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The involvement of the central nervous system (CNS) during human acute and

chronic Chagas disease (CD) has been largely reported. Meningoencephalitis is

a frequent finding during the acute infection, while during chronic phase the

CNS involvement is often accompanied by behavioral and cognitive

impairments. In the same vein, several studies have shown that rodents

infected with Trypanosoma cruzi (T. cruzi) display behavior abnormalities,

accompanied by brain inflammation, in situ production of pro-inflammatory

cytokines and parasitism in diverse cerebral areas, with involvement of

microglia, macrophages, astrocytes, and neurons. However, the mechanisms

used by the parasite to reach the brain remain now largely unknown. Herein we

discuss the evidence unravelling the CNS involvement and complexity of

neuroimmune interactions that take place in acute and chronic CD. Also, we

provide some clues to hypothesize brain infections routes in human and

experimental acute CD following oral infection by T. cruzi, an infection route

that became a major CD related public health issue in Brazil.
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Introduction

Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi (T.

cruzi) and affects approximately 6–8 million people, being endemic in 21 countries from

the south of the United States to southern Argentina and Chile. Migration of infected

people has spread the disease in non-endemic regions in Europe, North America, Asia,

and Oceania (1). In human CD, around 20-30% of chronically infected patients develop

cardiac and/or gastrointestinal damage, with cardiovascular disease-induced early

mortality and loss of productivity. These data illustrate to what extent CD remains a
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public health issue, also providing an economic argument for the

need of urgent efforts towards controlling CD (2, 3).

Transmission of CD was classically described as being

dependent on the insect vector bite. Nowadays, infection

through the oral route had gained attention, while

transmission through an insect bite, placenta, transfusions, and

transplants have been better controlled (4). In the period

between 1968-2000, more than 50% of CD acute cases in the

Brazilian Amazon region were attributable to micro-epidemics

due to orally transmitted infection (5). Moreover, oral infection

outbreaks have been reported in several South American

countries, being associated with T. cruzi presence in food or

beverage consumed by the habitants of endemic regions (6). A

recent epidemiological study of acute CD indicates a total of

5,184 cases recorded with an annual incidence rate of 0.16 per

100,000 habitants/year. This study reported an increased

frequency of oral transmission in acute cases in the North

Brazilian region, from 493 cases in the first period from 2005-

2009 to 1770 cases in the second period 2010-2018, thus

increasing almost 30% in the north of Brazil (7).

The involvement of the CNS during human acute and

chronic phases of CD has been reported. Meningoencephalitis

has been described more frequently in children during the acute

disease, while in the chronic phase neuritis is related to sensory

impairment reported in up to 10% of patients. Dementia,

confusion, chronic encephalopathy, and sensitive and motor

deficits are less frequent. Moreover, experimental infections with

several parasite strains demonstrated behavioral alterations (8–

10). In line with these evidences, HIV and transplant patients,

both immunesuppressed, often show parasite reactivation with

meningoencephalitis and brain abscesses (11). In this regard,

experimental model of oral acute infection cleary showed the

presence of parasite in brain regions a few days after

infection (12).

Herein we will focus on the neuroimmune interactions in

acute and chronic CD, mostly studied following vector infection

route. Moreover, we provide some clues concerning posible CNS

changes in orally transmitted T. cruzi in experimental infections.
Clinical CNS manifestations in
human Chagas disease

The involvement of the CNS during T. cruzi infection in both

acute and chronic phases has been reported decades ago.

Encephalitis may occur during the acute phase, accompanied by

elevated levels of albumin, leukocytes, and trypomastigotes in the

cerebral spinal fluid -CSF- (13). Also, acutely infected patients

manifest difficulty in mental concentration, cephalea, muscular

disturbances (myoclonus, bradykinesia, dyspraxia), weakness,

and speech disturbances (14). Headaches, seizures, lethargy, or

mood changes are probably due to meningoencephalitis, exhibited
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by 5-10% of T. cruzi acutely infected patients (11). This condition

more frequently affects children under 2 years of age and is almost

always fatal when coexists with myocarditis and cardiac

insufficiency (15). Of note, the acute congenital phase may be

associated with seizures and meningoencephalitis in a small

proportion of children (16).

Chronically infected patients with dementia, confusion, as

well as sensorial and motor deficits occur, have been reported.

