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Regulation of gut microbiota-
bile acids axis by probiotics in
inflammatory bowel disease

Lingfeng Li, Tianyu Liu, Yu Gu, Xinyu Wang, Runxiang Xie,
Yue Sun, Bangmao Wang and Hailong Cao*

Tianjin Key Laboratory of Digestive Diseases, Tianjin Institute of Digestive Diseases, Department of
Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing

inflammation of gastrointestinal tract, with steadily increased incidence and

prevalence worldwide. Although the precise pathogenesis remains unclear, gut

microbiota, bile acids (BAs), and aberrant immune response play essential roles in

the development of IBD. Lately, gut dysbiosis including certain decreased beneficial

bacteria and increasedpathogens andaberrant BAsmetabolismhavebeen reported in

IBD. The bacteria inhabited in human gut have critical functions in BA

biotransformation. Patients with active IBD have elevated primary and conjugated

BAs and decreased secondary BAs, accompanied by the impaired transformation

activities (mainly deconjugation and 7a-dehydroxylation) of gut microbiota. Probiotics

have exhibited certain positive effects by different mechanisms in the therapy of IBD.

This review discussed the effectiveness of probiotics in certain clinical and animal

model studies that might involve in gut microbiota-BAs axis. More importantly, the

possible mechanisms of probiotics on regulating gut microbiota-BAs axis in IBD were

elucidated, which we focused on the elevated gut bacteria containing bile salt

hydrolase or BA-inducible enzymes at genus/species level that might participate in

the BA biotransformation. Furthermore, beneficial effects exerted by activation of BA-

activated receptors on intestinal immunity were also summarized, which might

partially explain the protect effects and mechanisms of probiotics on IBD. Therefore,

this review will provide new insights into a better understanding of probiotics in the

therapy targeting gut microbiota-BAs axis of IBD.
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Abbreviations: IBD, inflammatory bowel disease; BAs, bile acids; TGR5, Takeda G-protein receptor 5;

FXR, farnesoid X receptor; RORgt, retinoic acid receptor related orphan receptor gt; DCs, dendritic cells;

NKT, natural killer T; ILC, innate lymphoid cells; Th17, T helper 17; Treg, regulatory T; TNF, tumor

necrosis factor; IL, interleukin; IFN-g, interferon-g; CA, cholic acid; CDCA, chenodeoxycholic acid; GCA,

glycocholic acid; TCA, taurocholic acid; GCDCA, glycochenodeoxycholic acid; TCDCA,

taurochenodeoxycholic acid; CYP7A1, cholesterol-7a-hydroxylase; CYP8B1, sterol-12a-hydroxylase;

CYP27A1, mitochondrial sterol-27-hydroxylase; CYP7B1, oxysterol 7a-hydroxylase; BSH, bile salt

hydrolase; BAI, bile acid-inducible enzymes; ASBT, apical sodium-dependent bile acid transporter;

OSTa/b, organic solute transporter subunit a/b.
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1 Introduction

Inflammatory bowel disease (IBD), which encompasses mainly

two clinical phenotypes, was first described in 1895. The two

phenotypes are ulcerative colitis (UC) and Crohn’s disease (CD)

(1). The epidemiological stages of IBD’s evolution are Emergence,

Acceleration in Incidence, Compounding Prevalence, and

Prevalence Equilibrium. Western countries are in the third stage,

newly industrialized regions are in the second stage, and

developing countries are in the first stage as of the end of 2020.

In addition, the rising global burden of IBD may be improved by

comprehending the changing epidemiological patterns (2).

Furthermore, it is of great importance to know the etiology and

pathogenesis of IBD. The genetic agents, gut dysbiosis,

environmental factors, immunological status, and permeability of

gut barrier are closely related to the initiation and development of

IBD, even though the precise causes and mechanisms still remain

unclear (3). Among them, gut microbiota plays an irreplaceable

role as its regulatory and metabolic functions. For instance, they

participate in the bile acids (BAs) metabolism to produce

unconjugated and secondary BAs for their possession of bile salt

hydrolase (BSH) and bile acid–inducible enzymes (BAI) (4). The

gut dysbiosis and bile acid dysmetabolism that existed in patients

with IBD have been discovered by many studies, the levels of

secondary BAs are lower, primary BAs are elevated because of the

impairment of microbiota deconjugation and transformation

activities, and the microbial BSH activity is decreased (5–7).

Therefore, gut microbiota and BAs metabolism play important

roles, which have been studied in IBD. In addition, it is widely

believed that aberrant immune response against the gut

microorganisms in genetically susceptible individuals is the cause

of IBD. Immune cell trafficking and some cytokines, such as tumor

necrosis factor (TNF), interleukin-10 (IL-10), IL-22, IL-6, IL-17,

IL-12, and IL-23 are involved in the immunological pathogenesis

of IBD (8). Probiotics, one of the adjuvant therapeutic methods of

IBD, have been revealed to be effective in some clinical and animal

studies. It can rebalance the aberrant gut microbiota by increasing

beneficial microbes that may regulate BAs metabolism and

simultaneously inhibiting pathogens (9). Chronic inflammatory,

a gut condition in long-term IBD, has an increased risk of

developing into intestinal cancer, which is perceived as colitis-

associated cancer (CAC) (10). The abnormal BAs metabolism and

gut dysbiosis also exist in CAC. The CAC mice model showed gut

dysbiosis, decreased fecal BAs, and lessened transformation of

primary to secondary BAs (11). Probiotic intervention exhibited

inhibition of tumor formation and anti-inflammation effects in

CAC mice to some extent (12, 13). Therefore, probiotics may

adjust gut bacteria involved in BAs biotransformation in IBD

and CAC.

For better understanding the probiotics, in the present review,

we focused on the certain effects and probable functional roles of

probiotics on regulating gut microbiota-BAs axis in IBD and CAC.
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2 Microbial influence on BAs in IBD

2.1 BAs synthesis and circulation

In gastrointestinal tract, the biotransformation of intestinal BAs is

central to the metabolic homeostasis (14). Disorders in BAs

metabolism can result in dyslipidemia, cholestatic liver diseases,

cardiovascular diseases, fatty liver diseases, diabetes, and so forth

(15). Abnormal BAs metabolism detected in IBD may facilitate pro-

inflammatory intestinal responses via its effects on immune cells and

epithelial intestinal cells.TheprocessesofBAssynthesis andcirculation

have been extensively reviewed elsewhere. BAs synthesize in

hepatocytes through the classical and alternative pathways. Primary

BAs include cholic acid (CA) and chenodeoxycholic acid (CDCA).

Subsequently, CA and CDCA conjugate to either glycine

(predominantly in humans) or taurine (mainly in mice) to form

conjugatedBAs.Then, theseBAsarereleased into intestineafterameal,

and approximately 95% of them recirculate through enterohepatic

circulation in the distal ileum. The remaining about 5% BAs are

transported into colon and further metabolized by the colonic

microbiota. The bacteria with BSH activity can deconjugate BAs into

their unconjugated forms, including CA and CDCA. Afterward, they

are converted to secondary BAs, namely, ursodeoxycholic acid

(UDCA), lithocholic acid (LCA), and deoxycholic acid (DCA)

through the microbiota possessing enzyme action of 7a-
dehydroxylation. In addition, iso-BAs are produced by oxidation

and epimerization at C3, C7, and C12 positions of hydroxyl by

bacteria with hydroxysteroid dehydrogenases (HSDH) (14, 16).

