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Regulatory T-cells-related
signature for identifying a
prognostic subtype of
hepatocellular carcinoma
with an exhausted tumor
microenvironment

Genhao Zhang*

Department of Blood transfusion, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Regulatory T-Cells (Tregs) are important in the progression of hepatocellular

cancer (HCC). The goal of this work was to look into Tregs-related genes and

develop a Tregs-related prognostic model. We used the weighted gene co-

expression network analysis (WGCNA) to look for Tregs-related genes in the

TCGA, ICGC, and GSE14520 cohorts and then used the non-negative matrix

factorization (NMF) algorithm to find Tregs-related subpopulations. The

LASSO-Cox regression approach was used to determine Tregs-related

genes, which were then condensed into a risk score. A total of 153

overlapping genes among the three cohorts were considered Tregs-related

genes. Based on these genes, two Tregs-associated clusters that varied in both

prognostic and biological characteristics were identified. When compared with

Cluster 1, Cluster 2 was a TME-exhausted HCC subpopulation with substantial

immune cell infiltration but a poor prognosis. Five Tregs-related genes

including HMOX1, MMP9, CTSC, SDC3, and TNFRSF11B were finally used to

construct a prognostic model, which could accurately predict the prognosis of

HCC patients in the three datasets. Patients in the high-risk scores group with

bad survival outcomes were replete with immune/inflammatory responses, but

exhausted T cells and elevated PD-1 and PD-L1 expression. The results of qRT-

PCR and immunohistochemical staining (IHC) analysis in clinical tissue samples

confirmed the above findings. Moreover, the signature also accurately

predicted anti-PD-L1 antibody responses in the IMvigor210 dataset. Finally,

HMOX1,MMP9, and TNFRSF11B were expressed differently in Hep3B and Huh7

cells after being treated with a PD1/PD-L1 inhibitor. In conclusion, our study

uncovered a Tregs-related prognostic model that could identify TME-

exhausted subpopulations and revealed that PD1/PD-L1 inhibitors could alter

the expression levels of HMOX1, MMP9, and TNFRSF11B in Hep3B and Huh7

cells, which might help us better understand Tregs infiltration and develop

personalized immunotherapy treatments for HCC patients.
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Introduction

Chronic liver inflammation caused by HBV or HCV

infection, alcoholism, or nonalcoholic fatty liver disease

(NAFLD) can result in an aberrant concentration of immune

cells in tumors and adjacent tissues, including T lymphocytes,

macrophages, and dendritic cells (1). These immune cells,

together with other non-immune components (fibroblasts,

extracellular matrix), comprise the tumor microenvironment

(TME) surrounding cancer cells (2). The dynamic interaction

between cancer cells and TME can disrupt tumor cells’ immune

surveillance, accelerate tumor cell proliferation, clonal evolution,

immune evasion, and treatment resistance, and play a key role in

tumor genesis and progression (3). TME potentially causes tissue

remodeling and functional impairment by generating local

hypoxia in tumor tissue and ultimately promoting tumor

metastasis (4). In addition, TME can impact the delivery of

anticancer medications to the tumor location by interacting with

mesenchymal stem cells (5). CD4+CD25+FoxP3+ T regulatory

lymphocytes (Tregs), as an important heterogeneous T cell

subset, have been identified to participate in the development

of HCC by promoting immune tolerance (6). Treg cells are

abundant in tumors and can make up 10 to 50 percent of the

CD4+ T cells there (7). Notably, the proportion of Treg cells in

the peripheral blood did not match the density of Treg cells in

the TME, indicating that the study of the function of Treg cells in

the TME is more crucial in the field of cancer immunology.

Depletion of T-reg cells encourages the growth of high

endothelial venules, which are crucial for lymphocyte

recruitment (8). Tregs can block cytotoxic CD8+ T

lymphocytes (CTLs) cytotoxic and proliferative capabilities, aid

in the creation of an immunosuppressive TME, and are linked to

the advancement of HCC (9), while CD8+ T cells specific for

neoantigens are more resistant to Treg cell-mediated immune

suppression (10). Crosstalk between Tregs and neutrophil

extracellular traps promotes the transition of NAFLD to HCC

(11). TGFb-activated stromal cells reduce the recruitment of

Tregs in TME, thereby regulating the balance between anti-

tumor and pro-tumor immune cells (12). High Tregs infiltration

is also linked to poor outcomes and recurrence in HCC patients

(13, 14). In recent years, immunotherapy using immune

checkpoint inhibitors (ICIs), such as anti-PD1 antibody

nivolumab and anti-PD-L1 agents atezolizumab, has shown

strong antitumor activity in a subset of HCC patients by

blocking the interaction of PD1 with its ligands, thereby

preventing exhaustion or dysfunction of effector T cells (15).

