV

susceptibility. Participants (N = 41) were sampled, contributing 362 samples for

microbiome analysis. All non-Lactobacillus dominantmicrobial communities were

associated with high pro-inflammatory cytokine levels. Divergent associations

were observed among different Gardnerella subgroup dominated communities

with respect to the chemokine IP-10. Specifically, Gardnerella subgroup A

dominant and polymicrobial communities were associated with reduced

concentrations of IP-10 in adjusted linear mixed models (p<0.0001), compared

to microbial communities dominated by Lactobacillus (non-iners) species.

However, these associations did not translate to significant differences in the

proportion or absolute number of CCR5, HLA-DR andCD38 expressed on cervical

CD4+ T- cells. These findings suggest that some associations betweenGardnerella

subgroup dominantmicrobiomes andmucosal immunity differ and are relevant for

the study of BV-pathogenesis and understanding the mechanisms of BV-

associated HIV risk.

KEYWORDS

bacterial vaginosis (BV), gardnerella species, vaginal microbiome, HIV susceptibility,
mucosal immunity, cpn60, IP-10 (CXCL-10), cytokines
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1 Introduction

Mucosal host-microbiome interactions in the lower female

genital tract (LFGT) play a crucial role in reproductive health.

Optimal vaginal microbial communities are thought to be

dominated by specific Lactobacillus species which confer

health benefits via production of antimicrobial metabolites

including lactic acid, which promote vaginal acidity and

possess anti-inflammatory properties (1–3). However, L. iners

possesses a distinct phenotypic profile in contrast to the other

lactobacilli including expression of a pore forming toxin called

inerolysin and is associated with transition to more diverse

microbial community structures (4, 5). During bacterial

vaginosis (BV) the abundance of anaerobic and facultative

anaerobic bacteria increases, including Gardnerella and

Prevotella species, accompanied by a reduction or loss of

optimal lactobacilli (3). BV can be accompanied by an increase

in vaginal pH (pH>4.5) and abnormal malodorous vaginal

discharge; however, asymptomatic cases are also common (6–

8). Regardless of symptoms, BV and polymicrobial BV-

associated communities and taxa have been linked to several

sequelae, including increased risk of acquisition and

transmission of human immunodeficiency virus (HIV) (9–13).

However, the mechanism underlying the BV-HIV link is

incompletely understood.

Subclinical LFGT inflammation as measured by increased

concentrations of pro-inflammatory cytokines has been

associated with BV (14–18). Cervicovaginal inflammation can

be measured by increased levels of secreted pro-inflammatory

markers including IL-1a, IL-1b, and IL-6 or chemokines

including MIP-1a, MIP-1b, and Interferon-g inducible protein

10 (IP-10) also known as CXCL10. At high concentrations these

cytokines can damage epithelial barrier integrity, recruit HIV

target cells, and/or induce activation of HIV target cells, thus

creating favorable conditions for the establishment of HIV

infection. More recently, reduced cervicovaginal IP-10

combined with increased IL-1a and IL-1b have been proposed

as immunological biomarkers for BV diagnosis when combined

with increases in pH (16, 19). Subclinical genital inflammation

has also been linked to increased HIV risk in several cohorts and

was shown to reduce the efficacy of a prophylactic topical vaginal
Frontiers in Immunology 02
gel for HIV prevention in the CAPRISA-004 cohort (20, 21). In

addition, high diversity Lactobacillus-deficient microbial

communities as identified using 16S rDNA sequencing were

associated with increased frequency of activated cervical HIV

target cells (CD4+CCR5+CD38+HLA-DR+ T cells) and increased

HIV risk in the FRESH cohort (12, 22). A similar association was

noted between BV and number of HIV target cells in a separate

cohort (15). However, other studies did not recapitulate these

findings (23, 24).

While understanding BV-associated HIV risk can guide HIV

prevention efforts, the precise cause of BV has yet to be identified

and the condition remains largely enigmatic, resulting in limited

interventions that suffer high recurrence rates (25–28). G.

vaginalis, a gram-variable pleomorphic facultative bacterium

has been proposed as the causative agent of BV likely via a

mechanism involving biofilm formation, however this bacterium

is also commonly isolated from healthy individuals (29–33).

Next generation sequencing and cpn60 barcode sequencing

revealed four different Gardnerella clades/subgroups, which

were recently designated as distinct genomospecies within the

Gardnerella genus (Table 1) (34–38).

Phylogenetic and in-vitro investigations also suggest

differences in ecological and virulence properties among the

Gardnerella subgroups (38–42). Therefore, these subgroups may

possess distinct roles in modulating the pathogenesis of BV and

HIV susceptibility in the LFGT. In vitro studies of the immune

response using different Gardnerella isolates (belonging to

different subgroups) have provided some discrepant results

(43, 44) – highlighting the need to better understand the

effects different Gardnerella species have on the host immune

response in vivo. Despite this, most studies to date exploring the

cervicovaginal microbiome and mucosal immunology link have

relied on microbial profiling using the 16S rDNA universal

target, which does not reliably distinguish the different

Gardnerella subgroups. This in turn has limited our ability to

fully elucidate the contributions of these different genomic

subgroups to the mucosal immune milieu.