Crosstalk between BAs and gut microbiota affect metabolic

phenotypes, immunological functions, and risk factors for many

diseases including diabetes, obesity, non-alcoholic fatty liver disease,

IBD, and various cancers (7). In addition to participating in lipid

absorption and cholesterol homeostasis, regulating their own

biosynthesis, and maintaining a healthy gut microbiota, BAs can

also balance carbohydratemetabolism, insulin sensitivity, and innate

immunity. The imbalance of BAs production, function, or

reabsorption is related to distinct gastrointestinal diseases, such as

intestinal inflammation and carcinogenesis, and gastrointestinal

motility (5, 14). In IBD patients, although many studies have

demonstrated the existence of BAs malabsorption or reduced BAs

recycling, both are commonly neglected. Due to decreasedmicrobial

abundance in thedistal ileumandcolon, patientswith active IBDhad

elevated conjugated BAs accumulation and decreased secondary

BAs. In addition, the transformation activities that included

deconjugation, 7a-dehydroxylation, and desulphation of gut

microbiota were impaired (5, 17, 18). Analogously, the same results

were observed in many colitis rodent models. In the trinitrobenzene

sulfonic acid (TNBS)–induced colitismodel, on account of decreased

expression of BA transporters, BAs amassing in feceswere increased,

which resulted in the suppression of BAs recycling (19). Rats with

dextran sodium sulfate (DSS)–induced colitis also exhibited

accumulation of CA in feces (20). Of note, the microbiome of
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pediatric patients with IBD was overtly depleted in their BAs

production potential (18). Furthermore, in colectomy-treated

patients with UC, their pouches had reduced levels of DCA and

LCA and lessened genes required to convert primary to secondary

BAs (21). With respect to CAC, a study discovered that fecal BAs

were lessened, accompanied by decreased transformation of primary

to secondary BAs. Moreover, downregulated gut-liver farnesoid X

receptor–fibroblast growth factor 15 (FXR-FGF15) axis was also

revealed in the CAC mice model (11).
2.2 BAs metabolism: Regulatory role of
gut microbiota

The synthesis andmetabolism of BAs are prominentlymodified

by gut bacteriawithdiverse enzymes (22). BSHandBAI expressedby

certain gut bacteria are the two main enzymes that involve in the

deconjugation of primary BAs and subsequent transformation into

secondary BAs (4). Themajor BAs biotransformation in the human

gut comprises deconjugation, 7a-dehydroxylation, oxidation and

epimerization, desulfatation, and esterification (23). BAs

biotransformation is a collaborative effort through the gut

microbiota and host. This biotransformation process may play a

role in bile detoxification, thus reducing BAs toxicity, and may have

beneficial effects on bacteria that carry functional genes. The gut

microbiota modulates BAs generation and signalling by the

biotransformation of gut BAs to unconjugated and secondary

forms that have influence on host health and diseases (24). The

major bacterial genera of gut microbiota participated in gut

microbiota-BAs axis include Bifidobacterium, Lactobacillus,

Bacteroides, Clostridium, and Listeria in BAs deconjugation;

Clostridium and Eubacterium in 7a-dehydroxylation; Clostridium,

Bacteroides,Escherichia,Eubacterium,Egghertella,Ruminococcu, and

Peptostreptococcus in oxidation and epimerization; Fusobacterium,

Clostridium, Peptococcus, and Pseudomonas in desulfatation;

Lactobacillus, Bacteroides, and Eubacterium in esterification (25).

BAs and gut microbiota can influence each other, gut microbiota

modulates the size and constitute of the BAs pool, which in turn

regulate microbiota composition. Hydrophobic BAs at high

concentrations can generate direct antimicrobial activities mainly via

membranedamage.BAscouldalso indirectly shape thecompositionof

gutmicrobiota throughBAsreceptors.Gram-positivemicroorganisms

are often more sensitive to BAs than Gram-negative microorganisms

(7). Nevertheless, BAs could induce the proliferation of some gut

microbes. In the context of high fat diet, elevated taurine-conjugated

BAsaggrandized theavailabilityoforganicsulphurutilizedbyBilophila

wadsworthia, which was associated with increased incidence of colitis

in Il10−/−mice (26).

2.2.1 Deconjugation
In IBD patients, the low level of BSH activity in the microbiota

was demonstrated by bioinformatic analysis of metagenomic data
Frontiers in Immunology 03
(6). BSH,which is oxygen insensitive, is generally located inside the

cell, and the optimal pH is commonly between 5 and 6 (27). BSH

catalyzes the hydrolysis of conjugated BAs at C24 N-acyl amide

bond. A number of studies aimed to illustrate the key secondary

structure element and amino acids that may be participated in the

substrate binding in BSH. These reports exhibited that BSH can

identify its substrates through hydrophobic interactions with

steroid moiety (28–31). Functional BSH has been identified in all

major gut bacteria divisions and archaeal species (32). The main

bacteria involved in BAs deconjugation at genera level are

Bifidobacterium, Lactobacillus, Bacteroides, Clostridium, and

Listeria (25). Apart from the above five genera, Song and co-

workers discovered that Parabacteroides, Bacillus,Mycobacterium,

Staphylococcus , Enterococcus , Eubacterium , Blautia ,

Peptoclostridium, Fusobacterium, Rhodopseudomonas, Yersinia,

and Vibrio possessed more than five BSHs (33). It is beneficial for

the gut microbiota to modify conjugated BAs, since it may be

relevant to the detoxication of conjugated BAs and the acquisition

of nitrogen, carbon, and sulfur, which have effect on the growth of

bacteria (27, 34). Catalysis of BSH enzymes is the first step in the

transition from conjugated BAs to their unconjugated forms,

followed by further conversion into secondary BAs. Due to the

likely less easily absorbedof secondaryBAs, the reabsorptionofBAs

in the enterohepatic circulation was reduced. Certain BAs may be

more easily excreted from individuals, and BA neo-synthesis may

be strengthened (35, 36). For instance, as themosthydrophobicBA,

LCA is reabsorbed weakly back into enterohepatic cycle, which

leads to higher amounts of LCA in feces (37). In the context of

chronic inflammation, such as IBD, unconjugated BAs might be

gradually exhausted, presumably on account of the depletion of

BSH-rich gut bacteria (38). Replenishment of probiotics may

improve the decreased BSH in IBD. More importantly, the BSH

activity of probiotics may be desirable, because it maximizes its

prospects for survival in the harsh environment of intestine, which

is likely to enhance the overall beneficial effects related to the

strains (27).

2.2.2 7a-dehydroxylation
Only a limited number of intestinal bacteria, including

Clostridium and Eubacterium that encode bai genes, can

accomplish this process of BAs dehydroxylation. The bai genes

were significantly reduced in UC than familial adenomatous

polyposis pouches (21). Furthermore, BA dehydroxylation can

only occur after deconjugation because of the inaccessibility of

the hydroxyl group, which is different to oxidation and

epimerization, and the 7a-dehydroxylation is the most significant

conversionofBAs fromquantity andphysiology aspects inhumans

(39). Taking the multi-step bai encoded pathway as an illustration,

it contains BA import, modification, and export from bacteria.

There exist noticeable species-specific discrepancies in the

distribution of certain bai genes. Clostridium sordellii VPI 9048

carries merely baiA2, baiCD, baiE, baiH, and 7a-HSDH, whereas
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Clostridium hiranonis carries baiJ, baiH, baiBCDEA2FG, and 7a-
HSDH (40). Nevertheless, it remains to be elucidated the true

distributions of bai genes among bacterial species and is still poorly

understanding the minimum bai gene set that secondary BAs

synthesis requires. Moreover, in addition to one advantage that

produces reduced nicotinamide adenine dinucleotide phosphate of

the bai system, other evolutionary advantages are also the subject of

speculation and should be further revealed (41).
2.2.3 Oxidation, epimerization, and
esterification

HSDHs from intestinal bacteria catalyze the invertible

oxidation of hydroxy to oxo groups. Epimerization occurs by

stereospecific oxidation and reduction at 3-, 7-, and 12- hydroxyl

groups of BAs (42). Epimerization requires the role of two

different HSDHs and can be completed via a single species

with both a- and b-HSDHs or through two species containing

a-HSDH and b-HSDH, respectively (43). For instance, 3a/b-
HSDH can epimerize DCA to 3-oxo/iso-DCA in Ruminococcus

gnavus (44). Moreover, allo-BAs are generated by 5-b/a-
epimerization (45). Esterified BAs in fecal samples of rodents

and humans have been discovered by numerous reports. In

addition, esterified BAs may account for more than 25% of total

fecal BAs (46).
2.3 BAs and intestinal immunity

The disrupted composition, diversity, and/or functions of gut

microbiome are closely associated with gut dysbiosis, which has

deleterious influence on individuals through gut homeostatic

imbalance and inappropriate immune activation (47–49).