Interestingly, there is a close and complex relationship

between Tregs infiltration and PD1 expression. Tregs

expressing PD1 in the TME can impact immunosuppressive

function and are associated with progression in cancer patients

(16). PD1 blockade induces enhanced PD1+ Tregs-mediated
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immunosuppression (17). In addition, Lenvatinib can improve

anti-PD1 effectiveness by reducing tumor PD-L1 levels and

Tregs differentiation (18). Therefore, exploring them more

deeply can help us gain a deeper understanding of the

complex mechanisms of the TME in HCC development, and

help clinicians to formulate strategies for the use of ICIs in

cancer treatment.

Given the difficulty in collecting enough tumor tissue for

tumor-infiltrating lymphocyte (TIL) assay analysis by flow

cytometry (FCM) and the fact that crosstalk between Tregs

and cancer is a complex process involving multiple genes, we

built and validated a prognostic stratification model based on

Tregs-related genes in public datasets that could be used to

efficiently categorize HCC patients prognostically and predict

their response to anti-PD-L1 immunotherapy.
Materials and methods

Acquisition of public datasets and clinical
sample processing

Transcriptome expression data from HCC patients were

gathered from three public databases, including the TCGA-

LIHC (2022.04), the ICGC (LIRI-JP, 2019.11), and the

GSE14520 (2010.12) cohorts. The clinical characteristics of

HCC patients in the three cohorts were displayed in Table S1.

Patients with incomplete survival data or who lived for less

than one month were eliminated from the study. Clinically

verified samples for qRT-PCR research were fresh frozen

tumor biopsies and their surrounding normal tissues from 20

previously collected HCC patients. The primer sequences are

shown in Table S2. Zhengzhou University’s Ethics Committees

gave its approval to this work. Written informed consent

was taken.
Estimation of immune cell infiltration and
TME scores

The relative abundance of 28 immune cell subtypes in the

three datasets was assessed by the ssGSEA algorithm, and the

immune cell abundance identifier (ImmuCellAI, 2020.02) was

further utilized to specifically assess the abundance of

comprehensive T cell subsets (19). ESTIMATE algorithm was

used to calculate stromal and immunological scores in tumor

tissue based on gene expression patterns of HCC samples to

determine the quantity of stromal and immune cells inside the

tumor (20). Immunohistochemical staining (IHC) was

performed to explore the infiltration of Tregs and CD8+ T

cells in HCC tissues. Two competent pathologists performed
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IHC findings assessment using a single-blind and uniform

standard procedure.
Tregs-related genes identification by the
weighted gene co-expression
network analysis

The WGCNA was used to create a scale-free co-expression

network based on transcriptome expression data from the three

datasets to find the gene modules most relevant for Tregs

infiltration abundance. Standard deviation (SD > 50%) was

used to screen for highly variable genes. Module membership

represented the link between module characteristic genes and

gene expression patterns, whereas gene significance (GS) was

utilized to assess the relationship between individual genes and

Tregs infiltration abundance. The genes identified from the

modules most linked with Tregs infiltration abundance were

appraised as candidate genes using a p-value threshold of GS <

0.0001 and a significance level of univariate Cox regression of p <

0.01. The overlapping genes of the candidate genes in the three

datasets were finally confirmed as Tregs-related genes and used

for subsequent analysis.
Identification of prognostic molecular
subtypes by the non-negative matrix
factorization algorithm

Based on the Tregs-related genes obtained above, patients

were clustered using the NMF algorithm, the standard was

“brunet”, and the iterations were 50 times. The number of

clusters varies from 2 to 6, and the optimal number of clusters

is determined based on cophenetic, dispersion, and contour.