The objective of this study was to determine if Gardnerella

subgroups segregate into defined microbial communities and

examine the associations between these communities and

cervicovaginal immune markers that may link specific
TABLE 1 Gardnerella spp. Nomenclature.

cpn60 subgroup
(Jayaprakash et al.)

Clade (Ahmed et al.) Species and genome species† (Vaneechoutte et al.) References

A 4 G. leopoldii (genome sp. 5), G. swidsinskii (genome sp. 6), genome sp. 7 (34–37)

B 2 G. piotii (genome sp. 4), genome spp. 3 and 11

C 1 G. vaginalis (genome sp. 1), genome sp. 2

D 3 genome spp. 8, 9, and 10

†Genome spp. 12, and 13 do not fit into the defined subgroups, clades, or species
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microbial communities to altered HIV susceptibility. This was

done by characterization of the cervicovaginal microbiomes of a

longitudinal cohort of Kenyan women using cpn60 barcode

sequencing and subsequent examination of their associations

with cellular and soluble markers of inflammation

HIV susceptibility.
2 Methods

2.1 Study cohort

Kenyan women aged 18-50 (N = 45) at low risk to HIV based

on previously outlined criteria (45) and seropositive to varicella

zoster virus (VZV) were enrolled in the 48-week KAVI-VZV-

001 clinical trial. This trial examined the safety and

immunogenicity of the VZVOka vaccine strain as a potential

HIV vaccine vector (ClinicalTrials.gov: NCT02514018). As

described by Perciani et al, VZV vaccination did not

significantly alter the cervicovaginal immune responses

examined in this ancillary study (18). Ethical approvals were

granted by the Kenyatta National Hospital/University of Nairobi

Ethics and Research Committee, the University of Toronto

Research Board and the Kenyan Pharmacy and Poisons Board,

with all participants providing informed consent. Participants

were scheduled for ~8-10 visits, during which cervicovaginal

secretions, vaginal swab samples, and cervical cytobrush samples

were collected as previously described (45) (Supplementary

Material Appendix 1). Of the enrolled participants, 41/45

completed at least 8 visits and were included in this ancillary

analysis. All participants were on some form of contraception,

with the option to change the contraceptive method throughout

the study period (Supplementary Material Appendix 2).

Throughout the study, participants were able to obtain

antimicrobial treatment for concomitant conditions such as

BV, and vulvovaginal candidiasis (VVC).
2.2 Sample collection and processing

Cervicovaginal secretion samples were collected using a

plastic Softcup device (Instead, Evofem Biosciences Inc., San

Diego, CA, USA) which was inserted into the vagina for 20

minutes (45). Following collection, secretions were pelleted for

10 minutes at 400 x g and treated with a protease inhibitor.

Cervicovaginal pellets (CVP) were used for subsequent

microbiome profiling, and the remaining cervicovaginal

supernatants (CVS) were used for the quantification of

cytokine concentrations. To prevent potential interferences

caused by blood-derived products in cervicovaginal samples,

participants undergoing menses or spotting during the

scheduled collection visit were rescheduled for sample

collection, typically within a week from the original scheduled
Frontiers in Immunology 03
visit. Cellular data was collected using a cervical cytobrush

(Digene, QIAGEN Inc., Toronto, ON, Canada) which was

inserted into the cervical canal and rotated once. Vaginal

swabs were collected at each visit for the diagnosis of BV

using the Nugent criteria (Nugent-BV) and VVC using

microscopy as previously described (45, 46). HSV-2

seropositivity was measured only at enrollment (18).
2.3 Microbiome analysis

CVPs were resuspended in 1 mL phosphate buffer saline

(PBS, pH 7.5). Then, microbial DNA was extracted using the

DNeasy Blood and Tissue Kit protocol (QIAGEN Inc., Toronto,

ON, Canada) modified to include a lysozyme and mutanolysin

pre-treatment step to enhance bacterial cell wall lysis as

previously described (47). cpn60 amplification was done using

the M729, M730, M1612, and M1613 primer combinations as

previously described (47, 48). Following index-PCR, products

were cleaned-up using the AMPure XP beads (Beckman Coulter

Canada, Mississauga, ON, Canada) per manufacturer’s protocol.