Although the member and abundance of intestinal microbiota

have wide individual differences by taxonomic criteria, there exist

relative consistent microbial patterns in the gut of IBD, such as

decreasedmicrobial diversity and relative abundance ofFirmicutes,

and increased Proteobacteria (50–53). Meanwhile, certain

beneficial bacteria are reduced, whereas pathogens including

Escherichia coli are elevated (54, 55). In the context of IBD, gut

dysbiosis and BAs disturbance, especially the reduced secondary

BAs, have an impact on intestinal immunity (55). IL-17 and

interferon-g (IFN-g) are increased on account of the

dysregulation of group 3 innate lymphoid cells (ILC3) and ILC1

as well as dysfunction of regulatory ILC (56). The gut microbiota

frompatientswith IBDcoulddecrease retinoic acid receptor related

orphan receptor gt (RORgt)+ Treg cells that produce transforming

growth factor-b (TGF-b) and IL-10, and elevate Th17 (T helper 17)

cells with pro-inflammatory cytokines (e.g., IL-17) (57, 58). Bile

acid–activated receptors (BARs), a family of nuclear and cell

membrane receptors, encompass Takeda G-protein receptor 5
Frontiers in Immunology 04
(TGR5), FXR, vitamin D receptor (VDR), pregnane X receptor

(PXR), constitutive androstane receptor (CAR), sphingosine 1-

phosphate receptor 2, liver-X-receptor a/b, and M2/3 muscarinic

receptors (59). Deficiency or inactivation of FXR or TGR5 in

macrophages and dendritic cells (DCs) augments the production

of pro-inflammatory cytokines. In FXR−/− mice, infiltration of

macrophages was enhanced. In addition, macrophages isolated

from TNBS-treated FXR−/− mice rather than wild-type mice

exhibited higher released inflammatory cytokines. The activation

of TGR5 in lipopolysaccharide (LPS)–treated macrophages by

DCA, LCA, and tauro-LCA was able to inhibit the generation of

IL-12 and TNF-a. Simultaneously, it increased the ratio of IL-10/

IL-12, indicating the phenotypic transformation of macrophages

into anti-inflammatory forms (60). Recruitment of classically

activated macrophages and intestinal inflammation was increased

in TGR5−/−mice with colitis. On the contrary, TGR5 activation by

agonist could reverse intestinal inflammation through decreasing

the trafficking of monocytes from blood to gut (61).

BARs are discovered in intestinal epithelial cells, intestinal

muscle and neurons, hepatocytes, biliary cells, liver sinusoidal

cells, liver and intestinal endothelial cells, monocytes/

macrophages cells, DCs, natural killer (NK) and NKT cells, ILC,

Th1, and Th17 cells (62). CDCA (CA in mice) is recognized as the

most potent FXR ligand in humans, followed by DCA, LCA, and

CA, whereas secondary BAs, particularly LCA and DCA, are

preferential ligands for the TGR5, whose other ligands are

CDCA, UDCA, and CA (59). VDR is activated by LCA and its

metabolites (isoallo-LCA and 3-oxo-LCA). Furthermore, isoallo-

LCA and 3-oxo-LCA can act on RORgt as inverse agonists in DCs
and T cells (63). We hereafter briefly summarized the main

functions of BARs activation in different immune cells. In

monocyte/macrophages cells, the activation of FXR reduces the

generation of TNF-a and IL-1b under inflammatory conditions.

TGR5 activation shifts intestinalmacrophages that are treated with

LPS from M1 to M2; decreases the expression of TNF-a, IL-1b,
IFN-g, IL-6, and IL-12; and elevates the level of IL-10. In addition,

VDR activation inhibits the release of IL-1, IL-6, and TNF-a but

enhances IL-10 production (61, 64, 65). As far as DCs, FXR

activation inhibits the differentiation, activation, and maturation

of intestinal DCs and downregulates TNF-a expression. In

addition, as stated previously, the activation of TGR5 in DCs

reduces the production of IL-12 and TNF-a. Suppression of DCs

differentiation and maturation by activating VDR has been

demonstrated (66–68). In ILC3, RORgt is required for its

development and function (69, 70). In NKT cells, the activation

of FXR could repress the production of IFN-g and osteopontin.

TGR5 activation redirects the NKT cells polarization toward

NKT10, subsequently promoting the secretion of IL-10 whereas

decreasing the TNF-a and IFN-g (71, 72). Nonetheless, the effect of
FXR/TGR5activation inNKTcells hasbeen investigatedonly in the

liver.These resultsmay indicate a similar effect of themon intestinal

NKT cells, which needs to be further explored. As for T cells, by
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directly binding to the RORgt in Th17 cell, 3-oxo-LCA and isoLCA

inhibit Th17 differentiation (73). Recently, LCA 3-sulfate, a

synthesized sulfated product of LCA, suppresses Th17 cell

differentiation through binding to RORgt (74). IsoalloLCA can

increase the differentiationofTreg cells (75). IsoDCAacts onFXR in

DCs and then results in the promotionofRORgt+FOXP3+Treg cells

(76). Beyond this, TGR5 agonism promotes T-cell differentiation

toward the Treg phenotype (61). VDR activation facilitates a shift

from Th1 to Th2 phenotype, inhibits proliferation of T cell and

Th17 differentiation, and promotes the induction of Treg cells (77–

81). Therefore, the anti-inflammatory and immunomodulatory

effects of BAs-BARs-immune cell axis play essential roles in

health and disease conditions.

3 Effectiveness of probiotics and
their possible roles in gut
microbiota-BAs axis

In accordance with the World Health Organization,

probiotic bacteria are defined as live microorganisms that

confer a health benefit to the host when administered in

adequate amounts. Probiotic strains must have four criteria for

selection and use in foods or dietary supplements. In brief, first,

they must be sufficiently characterized. Second, safe use is an

essential requirement. In addition, at least one human clinical

trial can support their positive effectiveness by using probiotics.

Last but not the least, it must be alive at an efficacious dose in the

product during the quality guarantee period (82). The majority

of probiotics used in research or commercial development are

from limited bacteria, which mainly contain Bifidobacterium

spp. and Lactobacillus spp. Currently, other probiotics, such as

Saccharomyces, E. coli, Bacillus spp., Weissella spp., and

Enterococci are available in the marketplace (83).
3.1 Effectiveness of probiotics on IBD/CAC

3.1.1 Probiotic effectiveness in clinical trials
among IBD patients

As of now, some clinical trials have been presented the positive

effects of probiotics on patients with IBD.Next, we listed some clinical

trials and the altered fecal bacteria that might participate in the

metabolism of BAs. In UC patients, administration of probiotic

yogurt, which included Lactobacillus acidophilus La-5 and

Bifidobacterium BB-12, led to increased numbers of Bifidobacterium,

Lactobacillus andBacteroides in feces (84). These three bacteria (genus

level) might regulate the gut microbiota-BAs axis due to their BSH

activities or other functions. BIFICO (Bifidobacterium longum,

Lactobacillus acidophilus, and Enterococcus faecalis) prevented flare-

ups of chronic UC by decreasing IL-1b and TNF-a levels, increasing

IL-10 expression, and blocking Nuclear Factor kappa-light-chain-

enhancer of activated B cells (NF-kB) activation. Moreover, it

elevated fecal Lactobacillus and Bifidobacterium (85). Similar fecal
Frontiers in Immunology 05
bacteria variations were also found in another UC trials with BIFICO

(86). Furthermore, mesalazine combined with BIFICO treatment

reduced the adverse reactions (87). In a 2-year clinical study,

mesalazine plus a probiotic mix improved the clinical response

better than controls (88). Tsuda et al. showed that by making use of

BIO-THREE (Streptococcus faecalis T-110, Clostridium butyricum

TO-A, and Bacillus mesentericus TO-A) ameliorated endoscopic

findings, clinical symptoms of UC patients, and increased fecal

Bifidobacterium (89). In addition to these, many other studies also

exhibited theeffectivenessof thesameordiverseprobioticson inducing

remissionorpreventingrecurrenceof IBDpatients (90–97).Moreover,

application of Escherichia coliNissle 1917 (EcN) by rectumwas a well

replacement treatment for moderate distal UC (98). Among CD

patients, Saccharomyces boulardii was useful for maintenance

treatment according to a clinical trial in 2000 (99).