Kaplan-Meier survival analyses were further performed to assess

differences in patients’ survival rates between different subtypes.
DEG identification and functional
enrichment analysis

Gene Expression Profile Interaction Analysis (GEPIA,

2017.07) (21) (http://gepia.cancer-pku.cn/) was used to

investigate the expression levels of Tregs-related genes, and

genes with statistically significant differences were defined as

differentially expressed genes (DEGs) with a P-value < 0.05 and a

|log2FC| cutoff criterion of ≥0.5. The Metascape database (22)

(http://metascape.org/, 2019.04) was then used to investigate the

functional annotation of DEGs for GO and KEGG pathway

analysis. With a significant threshold of |normalized enrichment

score|>1 and a nominal p-value of < 0.05, Gene set enrichment

analysis (GSEA) was used to investigate changes in Hallmarks.
Frontiers in Immunology 03
Formation and validation of Tregs-
related prognostic risk scoring model

The correlation between Tregs-related genes and HCC

patient survival outcomes was calculated using univariate Cox

regression with a P-value < 0.01. The Tregs-related genes with

prognostic significance were then investigated using the LASSO-

Cox regression technique and a classifier linked with prognosis

was established. The multivariate Cox relapse coefficient (b) was
used to create a risk score based on the concept of directly

mixing the equation below with the mRNA expression level. The

risk score = ∑iCoefficient (mRNAi)*Expression (mRNAi). Due

to the optimal hazard score edge, we divided the HCC patients

into two categories. ROC analysis, Kaplan-Meier survival

analysis, and cox relative risks relapse investigation were used

to assess the prognostic signature’s predictive autonomy. The

ICGC and GSE14520 datasets were used as validation cohorts

for validating our constructed Tregs-related signature.
Genetic alterations and drug
susceptibility analysis

The R package “maftools” was used to assess the differences

in genetic variations between various subgroups using the

mutation and CNA data of 342 HCC patients acquired from

the TCGA dataset. The association between anticancer drug

sensitivity and mRNA molecules in our risk model was directly

explored in the CellMiner database (2012.07) (23) with cutoff

criteria of adjusted P-values <0.001 and Pearson’s correlation

coefficients >0.4.
Immunohistochemistry staining analysis

The paraffin samples were cut into 4 mm slides and

soaked for the identification of Tregs and CD8+ T cells. The

tissue fragments were progressively hydrated in graded

alcohol after being deparaffinized in xylene. By heating 0.01

mol/L citrate buffer in a steam cooker for 10 minutes, antigen

retrieval was accomplished. To suppress endogenous

peroxidase activity, slides were washed with PBS and then

incubated for 20 minutes at 37°C with a 0.3 percent H2O2

solution. Slides were then blocked with bovine serum albumin

(BSA), and continuously incubated with anti-FOXP3 and

CD8 antibodies overnight at 4°C, respectively. After being

washed with PBS, slides were continuously incubated with

secondary antibodies coupled to horseradish peroxidase

(HRP) for 30 minutes. Utilizing HRP’s routine substrate

detection, immune complexes were found. Slides were then

dehydrated in graded alcohols and xylene after being stained

with hematoxylin.
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Cell culture and PD1/PD-L1
inhibitor treatment

Hep3B and Huh7 cells from the Cell Bank of the Shanghai

Institute of Cell Research, Chinese Academy of Sciences

(Shanghai, China) were cultured in the suggested DMEM

medium (Sangon Biotech, China) containing 10% fetal bovine

serum (FBS, Sangon Biotech, Shanghai, China) at 100%

humidity, 37°C, and 5% CO2. Cells were incubated for 4 hours

at room temperature in the DMEM medium containing 4 mg/

mL PD1/PD-L1 inhibitor (Abcam, ab230369, UK) for PD1/PD-

L1 blockade.
Statistical analysis

Categorical data were compared using Pearson’s chi-square

test or Fisher’s exact test when appropriate, and quantitative data

between two groups were compared using the t-test. The

examination of data from three or more groups was done

using a one-way analysis of variance (ANOVA). R software

(Version 4.0.3) was used to analyze the prediction performance

of survival outcomes using receiver operating characteristic

(ROC) curve analysis and Kaplan-Meier survival analysis. The

association between a prognostic classifier and survival

outcomes was investigated using a Cox proportional model.