Additionally, motor deficits associated with neuritis result in

altered tendon reflexes and sensory impairment (11). Decreased

orientation, attention, and cognitive performance (i.e. lower

Mini-Mental State Exam scores) were reported in chronic CD

patients compared with healthy controls. Moreover, lower scores

of the Weschler Memory Scale and the WAIS global test of

Intelligence were associated with chronic CD. The cognitive

dysfunction is compatible with signs characteristic of White

Matter Disease, with impairment in non-verbal reasoning,

information processing, problem-solving and learning (17).

It is noteworthy that CNS is the most frequent site of T. cruzi

reactivation in immunosuppressed HIV-infected patients (18).

Also, the reactivation in this situation is accompanied by brain

tissue damage related to increased IL-17 expression (19), as well

as low peripheral blood CD4 T-cell counts (11). Of note,

meningoencephalitis usually coincides with abundant

trypomastigotes in the CSF (20).

We should also point out that proinflammatory cytokines, as

well as pathogen associated molecular patterns (LPS and poli:IC)

induce depressive behavior (21). Accordingly, during CNS

infection by T. cruzi, macrophages, microglia and astrocytes

can release TNF-a, IL-1b, and nitric oxide -NO- (22, 23), which

seems to be related to neurological alterations observed in CD.

Also, glutamate release is a common result of CNS infection,

being induced by TNF-a and LPS (24). These data should be

placed in the context that glutamate is the most prevalent

excitatory neurotransmitter in the CNS and plays a role in

basic brain capacities, being altered in several psychiatric and

neurological disorders (25).
Changes in the CNS following
experimental T. cruzi infection
correlate with data seen in
patients with Chagas disease

Experimental evidence showed CNS alterations and parasite

presence in the brain after T. cruzi infection, despite the entry

routes (Table 1). Frequently, CNS infection occurs during the

acute infections around the peak of parasitemia, although

parasite load and number of inflammatory foci are more

conspicuos in the basal ganglia when parasitemia is no longer

detectable (32). Interestingly, amastigote nests appear in the

neuropil of a cerebellar gray matter nucleus, in the absence of a
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detectable inflammatory process (28). Actually, diverse brain

regions can be parasitized by T. cruzi. Concurrent to

hypothalamic and pituitary detection of T. cruzi after

infection, several alterations and injury in the hypothalamic–

pituitary–adrenal (HPA) axis were reported, caused either

directly by parasite invasion or indirectly as a consequence of

local and/or systemic inflammation in response to infection (33–

38). Brain regions frequently infected by T. cruzi, beside the ones

described above, are the meninges, cerebral and cerebellar

cortices (28, 29), which leads to meningoencephalitis. Other

less frequently infected regions are the hippocampus (27), as well

as areas without BBB, such as the choroid plexus (29).

Histological studies of T. cruzi-infected rodents showed

injured CNS regions with neuronal loss (31), glial nodules

(due to astrocyte proliferation), edema, and enlargement of

perivascular spaces (27, 31), as well as the appearance of

perivascular and intraparenchymal mononuclear cellular

infiltrates (10, 18, 27–29, 31).

Experimental infections with Colombian andH4T. cruzi strains

also demonstrated behavioral abnormalities, such as sleep and

memory deficits, anxiety, and depression (8–10, 30). In the same

vein, depressive behavior, probably associated with oxidative stress

and enhanced pro-inflammatory cytokines has been recorded in

chronic CD patients [see review by (39)]. Colombian strain-infected

mice showed significant increased immobility and signs of

depression both during the acute and chronic infections.

Interestingly, TNF-a inhibitors (i.e. pentoxifylline or anti-TNF), as

well as the antidepressant fluoxetine, ameliorate depressive-like

alterations in this model (30), suggesting a role for systemically

TNF-a release in T. cruzi-induced depression.