Nevertheless, there exist some discrepant results of using

probiotics in IBD. For example, Bifidobacterium breve fermented

milk had no effect on relieving relapse in UC (100). In a small

randomized double-blind placebo-controlled trial of UC,

Lactobacillus acidophilus La-5 and Bifidobacterium animalis

subsp. lactis BB-12 showed no significant clinical benefit (101).

In another clinical trial, EcN did not improve the active UC

followed by 7 weeks administration after ciprofloxacin or

placebo intervention (102). With regard to CD, Bourreille

et al. found that after steroid or salicylate treatment,

Saccharomyces boulardii had no beneficial effect on CD

patients in remission (103). Van Gossum et al. did not find

that Lactobacillus johnsonii LA1 could prevent early endoscopic

recurrence of CD patients after ileo-caecal resection (104). The

reasons for why the diverse outcomes appear are intricate. It may

attribute to strain-specific, dose, utility time, number of patients,

individual differences, disease severity, microbiota composition,

genetic aspects, inflammatory status, and so forth.

Hence, from the valid clinical trials of IBD, we can discover

that the main elevated fecal bacteria (genus level) that may

involve in modulating gut microbiota-BAs axis are Lactobacillus

and Bifidobacterium. Only one clinical trial found the relative

increased Bacteroides. Moreover, the outcomes and other effects

including immune response of these clinical trials were also

presented in Table 1.

3.1.2 Probiotic effectiveness in animal models
with colitis

White and co-workers demonstrated that VisbiomeTM

(Lactobacillus plantarum, Streptococcus thermophilus, Bifidobacterium

breve,Lactobacillus paracasei,Lactobacillus delbrueckii subsp.bulgaricus,

Lactobacillus acidophilus, Bifidobacterium longum, and Bifidobacterium

infantis) plus prednisone therapy could accelerate clinical remission,

upregulate the expression of E-cadherin, occludin, and zonulin but did

not improve the histopathologic inflammation than prednisone alone

group in canine with idiopathic IBD. In addition, the combination

therapy increased fecal Bifidobacterium (106). In the TNBS-induced

colitis model, Lactobacillus plantarum LC27 and Bifidobacterium
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longum LC67 inhibited Proteobacteria toBacteroidetes ratio andNF-kB
activation, elevated fecal Lactobacilli, Bifidobacteria and tight junction

protein expression, simultaneously restored Th17/Treg balance (107).

Another study using Lactobacillus acidophilus and Clostridium

butyricum acquired similar results of elevated fecal Lactobacillus and

Bifidobacterium. Furthermore, it alleviated reduced colon length and

body weight, suppressed disease activity indices (DAI), and exerted an

anti-inflammatory effect (108). VSL#3 (Lactobacillus paracasei, L.

plantarum, L. acidophilus, L. delbrueckii subspecies bulgaricus,

Bifidobacterium longum, B. breve, B. infantis, and Streptococcus

thermophilus) lowered macroscopic and microscopic damage, reduced

serum cytokine levels, but not dampening M1 macrophages. Of note,

fecal Parabacteroides, Clostridium were increased in mice being given

VSL#3 than in the TNBS colitis mice (109).

Within the DSS-induced colitis model, Lactobacillus

rhamnosus GG (LGG) ameliorated decreased body weight and

clinical features and simultaneously enhanced fecal Lactobacillus

and Bacteroides (110). Three studies revealed the positive effect

of Lactobacillus plantarum on DSS-induced colitis, Lactobacillus

plantarum GIM17 and Lactobacillus plantarum-12 elevated the
Frontiers in Immunology 06
fecal Lactobacillus, whereas the Lactobacillus plantarum L15

could also increase other bacteria, such as Bifidobacterium and

Bacteroides (111–113). LGG and Lactobacillus plantarum Q7–

derived extracellular vesicles could also enhance the fecal

Bifidobacterium_animalis or Lactobacillus and Bifidobacterium,

respectively (114, 115). Jang et al. and Zhang et al. discovered

that Lactobacillus fermentum KBL375 or Lactobacillus casei

Zhang was capable of augmenting species levels of

Lactobacillus in feces (116, 117). Lactobacillus M2S01

recovered decreased body weight and incremental DAI,

promoted anti-inflammatory cytokines expression, and

elevated fecal Bifidobacterium (118). Higher Lactobacilli,

Bifidobacteria, or Bacteroides in feces were detected after the

administration of Lactobacillus salivarius CPN60 or

Lactobacillus brevis , respectively (111, 119). As for

Bifidobacterium longum CCFM681, Chen et al. demonstrated

the protective roles of it in mice with DSS-induced colitis. It

significantly increased mucin 2, goblet cells, zonula occludens-1

(ZO-1), claudin-3 and a-catenin1, suppressed Toll-like receptor

4/NF-kB pathway and related pro-inflammatory cytokines.
TABLE 1 Probiotics modulate immune response and the gut bacteria that may be involved in gut microbiota-bile acids axis in patients with
inflammatory bowel disease.

Author
[year]

Probiotic Patients Dose
and

duration

Detection
method

Outcomes Elevated relevant microbes that
may be involved in gut micro-
biota-bile acids axis(genus/

species)

Other
effects

Cui et al.
[2004]

BIFICO (85) 30 with
UC

1.26 g/day,
8 weeks

Culture ↓ recurrence rate Lactobacillus, Bifidobacterium ↓IL-1b,
TNF-a;
↑IL-10; ↓
NF-kB

Tsuda et al.
[2007]

BIO-THREE (89) 20 with
UC

9 BIO-
THREE
tablets,
4 weeks

T-RFLP Improved UCDAI score Bifidobacteria –

D’Inca et
al.
[2011]

Lactobacillus casei
DG (105)

26 with
UC

8*108 CFU
(twice
daily),
8 weeks

Culture Improved histological disease
severity scores, which were directly
correlated with TLR4 mRNA
mucosal levels

Lactobacillus spp. ↓IL-1b,
TLR4;
↑IL-10

Shadnoush
et al.
[2015]

Lactobacillus
acidophilus La-5
and
Bifidobacterium
BB-12 (84)

198 with
UC, 22
with CD

250g/day
(106 CFU/
g),
8 weeks

qPCR – Lactobacillus, Bifidobacterium, and
Bacteroides

–

Fan et al.
[2019]

BIFICO (86) 40 with
IBD

2
probiotics
tablets
(three
times a
day),
40 days

Culture ↓CDAI, UCAI, and recurrence rate
↓lactoferrin, a- antitrypsin, b2-
microglobulin, and hs-CRP

Bifidobacterium, Lactobacillus ↓IL-6;
↑IL-4
fron
IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; CFU, colony forming units; TNF, tumor necrosis factor; IL, interleukin; NF-kB, Nuclear Factor kappa-light-
chain-enhancer of activated B cells; TLR, toll-like receptor; CDAI, Crohn’s disease activity index; UCAI, UC activity index; hs-CRP, high-sensitivity C-reactive protein; UCDAI, ulcerative
colitis disease activity index; T-RFLP, terminal restriction fragment length polymorphism; qPCR, quantitative real-time polymerase chain reaction.
* means the mathematical symbol ×; ↓ means reduced; ↑ means increased.
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Moreover, it promoted the growth of Lactobacillus and

Bifidobacterium in feces (120). The authors also discovered

that Bifidobacterium pseudocatenulatum MY40C and

CCFM680 were able to elevate fecal Lactobacillus as well (121).