When the P-value < 0.05, the results were considered statistically

significant. The flowchart of this study is shown in Figure S1.
Results

Identification genes associated with
Tregs infiltration

After removing outliers (Figure S2), 9, 11, and 17 non-grey

modules were created in the three datasets, respectively,

according to the results of WGCNA (Figure 1A). As shown in

Figures 1B, C, the yellow module was the most significantly

related to Tregs infiltration in the TCGA cohort (R2 = 0.82, P =

2e−53), and the yellow module was the most significantly related

to Tregs infiltration in the ICGC cohort (R2 = 0.83, P = 2e−51),

and the brown module was the most significantly related to

Tregs infiltration in the GSE14520 cohort (R2 = 0.95, P = 2e−70),

respectively. 153 overlapping genes among the three cohorts

were identified as Tregs-related genes (Figure 1D). The

biological importance of these Tregs-related genes was mainly

enriched in the immune-inflammatory response and regulation

of lymphocytes (Figure 1E). When expression in normal tissues

was considered, out of 153 genes, only 16 were identified as

differentially expressed genes (DEGs) (Figure S3A). Then, a PPI

network was performed to explore the potential interactions
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between these DEGs (Figure S3B), and the biological importance

of these Tregs-related DEGs was mainly enriched in Cytokine

signaling and regulation of leukocytes (Figure S3C).
Identification of prognostic
molecular subtypes

To further explore the mechanism of these 153 Tregs-related

genes in HCC, the NMF algorithm was performed. Due to the

cophenetic, dispersion, and profile (Figure S4), number two was

identified as the optimal number of clusters (Figure 2A). Patients

in Cluster 2 had better survival outcomes when compared with

patients in Cluster 1 (Figure 2B). Subsequently, we found that the

mutation rates of mutated genes in the two subgroups were also

significantly different. The most commonly mutated gene in the

Cluster 1 was CTNNB1 (29%, Figure 2C), while it was TP53 (34%,

Figure 2D) in Cluster 2. After the tumor mutation burden (TMB)

was estimated, patients in Cluster 1 had a higher TMB value,

compared with patients in Cluster 2 (Figure 2E). Finally, we found

that patients in Cluster 2 with high TMB values had the worst

survival outcomes when compared with others (Figure 2F).
Patients in Cluster 2 had an exhausted
immune microenvironment

Patients in Cluster 2 had higher immune, stromal, and

ESTIMATE scores compared with patients in Cluster 1, as

shown in Figure 3A. According to the ssGSEA algorithm,

almost all types of immune cells were higher in Cluster 2 than

those in Cluster 1 except for CD56bright natural killer cell,

CD56dim natural killer cell, eosinophil, neutrophil, and Type 17

T helper cell (Figure 3B). Interestingly, we found that patients in

Cluster 2 had poor survival outcomes but a higher abundance of

CD8+ T cells infiltration. Considering that decreased infiltration

levels of CD8+ T cells were often associated with poor survival

rates, therefore, we assumed that these CD8+ T cells in Cluster 2

were exhausted T cells. To test this conjecture, we then analyzed

genes involved in immune/inflammatory responses, including

CD8A, GZMB, IFNG, TBX2, and TNF, and found that these

genes were significantly up-regulated in Cluster 2 (Figure 4A).

We also found that the expression of PD1, a marker of exhausted

T cells, was also significantly up-regulated in Cluster 2 (Figure

4B), as was the expression level of PD-L1 (Figure 4C). In

addition, exhausted T cells were significantly enriched in

Cluster 2, according to the results of ImmuCellAI analysis

(Figure 4D). Finally, the GSEA results indicated that Cluster 1

displayed an attenuated IFN-g response (Figure 4E), which can

directly increase PD-L1 expression and activate the PD-1/PD-L1

signaling axis. Together, the aforementioned findings showed

that Cluster 2 had a robust immunological and inflammatory

response, but the elevated PD1 and PD-L1 in this group might
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A

B

D E

C

FIGURE 1

WGCNA for Tregs-related genes. (A) The coexpression network was established in the TCGA, the GSE14520, and the ICGC cohorts. (B)
Heatmap demonstrating the correlation between module eigengenes and Tregs. (C) Determination of modules most significantly associated
with Tregs infiltration. (D) 153 overlapping genes among the three cohorts were identified as Tregs-related genes. (E) The biological importance
of these Tregs-related genes was mainly enriched in the immune-inflammatory response and regulation of lymphocytes.
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result in an exhausted TME and eventually have a negative

impact on the survival of HCC patients.
Formation of Tregs-related prognostic
signature in HCC

Among the 153 overlapping genes in the three cohorts

obtained by WGCNA, 15 prognosis-associated genes were

identified by univariate Cox regression with a p-value less

than 0.01 (Figure 5A). These genes were then selected by

using the LASSO-Cox regression model based on the minimum

value of l (Figure 5B). Five genes including HMOX1, MMP9,

CTSC, SDC3, and TNFRSF11B were screened out and

were then put into a multivariate Cox proportional model,

andfinally, a prognostic Tregs-related signature was formatted.