Following this, amplicon concentrations were normalized to 4

nM and pooled in preparation for sequencing using the NextSeq

500/550 Mid Output Kit v2 (300 Cycles) (Illumina Canada Inc.,

Toronto, ON, Canada). Sequencing was performed by the DNA

Core facility at the National Microbiology Laboratory in

Winnipeg, Canada using a single 1 x 299 run on the Illumina

NextSeq machine with sequencing from the 5’ end of the cpn60

amplicon target. Reads were then demultiplexed and processed

using the QIIME2 analysis pipeline (49). Amplicon sequence

variant (ASV) assignment was done using DADA2 (50). Reads

greater than or equal to 250 base pairs in size were included in

subsequent analysis. ASVs were assigned an identity according

to their nearest neighbor reference sequence as determined by

the Smith-Waterman basic local alignment search tool algorithm

(watered-BLAST) which compared ASV sequences to the

chaperonin database (www.cpndb.ca). A final ASV table was

generated, where only ASVs with equal to or greater than 55%

identity to a cpnDB reference sequence were used for analysis

(51). To obtain initial microbial clusters or community state

types (CST) we performed cluster analysis using unsupervised

hierarchical clustering with Euclidean distance matrix and

Ward.D linkage method using normalized proportions of the

raw reads. The number of initial clusters was determined using

the ClValid package on RStudio (version 3.5.1) with clustering

input of 2:16 clusters. Following hierarchical clustering, non-

iners Lactobacillus dominant CSTs were further aggregated into

a single CST to serve as the reference group in subsequent

analysis; this was to account for the ambiguous role that L. iners

plays in the LFGT (4, 5). Two samples which initially clustered

into the polymicrobial community but were comprised of 100%

non-iners Lactobacillus species were added into the

corresponding Lactobacillus dominant CSTs. Shannon alpha
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diversity indices (measuring within sample diversity) were

calculated using the phyloseq package (version 1.24.2) on

RStudio (version 3.5.1).
2.4 Cytokine analysis

CVS were used for the detection of fourteen cytokines

(TNF-a, IL-1b, IL-1a, IFN-g, IL-8, IL-6, IP-10, MIP-3a,
MIP-1a, MIP-1b, GM-CSF, IL-10, IL-4, and IL-17A) using the

electrochemiluminescence U-PLEX assay (Meso Scale

Discovery, Rockville, MD, USA) following manufacturer’s

instructions. Samples were run in duplicate, and the average

value was used for subsequent analysis. Measurements below the

lower limit of detection (LLOD) were given the LLOD for the

specific cytokine as determined by the standard curve. Cytokine

measurements above the upper limit of detection were assigned

the highest value calculated beyond the fit curve for the specific

cytokine measured.
2.5 Flow cytometry

Cervical cytobrush samples were collected and used for the

quantification of cervical T-cells expressing the following

markers: CD4, CCR5, CD38, HLA-DR, CD69, and Ki67, or

the integrin markers aEb7, a4b7, and a4b1. Staining using the
LIVE/DEAD fixable Far Red Dead Cell Stain Kit (Invitrogen,

Carlsbad, CA, USA) was performed as soon as samples were

collected. Viable cells were then labelled with the following

monoclonal antibodies as previously described by Perciani

et al. (18, 52): CD3 APCeFluor780 (clone: SK7), HLA-DR

FITC (L243), CD49d PE (9F10), Ki67 PE-Cyanine7 (20Raj1)

from eBioscience; CD4 BV510 (clone: SK3), CD38 PE-CF594

(clone: HIT2), CCR5/CD195 BV421 (clone: 2D7) from BD

Horizon; CD69 (clone: FN50) and b7 PECy5 (clone: FIB504)

from BD Pharmingen; and the antibodies against CD103 (clone:

Ber-ACT8) from BioLegend. Rainbow beads (Spherotech, Lake

Forest, IL, USA) were used for instrument calibration to ensure

consistency in data collection throughout the study period. Flow

cytometry of the samples was performed on a BD LSR II flow

cytometer using the DiVa software package (BD Biosciences, San

Jose, CA, USA). Cellular data processing was conducted using

FlowJo (TreeStar Inc.). The gating strategy for the cellular

markers used in this study has been previously published (18,

52). Cellular samples were not acquired on week 36 of the study,

and downstream analysis also excluded samples that did not pass

the flow cytometer’s quality control cutoff. For analysis of

relative frequencies, CD4 marker expression was analyzed in

relation to the total of CD3 expressing cells (T-cells); CCR5,

CD69, CD38, HLA-DR, Ki67, aEb7, a4b7, a4b1, and co-

expression of CD38 and HLA-DR were analyzed in relation to

the total CD4 expressing T-cells. For total cell count
Frontiers in Immunology 04
associations, raw counts were log2-transformed to