Oral delivery of Bacillus cereus or Bacillus subtilis alleviated DSS-

induced colitis through anti-inflammation, protecting intestinal

integrity, improving intestinal barrier function, and reshaping

microbial composition, which comprised increased fecal

Lactobacillus, Eubacterium, Bacillus, and Bacteroides (122–

125). Rodriguez-Nogales et al. found that Saccharomyces

boulardii CNCMI-745 improved the colitis-associated gut

dysbiosis, including more Lactobacillus, Bifidobacterium in

feces (126). Saccharomyces cerevisiae BR14 merely increased

the fecal Lactobacillus (127), whereas an engineered strain

reconstructed from Saccharomyces cerevisiae BY4741 could

also enhance fecal Bacteroides apart from Lactobacillus in DSS-

induced colitis (128). The aforementioned research revealed the

potential functions and part mechanisms of single probiotic on

animals with DSS-induced colitis. Noteworthy is that they are all

involved in the alterations of fecal microbiota, which may

modulate gut microbiota-BAs axis. Furthermore, numerous

other researchers investigated the effectiveness of multi-strain

or combined probiotics on the DSS model. Lactobacillus

rhamnosus R0011 and Lactobacillus helveticus R0052

administration resulted in diminished colon disease and an

increase in fecal Bacillus and Lactobacillus (129). Rodriguez-

Nogales et al. uncovered the functional roles of Lactobacillus

fermentum CECT5716 and Lactobacillus salivarius CECT5713

on DSS mouse colitis. Both probiotics contributed to anti-

inflammatory effects, regulating immune response, improving

microRNA (miR)-155 and miR-223 expression, and increasing

fecal Parabacteroides, Bacillus (130). Lactobacillus sakei 07 and

Bifidobacterium bifidum B10 combination decreased colonic IL-

6, TNF-a, and intestinal permeability and increased intestinal

flora biodiversity and the level of fecal Bifidobacterium in the

colitis model (131). Quadruple probiotics were also showed

benefit influences on colitis mice induced by DSS.

Bifidobacterium infantis GMCC0460.1, Lactobacil lus

acidophilus GMCC0460.2, Enterococcus faecalis GMCC0460.3

and Bacillus cereus GMCC0460.4 repaired multi-barriers in the

inflamed gut and enhanced Lactobacillus, Bifidobacterium, and

Bacteroides in feces (132). Wang et al. uncovered that

supplement of Lactobacillus reuteri RAM0101, Bacillus

coagulans RAM1202, Bifidobacterium longum RAM0216, and

Clostridium butyricum CICC6197 increased intestinal barrier

function, IL-10 expression and fecal Bifidobacterium, Blautia,

Lactobacillus, and Bacillus coagulans (133). Analogously, there

exist some other new or potential probiotics, such as

Faecalibacterium prausnitzii, Pediococcus pentosaceus,

Ligilactobacillus salivarius, Lactiplantibacillus plantarum, and

Akkermansia muciniphila have been certified effectively in

DiNitroBenzene Sulfonic/DSS-induced colitis model.

Lactobacillus, Bacteroides, Bifidobacterium, Parabacteroides,
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and Eubacterium_fissicatena_group were increased in feces

after using these probiotics (134–138).

In short, the probiotics mentioned above bring forth favorable

therapeutic effects on animal models with chemical-induced colitis.

Probiotics may regulate gut microbiota-BAs axis by elevating the

fecal concentration of Lactobacillus, Bifidobacterium, Bacteroides,

Parabacteroides, Clostridium, Blautia, Bacillus coagulans,

Eubacterium or Eubacterium_fissicatena_group at genus or

species levels. Moreover, other effects involved in immune

response were summarized in Table 2 as well.
3.1.3 Probiotic effectiveness in AOM/DSS
induced CAC

Xu and co-workers indicated that Lactobacillus rhamnosusM9

suppressed the increased number and growth of colon tumors and

expression of phosphorylated-signal transducer and activator of

transcription 3 and phosphorylated-protein kinase B, ameliorated

inflammatory damage and gut fibrosis in azoxymethane (AOM)/

DSS-induced CAC. Furthermore, it changed fecal microbiota,

which included elevated Blautia and Bifidobacterium at genus

level (12). Lactobacillus fermentum V3 markedly inhibited

colonic tumor formation and pro-inflammatory cytokines,

accompanied by increased fecal Lactobacillus (139). The same

fecal bacteria alteration that might participate in gut microbiota-

BAs axis was also observed in AOM/DSS-induced CAC mice by

using Lactobacillus casei BL23 or Lactobacillus gasseri 505. Other

than this function, Lactobacillus casei BL23 reduced proliferation

and histological scores, downregulated IL-22 cytokine, and

upregulated caspase-7 and caspase-9 (140, 141). Wang et al.

revealed that Lactobacillus coryniformis MXJ32 could

significantly suppress the total number and average diameter of

tumors, reinforce the expressionofZO-1,Claudin-1,Occludin, and

recover the lesion of goblet cells. In addition, it lowered the

expression of IL-1b, TNF-a, IL-6, IL-17a, C-C motif ligand 7,

chemotactic factors chemokine ligand 5 (Cxcl5), Cxcl3, Cxcl2 and

Cxcl1, increased the abundance ofLactobacillus,Bifidobacterium in

the stool (13). Treatment with Lactobacillus helveticusNS8 overtly

reduced the degree of hyperplasia and tumor number, suppressed

enterocytes proliferation at the early stage of CAC, while it

increased apoptosis level. Furthermore, NS8 significantly

inhibited NF-kB activation, IL-17–producing T cells, and

upregulated IL-10. Interestingly, at the genus level, fecal

Parabacteroides was augmented after 80 days injection of AOM,

while at the species level, Lactobacillus sp., Bacteroides acidifaciens

or Parabacteroides sp., Bifidobacterium pseudolongum were

increased at 14 or 80 days behind AOM injection (142). Wang

and co-authors discovered the conducive role of Bifidobacterium

bifidum CGMCC 15068 on the CACmouse model. This probiotic

was capable of attenuating tumorigenesis and shifting gut

microbiota composition, which comprised a higher quantity of

Lactobacillus in feces. Inaddition, the authors found theexistenceof

differentially abundant metabolites between AOM/probiotic and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974305
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.974305
AOM groups, which indicated that Bifidobacterium bifidum

CGMCC 15068 was involved in multiple metabolic pathways,

such as citrate cycle, galactose metabolism, butyrate metabolism,

and so on (143). Clostridium butyricum, a relative new probiotic,

has been identified to inhibit the incidence and size of tumors in

CAC mice, decrease IL-6, TNF-a , cyclooxygenase-2,

phosphorylation of NF-kB and B-cell lymphoma-2. Moreover, it

aggrandized the expression of Bcl-2-associated X and fecal

Lactobacillus, Bifidobacterium (144). Triple or multiple probiotics

intervention still exhibited a satisfactory effect on the chemical-

induced CAC model. Lactobacillus acidophilus, Lactobacillus

rhamnosus, and Bifidobacterium bifidum mixture restrained the
Frontiers in Immunology 08
size and number of tumors, reduced colon inflammatory index,

serum chemokines RANTES, eotaxin, phospho-IkB kinase, and

TNF-a, whereas it enhanced IL-10 expression and fecal

Lactobacillus, Bifidobacterium, Clostridium XI, and Clostridium

XVIII (145). By making use of VSL#3 in AOM/DSS-induced CAC

mice, Wang et al. revealed that this probiotic alone ameliorated

oncogenesis and tumor load, and reduced the level of IL-6 and

TNF-a in colon tissue. Furthermore, it increased fecal Bacillus and

Lactobacillus as well, but the latter had no statistical

significance (146).