Risk score = (0.16468758×HMOX1) + (0.04918601×MMP9) +

( 0 . 1 6 5 9 2 3 6 5 × C T S C ) + ( 0 . 0 6 0 1 7 5 3 8 × S D C 3 ) +

(0.09164677×TNFRSF11B). Patients were divided into high- or

low-risk scores subgroups with the median of scores after patients’

risk scores were calculated with the above formula (Figure 5C).

We found that patients with lower risk scores were remarkably
Frontiers in Immunology 06
relevant to better survival outcomes (Figure 5D) and this Tregs-

related signature had a good prognostic performance with AUCs

at 1-, 3-, 5-year of 0.698, 0.643, 0.680 (Figure 5E). In addition,

patients in Cluster 2 had higher risk scores compared with

patients in Cluster 1, as shown in Figure 5F. Finally, after

controlling for other clinical parameters, this Tregs-related

signature might be used as an independent predictive factor for

HCC patients (HR=2.566, 95 percent CI 1.4401 -4.5742, P =

0.0013). Only MMP9 and CSTC were significantly correlated with

overall survival rates, despite the five Tregs-associated gene

expression levels in the GEPIA database varied between normal

and malignant tissues (Figure S5). Additionally, the five Tregs-

related genes’ protein expression in both normal and HCC was

examined in the Human Protein Atlas database (24) (HPA, www.

proteinatlas.org), as shown in Figure S6.
Functional enrichment and genetic
alterations analysis

GSEA analysis revealed that the immunological response,

controlling lymphocyte activity, and production and metabolism
A B

D E F

C

FIGURE 2

Identification of prognostic molecular subtypes by the NMF algorithm. (A) Number two was identified as the optimal number of clusters. (B)
Patients in Cluster 2 had better survival outcomes when compared with patients in Cluster 1. (C, D) The mutation rates of mutated genes in the
two subgroups. (E) Patients in Cluster 1 had a higher TMB value, compared with patients in Cluster 2. (F) Patients in Cluster 2 with high TMB
values had the worst survival outcomes when compared with others.
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of cytokines were the three primary areas of changed GO and

KEGG items between high- and low-risk score groups (Figure

S7). We next discovered that the two subgroups had dramatically

differing mutation rates for the affected genes. TP53 (40%) and

CTNNB1 (30%) were the most frequently altered genes in the

groups with high and low risk scores, respectively (Figure S8A).

Finally, we discovered that patients with high TMB levels who

had high risk scores had the lowest survival rates (Figure S8B).
Verification of the Tregs-related
signature in external cohorts

The ICGC and GSE14520 datasets were used as validation

cohorts to verify this Tregs-related signature. In the ICGC

cohort (Figure 6A) and GSE14520 cohort (Figure 6E), patients’

risk scores were computed using the same formula, and patients

were then split into high- or low-risk categories. No matter

whether we looked at the ICGC cohort (Figure 6B) or the

GSE14520 cohort (Figure 6F), we discovered that patients in
Frontiers in Immunology 07
the later TNM stage had greater risk ratings than patients in the

early stage. Additionally, both in the ICGC cohort (Figure 6C)

and the GSE14520 cohort (Figure 6G), patients with lower risk

scores were strongly associated with higher OS rates. ROC

analysis showed that this Tregs-related signature had a good

prognostic performance with AUCs at 1-, 2-, 3-year of 0.650,

0.591, 0.629 in the ICGC cohort (Figure 6D) and at 1-, 3-, 5-year

of 0.620, 0.631, 0.673 in the GSE14520 cohort (Figure 6H),

respectively. Finally, after controlling for other clinical

parameters, this Tregs-related signature might be used as an

independent predictive factor for HCC patients in the GSE14520

cohort (HR=1.608, 95%CI 1.006-2.569, P = 0.046) but not in the

ICGC cohort, which may be related to tumor heterogeneity.
Patients in the high-risk score group had
an exhausted immune microenvironment