Chronic depressive-like behavior appears to be parasite

strain-dependent, since depression was triggered by the

Colombian but not by the Y strain. Probably the depressive-

like behavior was driven by the increased indoleamine 2,3-

dioxygenase (IDO) expression in the CNS in acute and
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chronic T. cruzi infection (30). IDO is a tryptophan-

catabolizing enzyme, induced by IFN-g and TNF-a in infected

tissues, including the brain. In addition to depression,

chronically infected C57BL/6 mice with the Colombian strain

exhibit anxiety and alterations of motor coordination, not

associated with sickness behavior signs such as temperature

variations or weight loss (9). Other behavioral distubances in

chronically T. cruzi-infected mice may occur whithout

neuroinflammation, including deficits in spatial habituation,

novel object recognition, and aversive memory recall. Of note,

T. cruzi persistence and increased lipid peroxidation in the CNS

hippocampus and cortex were associated with these cognitive

alterations (40). All these data are summarized in Figure 1.

Interestingly, in the brain of patients suffering from depression,

tryptophan depletion by IDO affects serotonin synthesis and low

serotonin levels ocurr, being a possible mechanism related to

depression (41).

T. cruzi “strategies” for CNS invasion

As mentioned above, several studies have shown that T.

cruzi does infect the CNS (12, 26–33). Yet, the mechanisms used

by the parasite to reach brain tissues remain largely unknown.

Successful spread from a point of entry to the CNS, either by

crossing or disrupting the blood brain barrier (BBB) or the

cerebrospinal fluid barrier (BCSFB), involves evasion from both

peripheral and intra-CNS immune responses. The BBB and

BCSFB are selectively permeable to macromolecules and

hydrophilic molecules, due to tight junctions, particularly

prominent in the BBB (42). Moreover, leptomeningeal vessels

as well as CNS regions bearing BCSFB (i.e. choroid plexus and

brain circumventricular organs) are more permeable than

vessels in the parenchyma (43). Additionally, the immune

response in the meninges is stronger than that seen in the

brain parenchyma (42). Also, circulating immune cells,
TABLE 1 Experimental T. cruzi infection models with CNS involvement.

CNS infected regions/cells Rodent
model

T. cruzi strain*
(trypomastigotes)

Infection
route

References

Brain C3H/HeJ mice Tulahuen Subcutaneous (26)

Meningoencephalitis, Choroid plexus, Hippocampus C3H/HeJ mice Colombian Intraperitoneal (27)

Meninges, Cerebral cortex Swiss mice Colombian Intraperitoneal (10)

Gray and white matter in cerebral and cerebellar cortices, Astrocytes Holtzman rats Y, CL, PNM Intraperitoneal (28)

Meningoencephalitis, Leptomeninges, Parenchyma, Choroid plexus,
Cerebellum

C57BL/6 mice Colombian Intraperitoneal (29)

Olfactory bulb, Pituitary gland BALB/c mice Dm28c Oral (12)

Parenchyma, Hippocampus, Cerebellum, Astrocytes, Microglia C3H/HeJ mice
C57BL/6 mice

Colombian Intraperitoneal (30)

Hypothalamus Wistar rats Y Intraperitoneal (31)

Basal ganglia, Cortex Cerebellum C57BL/6 mice Tulahuen Intranasal (32)

Pituitary gland BALB/c mice Colombian Intraperitoneal (33)
fr
*Corresponding T. cruzi discrete typing units (DTUs): DTU-I: Colombian, Dm28c, Tulahuen; DTU-II: SC2005, Y; DTU-VI: CL.
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including monocytes, T cells, and macrophages, increase their

passage through the brain endothelial cells (BEC) when

activated; a process mediated by astrocyte-released cytokines

and chemokines, which induce the expression of BEC adhesion

molecules in response to infection (44).

In T. cruzi infected newborn rats, parasites were detected at the

peak of parasitemia inside glial cells, near neuronal somas,

capillaries, and venules in the cerebral and cerebellar cortices and

the thalamic subcortical nuclei (28). This parasite localization

suggests a possible invasion through the BBB vessels, as for

example, by the BBB endothelial junction’s impairment mediated

by bradykinin, as occurs in cerebral malaria (45). It is known that

parasite-derived cruzipain cleaves plasma kininogens into

bradykinin, which activates the endothelial bradykinin-B2

receptors and protein-G immune pathway (46). As shown in

vitro, it is conceivable that T. cruzi migrates through a

paracellular way across BECs without monolayer disruption,

mediated by bradykinin and CCL2 gradient (47).