reduce skewness.
2.6 Statistical analysis

To reduce the dimensionality of the cytokine dataset, principal

component analysis (PCA) was performed using IBM SPSS

Statistics (Version 23) as previously described (18). Briefly,

sampling adequacy was measured by the Kaiser-Meyer-Olkin

test, and Bartlett’s test of sphericity using all log10-normalized

fourteen cytokine measurements collected throughout all the

study visits. Component extraction was performed on the

correlation matrix based on Eigen values greater than 1 with

direct oblimin (oblique) rotation (delta = 0). Bartlett’s method was

then used to calculate principal component scores which were

subsequently used for statistical analysis. To account for the

hierarchical structure of our longitudinal data in the analysis,

linear mixed models (LMM) were used to examine the

associations between microbial communities and each of the

principal components (PC). LMMs were also run separately for

each of the fourteen log10-transformed cytokines and the log2-

transformed cell counts. LMMs were fitted with aggregated

microbial groupings as fixed effects predictors using

Lactobacillus (non-iners) dominant microbiomes as the

reference group. Each model was fitted with a random intercept

at the participant level to account for inter-individual variation in

the outcome. LMMs were derived using restricted maximum

likelihood (REML) estimations using Statistical Analysis

Software (SAS). Satterthwaite method for approximation of the

degrees of freedom was employed as this method was shown to be

fairly robust to type-1 errors regardless of sample size when using

REML estimations in LMMs (53). To analyze cellular data relative

frequencies (proportions), we used LMM diagnostics to check the

suitability of this dataset for LMMmodelling, alongside running a

beta regressionmixedmodel using PROCGLIMMIX on SAS. Our

beta regression models (not shown) mostly agreed with the results

from our LMMs although some of the models ran into

convergence issues which could not be resolved given the

iterative nature of beta regression. Thus, we decided to proceed

with LMM for analysis using PROC MIXED to model the

associations with microbial groupings. Inferences regarding

statistical significance all used alpha = 0.05. Models were

adjusted for age, VVC, use of antibiotics (categorized as either

BV approved antibiotics such as tinidazole and clindamycin or

other, broad-spectrum antibiotics), use of antifungals, and use of

hormonal contraception (with non-hormonal intrauterine device

[IUD] used as reference), and HSV-2 seropositivity at baseline on

the basis that these factors can influence either the microbiome or

the mucosal immune milieu. Our adjusted and unadjusted models

produced similar outputs, and only adjusted p-values are reported

here. Figures in this manuscript were generated using GraphPad

Prism 9 and RStudio (version 2021.09.2 + 382).
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3 Results

3.1 Cervicovaginal microbial
communities and temporal
demographics in the
KAVI-VZV-001 cohort

Temporal demographics of KAVI-VZV-001 cohort

participants are described in Supplementary Material Appendix

2. Ten microbial clusters (CSTs) were resolved using unsupervised

hierarchical clustering of 362 cervicovaginal microbial profiles

obtained from 41 participants (Figure 1A). These clusters included

six lactobacilli dominant microbial CSTs with high relative

abundances of L. crispatus (LC), L. jensenii (LJ), L. gasseri (LG),

L. coleohominis (LCo), and a community dominated by other

Lactobacillus species (LO); these were further aggregated into a

single cluster of ‘non-iners’ lactobacilli dominant communities

(LDo), and a separate community dominated by L. iners (LI). In

addition, we identified four non-Lactobacillus dominant CSTs

including three CSTs dominated by one of the following

Gardnerella subgroups – subgroup A (GVA), subgroup B

(GVB), subgroup C (GVC), and one polymicrobial community

(MIXED). A Gardnerella subgroup D dominant community was
Frontiers in Immunology 05
not observed, as this taxon was mostly found in polymicrobial

(MIXED CST) communities (Figure 1A). Alpha diversity was

used as a measure of within sample diversity and was shown to be

variable both within and between each CST resolved using cpn60

(Figure 1B). We also examined the temporal changes in the

participants’ cervicovaginal microbiome over the 48-week study

period, observing that only ~19.5% (8/41) of participants retained

a Lactobacillus dominant microbiome throughout all collection

visits (either LDo or LI), with majority of samples being non-

Lactobacillus dominant at least once during a sample collection

visit (Figure 2, Supplementary Material Appendix 2).
3.2 Associations of cervicovaginal
microbial communities with
mucosal cytokines

Next, we examined how genital inflammatory and

chemotactic cytokine concentrations in cervicovaginal

microbial communities dominated by L. iners and non-

Lactobacillus species, compared to Lactobacillus ‘non-iners’

dominant communities. Cytokine principal component

analysis produced three main PCs based on our specified cut-
A

B

FIGURE 1

cpn60 microbial profiling of cervicovaginal samples reveals six aggregated microbial community structures with variable alpha diversity
(A) Cervicovaginal microbial profiles obtained using cpn60 sequencing from 362 cervicovaginal secretion samples collected from 41 study
participants. Profiles were organized by descending relative abundance and aggregated into six functional microbial clusters (CST_agg). The 25
most prevalent microbial taxa are shown with the rest of the species grouped as “other_species” and “Lactobacillus_other_species”. CST –