Patients in the high-risk scores group had higher immune,

stromal, and ESTIMATE scores compared with patients in the
A

B

FIGURE 3

Estimation of immune cell infiltration in different clusters. (A) Patients in Cluster 2 had higher immune, stromal, and ESTIMATE scores compared
with patients in Cluster 1. (B) Almost all types of immune cells were higher in Cluster 2 than those in Cluster 1 except for CD56bright natural
killer cell, CD56dim natural killer cell, eosinophil, neutrophil, and Type 17 T helper cell. ns, not significant; *p < 0.05; **p <0.01; ***p < 0.001.
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low-risk scores group, as seen in Figure 7A. According to the

ssGSEA algorithm, almost all types of immune cells were

higher in the high-risk scores group than those in the low-

risk scores group except for CD56bright natural killer cell,

memory B cell, neutrophil, and eosinophil (Figure 7B). In

addition, we also assessed the abundance of immune cell

infiltration in HCC patients using various methods

including TIMER (25), CIBERSORT (26), and MCP-counter

(27) algorithms, and the results were consistent with the

analysis results of the ssGSEA algorithm, as shown in Figure

S9. Interestingly, we found that patients in the high-risk scores

group had poor survival outcomes but a higher abundance of

CD8+ T cells infiltration. Considering that decreased

infiltration levels of CD8+ T cells were often associated with

poor survival rates, therefore, we assumed that these CD8+ T

cells in the high-risk scores group were exhausted T cells. To

test this conjecture, we then analyzed genes involved in

immune/inflammatory responses, including CD8A, GZMB,

IFNG, TBX2, and TNF, and found that these genes were

significantly up-regulated in the high-risk scores group

(Figure 8A). We also found that the expression of PD1 was

significantly up-regulated in the high-risk scores group

(Figure 8B), as was the expression level of PD-L1 (Figure

8C). In addition, exhausted T cells were significantly enriched

in the high-risk scores group, according to the results of the
Frontiers in Immunology 08
ImmuCellAI analysis (Figure 8D). Finally, the GSEA results

indicated that the low-risk scores group displayed an

attenuated IFN-g response (Figure 8E). Together, the

aforementioned findings showed that the high-risk scores

group had a robust immunological and inflammatory

response, but the elevated PD1 and PD-L1 in this group

might result in an exhausted TME and eventually have a

negative impact on the survival of HCC patients.
Formation of a nomogram model and
drug susceptibility analysis

A nomogram model was built in the TCGA dataset to

investigate the coefficient prediction efficiency of this Tregs-

related signature, and the results revealed that the nomogram

with a C-index of 0.758 could help us provide a quantitative

method for accurately predicting the 1-, 3-, and 5-year survival

rate (Figure S10A). The calibration curves showed good

agreement between the anticipated and actual probability of

1-, 3-, and 5-year survival rates (Figure S10B). We also

uncovered 54 tumor-sensitive medications that target the

five Tregs-related genes (Table S3), with the top 16 most

important tumor-sensit ive compounds indicated in

Figure S11.
A B

D EC

FIGURE 4

Patients in Cluster 2 had an Exhausted Immune Microenvironment. (A) Differential analysis of inflammation/immune response-related genes. (B,
C) Differential analysis of PD1 and PD-L1 expression. (D) Exhausted T cells were significantly enriched in Cluster 2. (E) Cluster 1 displayed an
attenuated IFN-g response. ***p < 0.001.
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Forecasting response to anti-PD-L1
therapy using the Tregs-related signature

We discovered that the tumor immune dysfunction and

exclusion (TIDE) scores in the high-risk scores group were much

greater than that in the low-risk scores group using the TIDE

algorithm (Figure 9A). T-cell exclusion scores did not differ

significantly between the two groups (Figure 9B), but T-cell

dysfunction scores were greater in the high-risk scores group

than in the low-risk scores group (Figure 9C). In addition, due to

a shortage of data on HCC patients undergoing anti-PD-L1

medication, the IMvigor210 database was utilized as an external
Frontiers in Immunology 09
anti-PD-L1 cohort to investigate the possible predictive

usefulness of the Tregs-related signature. This research

comprised 298 individuals who exhibited an objective

response. We discovered that patients with low risk ratings

had a significant survival advantage over those with high risk

scores (Figure 9D). As demonstrated in Figure 9E, patients who

had a complete response/partial response (CR/PR) had lower

risk scores than patients who had stable disease/progressive

disease (SD/PD). Finally, in the GSE109211 cohort, we looked

at the link between Sorafenib treatment efficacy and risk scores

and discovered that patients in the high-risk scores group had

worse treatment results (Figure 9F).
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FIGURE 5