Increment in plasma TNF-a levels or CNS Tnf mRNA

expression during murine T. cruzi acute infection has been

reported. For instance, orally T. cruzi infected mice present

higher parasitemia, mortality rates, and TNF-a serum levels (48,
Frontiers in Immunology 04
49). Interestingly, Trypanosoma brucei (T. brucei), which is

another trypanosomatid parasite, crosses the disrupted BCSFB

mediated by TNF-a overexpression in the choroid plexus and

circumventricular organs during infection in rodents (50).

Actually, T. brucei requires the TLR-MyD88 signal mediation

to penetrate the brain and generate microglial activation (51).

An increase in metalloproteinases (MMPs) is another inductor

factor of BBB dysfunction, as reported in T. brucei CNS infection in

mice (52). MMPs cleave specific collagen types in the basement

membranes and degrade endothelial tight junctions, improving the

parasite invasion through the BBB (53). Although the activation of

the TLR-MyD88 pathway has not been reported in CNS infection

by T. cruzi, it is a plausible scenario.

Several areas with BCSFB, as the choroid plexus and

hippocampus, presented mild to intense inflammatory

infiltrates during experimental acute and chronic T. cruzi

infection (27, 29). Moreover, amastigote nests were seen in the

region between the cerebellum and the spinal cord (cerebellar

neuropil) (28), and below the pia mater in the ependymal cells

that form the glia limitans at the brain surfaces (10). These

findings indicate that T. cruzi can cross the endothelium of the

leptomeningeal venules in the subarachnoid space, traverse the
FIGURE 1

Consequences of experimental T. cruzi infection upon the Central Nervous System and respective involved regions. The presence of the
parasite in these regions can cause lipid peroxidation as well as neuroinflammation with release of inflammatory mediators, glial dysfunction and
neural damage. Secretion of proinflammatory cytokine triggers behavioural and congnitive changes with deficits in sleep and memory, as well as
symptoms of anxiety and depression. Olfactory Bulb (OB), Frontal Cortex (FC), Meninges (M), Basal Ganglia (BG), Hippocampus (HC),
Hypothalamus (HT), Cerebellum (CR). Neurotrophin receptors (TRKA/C). Created with BioRender.com.
frontiersin.org
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pia mater till the glia limitans, and gain access to the brain

parenchyma. The infection of the glia limitans may explain some

reports of cerebellar T. cruzi infection (28, 32) as there is a glia-

cerebellum neural connection.
Invasion of neural cells by T. cruzi

The neurovascular unit (NVU) comprises BBB-endothelial cells,

pericytes, astrocytes, glia, neurons and the extracellular matrix

(ECM); all being involved in regulating cerebral blood flow and

BBB function. Therefore, any dysregulation of NVU components

should alter brain homeostasis, leading to disease (54). In this way,

experimental studies have shown that T. cruzi infects microglia,

macrophages, astrocytes, and neurons (30, 55, 56). Furthermore, in

CD patients, the parasite was found in microglia, endothelial cells,

and macrophages (18). Also, histological and in vitro evidence of T.

cruzi parasitism revealed high frequency of parasite nests without

surrounding membrane in non-glial cells and parasites in astrocyte

processes among Purkinje cerebellar cell bodies (28, 49).

Interestingly, astrocytes seem incapable to control T. cruzi by

the secretion of IL-1b and NO, turning them more permissive to

parasite replication than microglial cells (57). In addition, astrocytic

processes surrounding the CNS vessels may facilitate parasite

invasion, especially in the gray matter where capillary density is

higher than in the white matter (28). Some biological processes have

been described during CNS T. cruzi infection, which could promote

parasite replication and tissue damage through the ligation between

the parasite-derived trans-sialidase (TS) and the neurotrophin

receptors TrkA and TrkC (55, 58), which are commonly

upregulated during CNS injury, infections, or degenerative

diseases. These interactions facilitate parasite adherence and

efficient invasion of neuronal, epithelial, and phagocytic cells in

vitro and in vivo (59); also activating MAP kinase (MAPK) and

phosphatidylinositol 3-kinase/Akt signaling pathways, as seen in

infected PC12 cell line, an established model of neuronal

differentiation (60).