refers to the raw community state type as determined using hierarchical clustering, CST_agg - aggregated CSTs where Lactobacillus (non-iners)
dominated communities were further aggregated for analysis consistent with current literature. The six aggregated CSTs determined by the
dominating microbial taxa are: LDo - Lactobacillus (non-iners) dominance, LI - L. iners dominance, GVA -Gardnerella subgroup A dominance,
GVB - Gardnerella subgroup B dominance, GVC - Gardnerella subgroup C dominance, MIXED – polymicrobial community structure.
(B) Shannon diversity measure of community alpha diversity shown per corresponding sample.
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off criteria, with PC1 explaining a substantial proportion of the

variability (61.4%), followed by PC2 (10.6%) and then PC3

(8.0%; Figures 3A, B). PC1 was strongly loaded by nine

cytokines including the pro-inflammatory cytokine IL-1b, and
the immune-modulatory cytokine IL-10. GVA (p<0.0001), GVB

(p=0.0006), GVC (p=0.0007) and MIXED (p<0.0001) microbial

communities were all associated with significant increases in

PC1 scores compared to ‘non-iners’ Lactobacillus communities

in the adjusted models (Figure 3C). LI trended toward an

increase in PC1 scores in adjusted models (p=0.1118,

Figure 3C). PC2 was predominantly associated with the

chemokine IP-10 and to a lesser extent the chemokines MIP-

3a and MIP-1a (Figure 3B). Both GVA (p=0.0278) and MIXED

(p=0.001) microbial communities were associated with reduced

PC2 scores in the adjusted models (Figure 3D). PC3 was strongly

influenced by both the growth factor GM-CSF and the pro-

inflammatory cytokine IL-1a (Figure 3B). Compared to LDo

microbial communities, GVA (p=0.0026), GVC (p=0.0232), and

MIXED (p<0.0001) microbial communities were all associated

with increased PC3 scores in the adjusted models (Figure 3E).

PC3 scores were higher in the context of LI, but this was not

significant (p=0.0866).

Associations of cytokine PCs with microbial CSTs were

widely recapitulated in analyses using individual log10-
Frontiers in Immunology 06
transformed cytokines as outcomes (Figures 4A–C,

Supplementary Material Appendices 3, 4). Due to their

proposed role as biomarkers of BV, we performed a closer

examination of the associations between microbial groupings

and the cytokines IL-1a, IL-1b, and IP-10. GVA was associated

with increased IL-1a (p=0.0454) and IL-1b (p<0.0001) and with

reduced IP-10 (p<0.0001; Figures 4A–C). MIXED microbial

communities were also associated with reduced IP-10 levels

(p<0.0001), and increased IL-1b and IL-1a (both p<0.0001;

Figures 4A–C). GVB was only associated with significant

increases in IL-1b (p=0.0012; Figure 4C). GVC was associated

with increased IL-1b (p=0.0008), and a trend to increased IL-1a
(p=0.0707) (Figures 4A–C). Interestingly, LI microbial

communities were associated with increased IL-1a levels

(p=0.0469; Figure 4C). The association of GVA and MIXED

microbial communities with reduced IP-10 levels could not be

explained by their associations with the IP-10 inducer, IFN-g
(Supplementary Material Appendix 3).
3.3 Longitudinal patterns in
microbial structures and cytokine
principal components

We next examined whether transitions in microbial

structures over time closely parallel changes in cytokine

principal components within individuals. To do this we

visualized changes in cervicovaginal microbial profiles over

time that coincided with changes in PC1, PC2, and PC3 scores

(Figuress 5A, B, Supplementary Material Appendix 5). In

general, CST shifts were associated with subsequent changes in

PC scores, with some inter-participant heterogeneity and

occasional discrepancies (Figures 5A, B, Supplementary

Material Appendix 5). As examples, participants 31 and 63,

who had at least one visit with a LDo CST and at least one visit

dominated by non-Lactobacillus taxa, mostly recapitulated the

findings from our linear mixed models (Figures 5A, B).
3.4 Associations of cervicovaginal
microbial communities with cervical
CD4+ T-cells and T-cell subsets
associated with HIV susceptibility

We next examined how cervicovaginal microbial community

structures are associated with cervical T-cell counts and subsets

such as activated CD4+ T-cells and those expressing HIV-co-

receptors or integrin markers. No statistically significant

associations were found between microbial communities and

log2-transformed cervical T-cells and CD4+ T-cell subset counts

(Figure 6, Supplementary Material Appendices 6, 7). In contrast,

GVC was associated with reduced CD4 expression on T cells,

relative to LDo communities (p=0.0055), with GVA showing a
FIGURE 2

Cervicovaginal microbial community (CST_agg) dynamics of
KAVI-VZV-001 trial participants over all study visits throughout
the 48-week trial and the corresponding Nugent diagnosis status
per visit. Participants are presented divided by sample collection
groups as per the main study protocol.
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similar trend (p=0.08; Figures 7A, F). GVA, GVB, GVC, LI, and