As mentioned above, probiotics can improve the AOM/DSS-

induced CACmodel in a variety of ways, one of which is altering gut
TABLE 2 Probiotics modulate immune response and the gut bacteria that may be involved in gut microbiota-bile acids axis in animal models with
colitis-associated cancer.

Probiotic Animal
models

Detection
method

Elevated relevant microbes that may be
involved in gut microbiota-bile acids axis

(genus/species)

Other effects

Lactobacillus rhamnosus M9 (12) AOM/DSS-
induced
CAC

Metagenomic
Sequencing

Blautia, Bifidobacterium ↓PCNA+ cells, p-STAT3, p-Akt;
↑Ki67;
↓M1 (CD68+) and M2 (CD163+) in
the serosa

Lactobacillus fermentum V3 (139) AOM/DSS-
induced
CAC

16S rRNA Lactobacillus ↓IL-1a/b, IL-6, M1 (CD68+)

Lactobacillus casei BL23 (140) AOM/DSS-
induced
CAC

16S rRNA Lactobacillus ↓IL-22, Ki67; ↑caspase-7, caspase-9,
Bik

Lactobacillus gasseri 505 (141) AOM/DSS-
induced
CAC

16S rRNA Lactobacillus ↓IL-1b, TNF-a, IFN-g, and↑IL-10
(protein level);
↓IL-6, and↑IL-4, IL-10 (mRNA
level);
↓iNOS, COX-2, Bcl-xl; ↑MUC2, ZO-
1, occludin, p53, p21, Bax

Lactobacillus coryniformis MXJ32 (13) AOM/DSS-
induced
CAC

16S rRNA Lactobacillus, Bifidobacterium ↓IL-1b, IL-6, IL-17a, IL-g, TNF-a,
Cxcl1/2/3/5, Ccl7;
↑ZO-1, occludin, claudin-1, goblet
cells, SCFAs

Lactobacillus helveticus NS8 (142) AOM/DSS-
induced
CAC

16S rRNA Parabacteroides;
Parabacteroides sp., Bacteroides acidifaciens,
Bifidobacterium pseudolongum

↑IL-10, caspase-3; ↓NF-kB;
↓IL-1b, IL-8, TNF-a, angiogenin, b-
catenin, COX-2, Ki67, IL-17-
producing T cells

Bifidobacterium bifidum CGMCC 15068
(143)

AOM/DSS-
induced
CAC

16S rRNA Lactobacillus –

Clostridium butyricum (144) AOM/DSS-
induced
CAC

16S rRNA Lactobacillus, Bifidobacterium ↓IL-6, TNF-a, COX-2, Bcl-2, Ki67;
↑Bax;
↓NF-kB and proliferation

Lactobacillus acidophilus, Lactobacillus
rhamnosus and Bifidobacterium bifidum
(145)

AOM/DSS-
induced
CAC

16S rRNA Lactobacillus, Bifidobacterium, Clostridium XI,
Clostridium XVIII

↓RANTES, Eotaxin (serum); ↓p-IKK,
TNF-a; ↑IL-10

VSL#3 (146) AOM/DSS-
induced
CAC

16S rRNA Lactobacillus, Bacillus ↓IL-6, TNF-a
CAC, colitis-associated cancer; AOM, azoxymethane; DSS, dextran sodium sulfate; PCNA, proliferating cell nuclear antigen; p-STAT3, phosphorylated signal transducer and activator of
transcription 3; p-Akt, phosphorylated serine/threonine kinase protein kinase B; M, macrophage; IL, interleukin; Bik, Bcl-2 interacting killer; TNF, tumor necrosis factor; IFN-g, interferon-
g; iNOS, inducible nitrogen oxide synthase; COX-2, cyclooxygenase 2; Bcl-xL, B-cell lymphomaextra-large; MUC2, mucin2; ZO-1, zona occludens-1; Bax, Bcl2-associated X protein; Cxcl,
chemotactic factors chemokine ligand; Ccl7, C-C motif ligand 7; SCFAs, short−chain fatty acids; NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; Bcl-2, B-cell
lymphoma 2; IKK, IkB kinase; 16S rRNA, 16S ribosomal ribonucleic acid.
↓ means reduced; ↑ means increased.
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TABLE 3 Probiotics modulate immune response and the gut bacteria that may be involved in gut microbiota-bile acids axis in animal models with
inflammatory bowel disease.

Probiotic Animal
models

Detection
method

Elevated relevant microbes that
may be involved in gut microbi-
ota-bile acids axis(genus/species)

Other effects

VisbiomeTM (106) 34 dogs with
idiopathic
IBD

qPCR Bifidobacterium ↑E-cadherin, occluding, zonulin

Lactobacillus plantarum LC27 and Bifidobacterium
longum LC67 (107)

TNBS-
induced
colitis

qPCR Lactobacilli, Bifidobacteria ↓iNOS, COX-2, TNF-a, IL-1b,
IL-17, RORgt;
↑IL-10, Foxp3, TJP; Restore
Th17/Treg balance

Lactobacillus acidophilus CGMCC 7282, Clostridium
butyricum CGMCC 7281 (108)

TNBS-
induced
colitis

Culture Lactobacillus, Bifidobacterium ↓IL-8, TNF-a; ↑ZO-1; ↓ NF-kB

VSL#3 (109) TNBS-
induced
colitis

Fecal
metagenomics

Parabacteroides, Clostridium ↑IL-12

Lactobacillus rhamnosus GG (110) DSS-induced
colitis

16S rRNA Lactobacillus, Bacteroides ↓IL-6, IL-10 in serum

Lactobacillus brevis (111) DSS-induced
colitis

16S rRNA Bacteroides –

Lactobacillus plantarum GIM17 (147) DSS-induced
colitis

16S rRNA Lactobacillus –

Lactobacillus plantarum L15 (112) DSS-induced
colitis

16S rRNA Lactobacillus, Bifidobacterium, Bacteroides ↓IL-1b, IL-12, TNF-a; ↑IL-10;
↓TLR4-MyD88-NF-kB

Lactobacillus plantarum-12 (113) DSS-induced
colitis

16S rRNA Lactobacillus ↓IL-8, TNF-a; ↑IL-10, MUC2

Lactobacillus reuteri I5007 (148) DSS-induced
colitis

16S rRNA Bifidobacterium, Clostridium_XIII ↓IL-1b, IL-6, TNF-a, IL-17A

Lactobacillus casei Zhang (116) DSS-induced
colitis

16S rRNA Lactobacillus reuteri ↓IL-6(serum), MPO(colon), p-
STAT3 signaling

Lactobacillus fermentum KBL375 (117) DSS-induced
colitis

16S rRNA Lactobacillus spp. ↓IL-2, IL-4, IL-13, IL-17A; ↑IL-
10, Treg

Lactobacillus M2S01 (118) DSS-induced
colitis

16S rRNA Bifidobacterium ↑IL-10, IL-22; ↓NF-kB

Lactobacillus salivarius CPN60 (119) DSS-induced
colitis

Culture Lactobacilli, Bifidobacteria ↑lactate, acetate, propionate,
butyrate

Bifidobacterium longum CCFM681 (120) DSS-induced
colitis

16S rRNA Lactobacillus, Bifidobacterium ↓IL-6, MPO; ↓TLR4-NF-kB;
↑IL-10, MUC2, goblet cells, ZO-1,
a-catenin1, claudin-3

Bifidobacterium pseudocatenulatum MY40C and
CCFM680 (121)