Lastly, systemic or in situ pro-inflammatory cytokine release

can promote T. cruzi invasion. In vitro and in vivo experiments

showed that IFN-g-expressing glial cells as well as TNF-a levels

correlate with astrocyte invasion (49, 56). Also, parasite infection

drives astrocytes to a pro-inflammatory profile with enhanced IL-6

and TNF-a production and TNFR1 expression, potentially favoring

TNF signaling (49). This suggests a self-sustaining inflammatory

loop creating a favorable environment for parasitic replication.
Oral T. cruzi infection: Possible
dissemination routes after oral
mucosa epithelium traversing

The oral infection in humans is characterized by more severe

manifestations than those associated with vectorial transmission:
Frontiers in Immunology 05
prolonged fever, acute myocarditis, heart failure, and

meningoencephalitis (61). At least in Brazil, acute human CD

occurs after oral infection, with a potential higher inoculum in

patients infected by the oral route, as compared to those infected

by the vectorial route (61). Importantly, the presence of T. cruzi

in various tissues located in the anatomical pathway between the

oral mucosa and the CNS has been reported (12, 32, 62).

Therefore, in principle, after invading the oral mucosa,

parasites might migrate to the blood and/or lymphatic fluids

from the submucosa, through the palate and tissues of the nasal

cavity. These data unravel the existence of multiple interactions

between the T. cruzi and the diverse anatomical regions of the

oral mucosa (12).

We found that some soft regions of the oral cavity and

underlying tissues are invaded by T. cruzi in orally infected mice,

including the cheek muscle, salivary glands, and submandibular

lymph nodes (12). Hypothetically, the lymph node invasion

occurs by drainage of infected tissues, implying a route of

infection towards more distant tissues such as the heart, liver

and spleen following the drainage route.

We also found that the naso-maxillary region, nasal cavities,

and subjacent tissues are invaded by T. cruzi in orally infected

mice. T. cruzi DNA was also observed in brain tissues after oral

infection (12), suggesting that the parasite could reach the brain

via invasion of the olfactory nerve and later the olfactory bulb.

Corroborating this idea, intranasally T. cruzi infected mice

showed infection of several brain regions (32), indicating that

the oral cavity and the adjacent nasal compartment invasion

represent a putative anatomical route for parasite spreading to

the brain.

Active T. cruzi penetration into the host cell involves first a

step of adhesion for later penetration of cells. ECM proteins could

be relevant players in early oral mucosal infection. In humans, the

major basement membrane components of palatal mucosa are

laminin, type IV collagen, and fibronectin (63). Similarly, T. cruzi

can take advantage of ECM to invade CNS tissues. For instance,

fibronectin is present in the meninges and the choroid plexus (27),

and together with laminin, composes the blood brain barrier

(BBB) related basal lamina surrounding the cerebral endothelial

cells (53). Actually, several T. cruzi target molecules are ECM

components of the oral mucosa and the CNS. T. cruzi-derived

peptidases, like the Tc80 oligopeptidase B, hydrolyses human

type-I and type-IV collagens, as well as fibronectin, which is

important for the parasite transit through the ECM (64). Similarly,

Tc85 is capable of binding host cell derived molecules, such as

fibronectin, laminin and heparin (64). Also, parasite penetrin has

affinity for ECM elements such as heparin, heparan sulfate

proteoglicans (HSPGs), and collagen, promoting fibroblast

adhesion and penetration (65), suggesting a role of T. cruzi

penetrin and neuronal tissue alterations.

Other molecular group includes the parasite-derived TS

family. Inactive forms function as parasite adhesins, binding to

sialic acid and b-galactose residues, whereas active TSs transfer
frontiersin.org
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sialic acid from host glycoconjugates to acceptor molecules on

the parasite surface, regulating the process of cell adhesion,

migration, and invasion (66). Strikingly, the expression of

active TSs during the trypomastigote life cycle stage seems to

favor the epithelial cell invasion (67). Considering that epithelial

cells from the oral cavity are enriched in sialic acid, it is

conceivable that T. cruzi takes advance of sialoglycoproteins,

invading the cavity and evade host defense. Interestingly, TSs

have also neuraminidase activity and can interact with

neurotrophin receptors TrkA and TrkC, promoting both

invasion and survival of neurons and glial cells (58, 59).