MIXED microbial communities were not associated with the

expression of CCR5, CD38, CD69, HLA-DR, Ki67, and CD38/

HLA-DR co-expression on CD4+ T-cells compared to Lactobacillus

(non-iners) dominant (LDo)microbial communities (Figures 7B–E,

G–J, Supplementary Material Appendix 8). GVA, GBV, GVC,

MIXED, and LI communities did not exhibit any significant

associations with the integrin markers a4b1 and a4b7 relative to

LDo communities, although GVA (p=0.0992) and GVC (p=0.0766)

microbial communities trended towards lower a4b1 expression on
Frontiers in Immunology 07
CD4+ T-cells (Figures 8A–F). GVC microbial communities were

associated with increased relative frequency of aE+b7hi+CD4+ T-

cells compared to LDo microbial communities in our adjusted

model (p=0.0155, Figure 8F).
4 Discussion

Here cpn60 microbial profiling of cervicovaginal specimens

was performed to describe specific microbial structures
A

B

D

E

C

FIGURE 3

Principal component analysis identifies three principal components of fourteen measured cervicovaginal cytokines which exhibit divergent
associations with cervicovaginal microbiome structures (CST_agg). (A) Spearman correlation matrix showing correlations among all fourteen
measured cytokines. (B) PCA pattern matrix (with oblique rotation) showing percent of the variance accounted for by each principal component
(PC) and the cytokine loading on each PC. Linear mixed models examining microbial grouping associations with (C) PC1, (D) PC2, and (E) PC3
scores. The b-coefficients represent the mean change in specific PC scores associated with a specific microbiome type (CST_agg) compared to
Lactobacillus (non-iners) dominant microbial communities. Blue symbols represent unadjusted models only utilizing microbial groupings as
predictors. Red symbols represent models following multivariable adjustment for hormonal contraceptive type, concomitant vulvovaginal
candidiasis, age, HSV -2 seropositivity at baseline, use of BV antibiotics, use of other antibiotics, and use of antifungals prior to sample
collection. The error bars represent the 95% confidence intervals associated with the estimates from the linear mixed models. *P≤ 0.05, **P ≤

0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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associated with changes in the local immune milieu in a low-risk

longitudinal cohort. Studies to date examining mucosal

immunity and microbiome/BV associations have been (with

few exceptions) cross-sectional and in populations either

pregnant or at high risk for sexually transmitted infections and

given the impact of those conditions on mucosal immunity may

not be generalizable to the general population (12, 22, 24, 54, 55).

Furthermore, none of these studies employed cpn60 barcoding

or whole genome sequencing so they were unable to examine the

contributions of different Gardnerella subgroups to mucosal

immunity. Utilizing the cpn60 universal target allowed us to

decipher three additional microbial community structures

dominated by different subgroups of Gardnerella to address

some of these knowledge gaps. Our findings reveal that

microbiome associations with the chemokine IP-10 (and PC2

scores), diverge depending on the type of Gardnerella subgroup

dominance. These chemokine differences did not translate

to significant differences in cervical HIV target cell

counts or immune activation of cervical CD4+ T-cells. It

was also observed that all non-lactobacilli dominant

microbiomes were generally associated with an increase in

pro-inflammatory cytokines.

BV is predominantly a biofilm condition, with some

Gardnerella species hypothesized to be more likely to establish

biofilms and produce specific virulence factors (32, 40). In this

study GVA and polymicrobial communities (but not the other

Gardnerella subgroup dominant communities) exhibited a

strong negative association with IP-10. This suggests that the

reported IP-10 suppression associated with BV (16, 18, 19) could

be mediated by some Gardnerella subgroups and anaerobic taxa

but not others. The ability of some Gardnerella species to induce

this response could confer an ecological advantage to allow

persistence within the vaginal niche. Relevant to this –
Frontiers in Immunology 08
Gardnerella subgroup A appear to be the most common of the

four Gardnerella subgroups in vaginal specimens regardless of

BV status (56, 57), including in this study. In addition, IP-10 and

related chemokines have been shown to possess direct

antimicrobial effects on some gram-positive and gram-negative

bacteria (58, 59). The IP-10 receptor - CXCR3, is predominantly

expressed on activated T-cell subsets, especially CD8+ memory

T-cells as well as on innate lymphocytes including natural killer

cells and gamma delta T-cells (60–62). The reduction in IP-10

levels during BV could thus potentially explain the reported

lower ectocervical CD8+ T-cell levels during persistent BV (15),

and BV-associated reduced levels of endocervical gd 1 T cells

(63). These understudied cell populations may play protective

roles in the defense against bacterial biofilms including those

associated with BV (64). We hypothesize that the ability of BV-

associated Gardnerella species and related BV-associated

bacteria to persist and establish BV is therefore dependent at

least in part on the ability to suppress this IP-10 response.