DSS-induced
colitis

16S rRNA Lactobacillus;
Blautia was the key microbe in MY40C
groups

↓IL-6, TNF-a, MPO, COX-2,
Caspase-3; ↓TLR4-NF-kB;
↑IL-10, MUC2, goblet cells, ZO-1,
b-catenin, claudin-3

Bacillus cereus JNFE0126 (122) DSS-induced
colitis

16S rRNA Bacillus, Lactobacillus ↓TNF-a, MPO; ↑IL-10, Lgr5+

stem cells, CDX2, MUC2, ZO-1,
villine

Bacillus cereus HMPM18123 (125) DSS-induced
colitis

16S rRNA Lactobacillus, Eubacterium ↓IL-1b, IL-6, TNF-a; ↓TLR4-NF-
kB-NLRP3; M1!M2;
↑IL-10, MUC2, goblet cells, ZO-1,
occludin, claudin-1

Bacillus subtilis (123) DSS-induced
colitis

16S rRNA Bacteroides ↓Ki67; ↑ZO-1, occludin

Bacillus subtilis R179 (124) DSS-induced
colitis

16S rRNA Bifidobacterium sp., Lactobacillus sp. ↓IL-12, IL-17, IL-23; ↑IL-10
(serum); ↑ZO-1, claudin

Probiotic Animal
models

Detection
method

Elevated relevant microbes that may be
involved in gut microbiota-bile acids axis
(genus/species)

Other effects

(Continued)
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microbiota composition. In conclusion, the increased fecal bacteria

that may involve in gut microbiota-BAs axis comprise Blautia,

Bifidobacterium, Lactobacillus, Parabacteroides, Bacillus,

Parabacteroides sp., Bacteroides acidifaciens, Bifidobacterium

pseudolongum, Clostridium XI and Clostridium XVIII at genus/

species level. In addition, other effects containing immune response

after treatment with probiotics in CAC model were also showed

in Table 3.
Frontiers in Immunology 10
3.2 Possible mechanisms of probiotics
on regulating gut microbiota-BAs axis in
IBD/CAC

In the VSL#3-treated mice, the conjugated/unconjugated BAs

ratio decreased, which was relevant to elevated fecal BSH expression

and activity compared to the vehicle group. BSH activity was much

higher after oral take of Lactobacillus acidophilus or Bifidobacterium
TABLE 3 Continued

Probiotic Animal
models

Detection
method

Elevated relevant microbes that
may be involved in gut microbi-
ota-bile acids axis(genus/species)

Other effects

Saccharomyces boulardii CNCMI-745 (126) DSS-induced
colitis

16S rRNA Lactobacillus, Bifidobacterium ↓IL-1b; ↑TGF-b, MUC2/3, ZO-1,
occludin

Saccharomyces cerevisiae BR14 (127) DSS-induced
colitis

16S rRNA Lactobacillus ↓IL-6, TNF-a; ↑IL-10

Lactobacillus fermentum CECT5716, Lactobacillus
salivarius CECT5713 (130)

DSS-induced
colitis

16S rRNA Parabacteroides, Bacillus ↓IL-1b; ↑TGF-b, MUC2/3, ZO-1,
occludin, lactate, acetate,
propionate

Lactobacillus sakei 07 and Bifidobacterium bifidum
B10 (131)

DSS-induced
colitis

16S rRNA Bifidobacterium ↓IL-6, TNF-a, LPS; ↑IL-10, TGF-
b

Bifidobacterium infantis GMCC0460.1, Lactobacillus
acidophilus GMCC0460.2, Enterococcus faecalis
GMCC0460.3 and Bacillus cereus GMCC0460.4 (132)

DSS-induced
colitis

16S rRNA Lactobacillus, Bifidobacterium, and
Bacteroides

↓IL-1b, TNF-a, intestinal
permeability;
↑IL-10, goblet cells, mucus
thickness, ZO-1, occludin

Lactobacillus reuteri RAM0101, Bacillus coagulans
RAM1202, Bifidobacterium longum RAM0216, and
Clostridium butyricum CICC6197 (133)

DSS-induced
colitis

16S rRNA Bifidobacterium, Blautia, Lactobacillus,
Bacillus coagulans

↓IL-1b, IL-6, TNF-a; ↑IL-10,
occludin, claudin-1

Faecalibacterium prausnitzii A2-165 (135) Severe/
Moderate
DNBS-
induced
colitis

qPCR Lactobacillus, Bacteroides/
Lactobacillus

↓IL-6, IL-12, TNF-a, IFN-g; ↑Treg

Ligilactobacillus salivarius Li01 (136) DSS-induced
colitis

16S rRNA Bifidobacterium, Bacteroides ↑IL-10 (plasma)

Pediococcus pentosaceus CECT 8330 (137) DSS-induced
colitis

16S rRNA Lactobacillus, Bifidobacterium ↓IL-1b, IL-6, TNF-a, and↑IL-10
(serum);
↑ZO-1, occludin, Treg, acetate,
propionate, butyrate

Lactiplantibacillus plantarum DMDL 9010 (134) DSS-induced
colitis

16S rRNA Bacteroides, Lactobacillus, Parabacteroides,
Eubacterium_fissicatena_group

↓IL-1b, TNF-a, and↑TGF-b
(serum); ↑propionate, butyrate

Akkermansia muciniphila MucT (138) DSS-induced
colitis

16S rRNA Lactobacillus ↓IL-12A, TNF-a, IFN-g, and↑IL-
10 (colon);
↓IL-1a, IL-6, IL-12A, TNF-a,
MIP-1a, G-CSF, KC, and↑IL-10
(serum); ↑ZO-1, occludin, SCFAs

Extracellular vesicles derived from Lactobacillus
rhamnosus GG (114)

DSS-induced
colitis

16S rRNA Bifidobacterium_animalis ↓IL-1b, IL-2, IL-6, TNF-a;
↓TLR4-NF-kB-NLRP3

Extracellular vesicles derived from Lactobacillus
plantarum Q7 (115)

DSS-induced
colitis

16S rRNA Lactobacillus, Bifidobacterium ↓IL-1b, IL-2, IL-6, TNF-a
IBD, inflammatory bowel disease; TNBS, trinitrobenzene sulfonic acid; DSS, dextran sodium sulfate; DNBS, dinitrobenzene sulfonic; iNOS, inducible nitrogen oxide synthase; COX-2,
cyclooxygenase 2; TNF, tumor necrosis factor; IL, interleukin; RORgt, retinoic acid receptor related orphan receptor gt; Foxp3, forkhead box protein 3; TJP, tight junction protein; Th17, T
helper 17; Treg, regulatory T; ZO-1, zona occludens-1; NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; TLR, Toll-like receptor; MyD88, myeloid differentiation
primary response gene 88; MUC2, mucin2; MPO, myeloperoxidase; p-STAT3, phosphorylated signal transducer and activator of transcription 3; Lgr5, G-protein–coupled receptor 5;
CDX2, caudal type homeo box transcription factor 2; NLRP3, NOD-like receptor pyrin domain–containing protein 3; M, macrophage; TGF-b, transforming growth factor-b; LPS,
lipopolysaccharides; IFN-g, interferon-g; MIP, macrophage inflammatory protein; G-CSF, granulocyte colony-stimulating factor; KC, keratinocyte-derived chemokine; SCFAs, short−chain
fatty acids; qPCR, quantitative real-time polymerase chain reaction; 16S rRNA, 16S ribosomal ribonucleic acid.
↓ means reduced; ↑ means increased.
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infantis than Streptococcus thermophilus (149). Recently, a dual

probiotics system including Lactobacillus delbrueckii subsp.

bulgaricus and LGG was fabricated, and LGG could increase the

abundance of BSH-containing gut bacteria (150). Recently, BSH-

expressing engineerednativeE. coli could reduceprimary conjugated

fecal BAs and increase primary deconjugated BAs, consistent with

increased BSH activity (151). BioPersist, a bioengineered live

biotherapeutic product that enhanced persistence in the colitic

mice could reduce the accumulation of BAs, suggesting that

BioPersist facilitated efficient BA recycling via enterohepatic

circulation or improved homeostasis of gut microbial growth

(152). As a corollary, it is conceivable that probiotics with BSH can

regulate gutmicrobiota-BAs axis through promoting deconjugation.