Whichever route is used to spread from the oral cavity,

parasites can ultimately disseminate, crossing the endothelium

of both blood and lymphatic vessels, the oral epithelium at

different location and the blood-brain barrier (BBB) to invade

the brain, as schematically depicted in Figure 2.
Frontiers in Immunology 06
Conclusions and remaining
questions

The data summarized herein clearly show the CNS

commitment in acute and chronic CD. Different cell types in

the brain can be infected by T. cruzi, including neurons, astrocytes

and microglia. Also, various regions of the CNS can be affected,

such as choroid plexus, hippocampus, meninges, olfactory bulb,

pituitary gland, among others. The cellular mechanisms involved

in T. cruzi infection in the central nervours tissues has also been

largely documented, comprising both parasite-derived and host-

derived moieties; among others ECM ligands such as fibronectin,

laminin and glycosaminoglycans (summarized in Table 2).

The possibility of T. cruzi CNS invasion after oral ingestion

raises a series of questions that still need to be answered. Which

ligands and/or mechanisms does the parasite use to cross the
B

C

D

A

FIGURE 2

Strategies that T. cruzi may use for reaching and invading the Central Nervous System and possible dissemination following oral cavity (OC)
infection. The figure stands for murine experimental oral infection. Accordingly, after delivering the parasites into de oral cavity, they may take
the following pathway(s): 1) olfactory way (A, dotted arrow), traversing the palate (P), nasopharyngeal cavity (NFC), respiratory and olfactory
epithelia (RE, OE) reaching the olfactory bulb (OB); 2) disrupture of the blood brain barrier (BBB) in the parenchyma (B) or in the meninges (C);
3) disrupture of the cerebrospinal fluid barrier (BCSFB) in the choroid plexus (D); 4) invasion of the submandibular lymph node (SLN) by drainage
of infected tissues (green dashed arrow). Tongue (T). Created with BioRender.com.
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mucosa and reach the brain tissue? Can the immune system

adequately respond to parasite infection in the mucosa and

brain? Are there differences regarding CNS commitment after

oral infection compared to those caused by reactivation due to

immunosuppression? Which brain areas and functions are

mostly affected after infection? Which are the systemic

consequences due to CNS infection by the oral route?

Addressing these issues will provide new clues that may allow

earlier diagnosis and treatment for oral Chagas Disease.
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TABLE 2 Molecular interactions between T. cruzi and host molecules.

T. cruzi-derived
protein

Interacting host protein Function Interacting protein expression in
the human mucosa/CNS

References

Glycosylphopsphatidyl-
inositol (GPI) molecules

TLR2 Calcium signaling activation -
Infection

Human epithelial cells of oral-nasal cavities (68)

Glycoinositolphospholipid
(GIPL) molecules

TLR4 Calcium signaling activation -
Infection

Epithelial cells of oral-nasal cavities (68)

gp82, gp35/50, gp30, and
gp90 (GPI)

Gastric mucin Calcium signaling activation -
Infection

Gastric epithelial cells (69)

Cruzipain Kininogen Calcium signaling activation –

Infection
CNS (46)

TGF-b-like molecule TGF-b receptor Attachment - Infection Glia, neuron (70)

b-galactose glycoconjugates Galectin 3 Attachment - Infection Oral epithelial cells; Brain macrophage/
microglia

(64, 71, 72)

Trans-sialidase TRKA Infection Neurons, dendritic cells, astrocytes and
microglia

(60)

Trans-sialidase TRKC Infection Neurons, dendritic cells (58)

Tc85 Cytokeratin 18 - Laminin Adhesion - infection Oral mucosa; Oral palate; Blood brain barrier (53, 63, 73)

Penetrin Heparan sulfateproteoglycan (HSPG) Adhesion - infection CNS (74)

T. cruzi DNA TLR9 Immunostimulation Oral epitelial cells and tongue (68, 75)

Tc80 (Oligopeptidase B) Heparin G proteins - Fibronectin -
Human type I and IV collagen

Calcium signaling activation –

infection Parasite transit
Human brain microvascular endothelial

cells
(63)
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hipotálamo. Arq Neuropsiquiatr (1971) 29:190–7. doi: 10.1590/S0004-
282X1971000200007

32. Caradonna K, Pereira-Perrin M. Preferential brain homing following
intranasal administration of Trypanosoma cruzi. Infection Immun (2009)
77:1349–56. doi: 10.1128/IAI.01434-08
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