Understanding the significance and mechanism of mucosal IP-

10 suppression to BV and associated sequela could be the focus

of future investigations and may be important for the design of

future interventions.

These findings are supported by previously published in-

vitro investigations. Garcia et al, reported a similar IP-10

reduction in an organotypic vaginal-ectocervical tissue

following challenge with a Gardnerella subgroup A isolate

(44). Another study found that in-vitro stimulation of

endocervical cells with a subgroup C Gardnerella isolate

significantly increased IP-10 levels, although no significant

associations were observed when vaginal and ectocervical

epithelial cells were used (43). Relevant to this, reduced IP-10

levels have been reported during Nugent-BV (16, 18, 19) and

with BV persistence following antibiotic treatment (28, 65).
A B C

FIGURE 4

Cervicovaginal microbiome associations with log10-normalized BV-associated cytokines. Linear mixed model estimates for microbiome
associations with (A) IP-10, (B) IL-1a, and (C) IL-1b log10-transformed concentrations in pg/mL. b-coefficients represent the estimated mean
change in cytokine concentrations associated with a specific CST_agg when using Lactobacillus (non-iners) dominant CST_agg as reference.
Blue symbols represent unadjusted models only utilizing microbial groupings as predictors. Red symbols represent models following
multivariable adjustment for hormonal contraceptive type, concomitant vulvovaginal candidiasis, age, HSV -2 seropositivity at baseline, use of
BV antibiotics, use of other antibiotics, and use of antifungals prior to sample collection. The error bars represent the 95% confidence intervals
associated with the estimates from the linear mixed models. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.
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Non-Lactobacillus dominant microbial communities were

associated with a general increase in mucosal markers of

inflammation. This finding is consistent with previous studies

using 16S rDNA based microbial profiling suggesting Gardnerella

dominance and/or polymicrobial community structures are

associated with increased mucosal pro-inflammatory cytokines

(12, 22, 24, 54, 55). Increased levels of IL-1a and IL-1b as well as
Frontiers in Immunology 09
other pro-inflammatory markers have been also reported in vaginal

samples from women diagnosed with BV by Nugent (score of 7-10)

and/or Amsel criteria (presence of >2 clinical signs) (16–19, 65).

Despite the microbiome and cytokine associations noted in

this study, no significant associations were found between

microbial community structure and T-cell markers of adaptive

immune activation including HLA-DR and CD38 co-expression,
A B

FIGURE 5

Intraindividual temporal microbiome changes correlate with changes in cervicovaginal cytokines in two study participants. Longitudinal changes
in cervicovaginal microbiome profiles and concomitant changes in cytokine principal components PC1, PC2, and PC3 in (A) Participant 31, and
(B) Participant 63. The 25 most prevalent microbial taxa are shown with the rest of the species grouped as “other_species” and
“Lactobacillus_other_species”.
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Ki67, and CD69 expression on CD4+ T-cells. We also did not

identify any significant associations between microbial

communities and cervical T-cell counts and/or activated subsets

in this cohort. Findings from previous studies regarding

microbiome associations with cellular immune activation have

also been inconclusive and differed based on the method used for
Frontiers in Immunology 10
analysis. Gosmann and colleagues found using a 16S rDNA

microbial profiling approach, that microbial cervicotypes

dominated by G. vaginalis and polymicrobial communities were

associated with a 9X and a 17X increase, respectively, in the

number of CCR5+CD38+HLA-DR+CD4+ T-cells, although no

information was provided regarding the relative expression of
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FIGURE 6

Comparison of cervical T-cell and subsets cell counts among the different cervicovaginal microbial groupings. log2-transformed cervical counts
of (A) CD3 (T-cells), (B) CD4+ T-cells (C) CCR5+CD4+ T-cells, (D) CD69+CD4+ T-cells and (E) HLA-DR+CD38+CD4+ T-cells. Linear mixed model
analysis of the association between specific cervicovaginal microbial communities (CST_agg) and log2-transformed cell counts of (F) CD3 (T-
cells), (G) CD4+ T-cells (H) CCR5+CD4+ T-cells, (I) CD69+CD4+ T-cells and (J) HLA-DR+CD38+CD4+ T-cells. b-coefficients represent the mean
change in log2-transformed cell count associated with a specific microbiome (CST_agg) when compared to Lactobacillus (non_iners) dominant
(LDo) microbial communities. Blue symbols represent unadjusted models only utilizing microbial groupings as predictors. Red symbols represent
models following multivariable adjustment for hormonal contraceptive type, HSV- 2 seropositivity at baseline, concomitant vulvovaginal
candidiasis, age, use of BV antibiotics, use of other antibiotics, and use of antifungals prior to sample collection. The error bars in the raw cell
count panels represent the standard error of the mean. The error bars from the linear mixed models represent the 95% confidence intervals
associated with the estimates.
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FIGURE 7