Simultaneously, they decrease the accumulation of BAs in IBD. Sato

and co-authors found that intestinal microbiota participated in 7a-
dehydroxylation was restored in distal UC patients after 4 weeks of

Clostridium butyricum intervention (153). Therefore, it can be

inferred that probiotics may modulate gut microbiota-BAs axis by

increasing intestinal bacteria involved in deconjugation and 7a-
dehydroxylation over the course of BAs biotransformation. The

possible elevated gut bacteria at the genus/species level after

administration of diverse probiotics were discussed above.

Collectively, after using probiotics in IBD and CAC, Lactobacillus,

Bifidobacterium, Bacteroides, Parabacteroides, Clostridium, Blautia,

Bacillus coagulans, Eubacterium or Eubacterium_fissicatena_group

were increased in IBD, and Blautia, Bifidobacterium, Lactobacillus,

Parabacteroides, Bacillus, Parabacteroides sp., Bacteroides

acidifaciens, Bifidobacterium pseudolongum, Clostridium XI and

XVIII were enhanced in CAC. Moreover, the altered BAs profile,

especially the likely elevated secondary BAs, were able to bring forth

anti-inflammatory and immunomodulatory effects through

activating BARs on intestinal immune cells, as reviewed before. In

addition to thealteredgutmicrobes after administrationofprobiotics

in these studies, other effects including beneficial immune response

were also summarized in the Tables 1–3. Therefore, it could be

speculated that the possible altered BA profiles through the

administration of probiotics might ameliorate IBD/CAC via BAs-

BARs–immune cell axis. However, whether probiotics alone and/or

their elevated gut bacteria exert beneficial impacts ongutmicrobiota-

BAs axis in the state of IBD or CAC need further explorations of

clinical or animal studies. Also, the exact mechanisms are still not

elaborated, which require to be appraised in depth. Lactobacilli and

Bifidobacteria are representatives of the main probiotics,

spontaneously amass primary, and possibly secondary

unconjugated BAs or following intracellular BAs deconjugation in

their cytoplasm (154, 155). Sanchez hypothesized that probiotic

cytoplasm-sequestered primary BAs will escape being transformed

into secondary BAs by other microorganisms. These unconverted

primary BAs would be removed with the feces (156). Hence, this

BAaccumulation mechanism may make a difference to chronic

inflammation (such as IBD) and carcinogenesis (such as CAC).
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by several potential mechanisms, which we mainly focused on

the increased gut bacteria containing BSH or BAI at genus/

species level in IBD and CAC.We could speculate that probiotics

treatment was able to enhance the activity of deconjugation and

7a-dehydroxylation by increasing the BSH- and BAI-containing

bacteria in gut of IBD/CAC. Subsequently, the BAs profile was

changed, which might include decreased conjugated primary

BAs and increased unconjugated primary BAs and secondary

BAs. Moreover, probiotics were possible to contribute to the

absorption of these altered BAs. Afterwards, the absorbed BAs

were likely to generate beneficial effects through activating BARs

on intestinal immune cells, such as monocytes/macrophages

cells, DCs, NKT cells, ILC and T cells. In addition, probiotic

cytoplasm-sequestered primary BAs will escape being

transformed into secondary BAs and then be excreted with the

feces. Ultimately, the IBD may be improved by these

mechanisms after using probiotics (Figure 1).
4 Conclusions

A large number of studies have revealed the interaction

between gut microbiota and BAs. Among them, the intestinal

microbiota is involved in BAs synthesis and metabolism, thus

influencing BAs composition. Both of which can facilitate the

initiation and development of IBD and CAC. Additionally,

growing evidence has indicated that certain probiotics exhibit

beneficial effects on UC, CAC, and other diseases through

multiple mechanisms. In the present review, the possible

functional roles of probiotics on gut microbiota-BAs axis were

discussed. We laid emphasis on elucidating the alterations of gut

bacteria that may involve in gut microbiota-BAs axis in IBD/

CAC patients or animal models treated with probiotics. These

elevated bacteria at the genus/species level may include

Lactobacillus, Bifidobacterium, Bacteroides, Parabacteroides,

Clostridium, Blautia, Bacillus coagulans, Eubacterium, and

Eubacterium_fissicatena_group. Some mentioned bacteria that

may carry some functional genes seem to have the potential to

become probiotic for the moment, but whether they can be used

as probiotics still needs numerous and rigorous animal

researches and clinical trials according to the four criteria for

using as probiotics. Moreover, the activation of BARs, including

FXR, TGR5, VDR in monocytes/macrophages cells, DCs, NKT

cells, ILC, Th17, and Treg cells, exerts anti-inflammatory and

immunomodulatory effects, which may partially explain the

positive effects of probiotics on IBD. According to American

Gastroenterological Association Institute’s advice, probiotics

may be considered for the treatment of functional symptoms

in IBD. The gut dysbiosis existed in IBD may be improved by
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using probiotics for a period of time. Due to the biological

activity and characteristics of probiotics, there are potential risks

in the treatment of IBD patients with probiotics, such as

bacteremia, transfer of antibiotic resistance, and adverse

reactions. Furthermore, the probiotics used for adjunctive

therapy may not be effective in some patients on account of

individual difference or strain specificity, so it should be

discontinued at this time. Therefore, the duration of probiotics

should be determined by different therapeutic goals, effects, and

actual conditions. In the future, more clinical and animal studies

are necessary to explore the direct changes of BAs and specific

mechanisms by administration of probiotics in IBD and CAC.
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FIGURE 1

Possible mechanisms of probiotics on regulating gut microbiota-bile acids axis and related gut immunity in inflammatory bowel disease. Gut
dysbiosis and BAs dysmetabolism existed in IBD has been discovered by many studies, the levels of secondary BAs are lower, primary BAs are
elevated because of the impairment of microbiota biotransformation activities, and the microbial BSH activity and bai genes are decreased. The
administration of probiotics are likely to increase the BSH and BAI containing bacteria in IBD. Therefore, the conjugated/unconjugated primary
BAs ratio decreases and secondary BAs may increase by the elevated activities of deconjugation and 7a-dehydroxylation. Furthermore,
probiotics may reduce the accumulation of BAs by facilitating the absorption of them, which are possible to exert beneficial effects by activating
BARs on intestinal immune cells, such as monocytes/macrophages cells, DCs, NKT cells, ILC, and T cells. Beyond these, probiotic cytoplasm-
sequestered primary BAs may escape being transformed into secondary BAs. These unconverted primary BAs are likely to be removed with the
feces. Eventually, the IBD may be improved by these distinct mechanisms after using probiotics. IBD, inflammatory bowel disease; BAs, bile
acids; TGR5, Takeda G-protein receptor 5; FXR, farnesoid X receptor; RORgt, retinoic acid receptor related orphan receptor gt; DCs, dendritic
cells; NKT, natural killer T; ILC, innate lymphoid cells; Th17, T helper 17; Treg, regulatory T; TNF, tumor necrosis factor; IL, interleukin; IFN-g,
interferon-g; CA, cholic acid; CDCA, chenodeoxycholic acid; GCA, glycocholic acid; TCA, taurocholic acid; GCDCA, glycochenodeoxycholic
acid; TCDCA, taurochenodeoxycholic acid; CYP7A1, cholesterol-7a-hydroxylase; CYP8B1, sterol-12a-hydroxylase; CYP27A1, mitochondrial
sterol-27-hydroxylase; CYP7B1, oxysterol 7a-hydroxylase; BSH, bile salt hydrolase; BAI, bile acid-inducible enzymes; ASBT, apical sodium-
dependent bile acid transporter; OSTa/b, organic solute transporter subunit a/b.
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