Comparison of cellular marker expression on cervical T-lymphocytes among the different cervicovaginal microbial groupings. Raw relative
frequencies of (A) CD4+ T-cells expressed as percent of the total T-cells (CD3+) and the markers (B) CCR5 (C) CD69 (D) HLA-DR and CD38
(E) Ki67 expressed as percent of total CD4+ T-cells. Linear mixed model analysis of the association between specific cervicovaginal microbial
communities (CST_agg) and relative frequencies of (F) CD4+ T-cells expressed as percent of total T-cells (CD3+) and the markers (G) CCR5
(H) CD69 (I) HLA-DR and CD38 (J) Ki67 expressed as percent of total CD4+ T-cells. b-coefficients represent the mean change in relative
frequency of a specific cellular marker that is associated with a specific microbiome (CST_agg) when compared to Lactobacillus (non_iners)
dominant (LDo) microbial communities. Blue symbols represent unadjusted models only utilizing microbial groupings as predictors. Red
symbols represent models following multivariable adjustment for hormonal contraceptive type, HSV- 2 seropositivity at baseline, concomitant
vulvovaginal candidiasis, age, use of BV antibiotics, use of other antibiotics, and use of antifungals prior to sample collection. The error bars in
the raw cell count panels represent the standard error of the mean. The error bars from the linear mixed models represent the 95% confidence
intervals associated with the estimates from the linear mixed models. **P ≤ 0.01.
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these markers (12). A different study investigating the association

of Nugent-BV and cervical cell counts found that women with BV

had lower counts of T-cells and HLA-DR expression, but higher

levels of CCR5 expression (15). However, in contrast to these

studies and in agreement with ours, a study by Lennard and

colleagues using a 16S rDNA microbial profiling, also did not

identify significant differences in vaginal microbiome associations

with relative frequencies of these immune cells (24). Our findings

thus support the hypothesis that non-Lactobacillus dominant

microbial communities promote mucosal inflammation which

may in turn increase HIV susceptibility but are not necessarily

associated with increased HIV target cells in this low-risk cohort.

Based on the divergent IP-10 findings, it is possible other immune

cells or effector functions not examined by us such as CD8+ T-cell

responses are affected by the microbiome to a greater extent which

may also explain the widely reported BV and HIV association.

Our study has several limitations. We were unable to

perform quantitative analysis at a genomic level to determine

the bacterial load in the study samples, so this study is limited to

compositional microbiome data. Future investigations

combining compositional sequencing approaches with
Frontiers in Immunology 12
quantitative techniques should provide greater appreciation of

the intricate relationship of the cervicovaginal microbiome and

the mucosal immune milieu. Our conclusions regarding cellular

markers and cytokine associations with microbial structure are

limited by the relatively small sample size of independent

participants, and a limited number of samples identified as

possessing GVC and GVB CSTs. In addition, the flow

cytometry panel was limited to an examination of only CD4+

T-cells and selective activation and integrin markers – limiting

our ability to examine associations with other cell populations

due to instrumentation and cell numbers.

In conclusion, this study highlights the importance of

Gardnerella heterogeneity in the context of mucosal

immunology, and comments on cervicovaginal microbial

associations with mucosal immunity in a low-risk cohort. While

Gardnerella dominant and polymicrobial microbiome associations

with mucosal inflammation were mostly congruent, striking

differences were noted in their associations with the proposed

immunological BV-biomarker, IP-10. Future investigations could

comment on whether this IP-10 reduction associated with some

microbiomes confers ecological advantage within the vaginal
A B
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C

FIGURE 8

Comparison of integrin expression patterns among different cervicovaginal microbial groupings. Raw relative frequencies of (A) a4+b7hi

(B) a4+b1+ (C) aE+b7hi cells expressed as percent of total CD4+ T-cells shown per CST_agg. Linear mixed model analysis examining the
association between cervicovaginal microbial groupings and (D) a4+b7hi (E) a4+b1+ (F) aE+b7hi expressed as percent of total CD4+ T-cells. b-
coefficients represent the mean change in relative frequency of a specific cellular marker that is associated with a specific microbiome structure
(CST_agg) compared to Lactobacillus (non_iners) dominant microbial communities. Blue symbols represent unadjusted models only utilizing
microbial groupings as predictors. Red symbols represent models following multivariable adjustment for hormonal contraceptive type, HSV-2
seropositivity at baseline, concomitant vulvovaginal candidiasis, age, use of BV antibiotics, use of other antibiotics, and use of antifungals prior to
sample collection. The error bars in the raw cell count panels represent the standard error of the mean. The error bars from the linear mixed
models represent the 95% confidence intervals associated with the estimates from the linear mixed models. *P ≤ 0.05.
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ecosystem and its relevance to BV pathogenesis. Additionally, we

did not identify differences in CD4+ T-cells among the microbial

structures, suggesting inflammation and possibly downstream

effects on IP-10 play a greater role in microbiome mediated

susceptibility to HIV.
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