Formation of Tregs-related prognostic signature in HCC. (A) 15 prognosis-associated genes were identified by univariate Cox regression with a
p-value less than 0.01. (B) Tregs-related genes were screened by the LASSO-Cox regression model. (C) Patients were divided into high- or low-
risk scores subgroups with an optimal threshold after patients’ risk scores were calculated with the above formula. (D) Patients with lower risk
scores were remarkably relevant to better survival outcomes. (E) This Tregs-related signature had a good prognostic performance. (F) Patients in
Cluster 2 had higher risk scores compared with patients in Cluster 1.
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FIGURE 6

Verification of the Tregs-related signature in external cohorts. Patients were split into high- or low-risk categories in ICGC (A) and GSE14520 (E)
cohorts. Patients in the later TNM stage had greater risk ratings than patients in the early stage, no matter whether we looked at the ICGC
cohort (B) or the GSE14520 cohort (F). Patients with lower risk scores were strongly associated with higher OS rates both in the ICGC cohort
(C) and the GSE14520 cohort (G). This Tregs-related signature had a good prognostic performance no matter in the ICGC cohort (D) or the
GSE14520 cohort (H).
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Verification of the Tregs-related
signature in clinical samples

All five Tregs-related genes revealed differential expression

between normal and tumor tissues, according to the results of

the qRT-PCR investigation (Figure 10A). After risk scores were

determined using the same formula, patients were split into

high-risk and low-risk groups according to the mean of the risk

score. IHC was then used to analyze the infiltration of Tregs and

CD8+ T cells in the tissues of patients in high- and low-risk

scores groups. Patients in the high-risk scores group had a higher

abundance of Tregs and CD8+ T cells infiltration (Figure 10B).

Finally, expression levels of CD8A, GZMB, IFNG, TBX2, TNF,

PD1, and PD-L1 genes were analyzed and all of these genes were

significantly up-regulated in the high-risk scores group (Figure

10C). Taken together, the aforementioned findings showed that

the high-risk scores group had a robust immunological and
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inflammatory response, but the elevated PD1 and PD-L1 in this

group might result in an exhausted TME and eventually have a

negative impact on the survival of HCC patients.
Verification of the Tregs-related
signature after PD1/PD-L1 blockade

As shown in Figure 11A, we found that all five genes in the

Tregs-associated signature were significantly associated with

PD1 and PD-L1 expression not only in the TCGA cohort but

also in 20 clinical HCC samples, suggesting that these genes may

be targets for anti-PD1/PD-L1 immunotherapy. To further

explore their relationship, we treated cells with a small

molecule PD1/PD-L1 inhibitor and found that the expression

levels of HMOX1, MMP9, CTSC, and TNFRSF11B were

significantly reduced in Hep3B cells, while only HMOX1,
A

B

FIGURE 7

Estimation of immune cell infiltration in different risk scores groups. (A) Patients in the high-risk scores group had higher immune, stromal, and
ESTIMATE scores compared with patients in the low-risk scores group. (B) Almost all types of immune cells were higher in the high-risk scores
group than those in the low-risk scores group except for CD56bright natural killer cell, memory B cell, neutrophil, and eosinophil. ns, not
significant; *p < 0.05; **p <0.01; ***p < 0.001.
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MMP9, and TNFRSF11B were expressed differently in Huh7

cells (Figure 11B). These confirmed our hypothesis that

HMOX1, MMP9, and TNFRSF11B could be targeted for anti-

PD1/PD-L1 immunotherapy.
Discussion

The interaction between tumors and TME has been a hot

topic in recent years (3, 28–30). On the one hand, TME plays a

role in immune surveillance and immune defense of tumor cells.

On the other hand, tumor-related inflammation can cause

abnormal infiltration of immune cells in tumor tissue and

surrounding areas, resulting in an imbalance in the production

of chemokines and cytokines, helping tumor cells to adapt to

immune evasion, and ultimately promote tumor development.

Increasing evidence suggests that TME is involved in the

occurrence and progression of HCC, the development of drug

resistance, and the efficacy of immunotherapy (31, 32).

Therefore, a deeper understanding of the specific mechanism

of TME in HCC progression is extremely important for planning

and formulating targeted therapy for HCC. According to the

proportion of immune cells in the TME, HCC patients can be

divided into four different subgroups: immune desert type,

immunogenic type, innate immune type, and mesenchymal
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type (33). Among them, the immune desert type has the best

prognosis due to the lack of immune cell infiltration, while the

innate immune type has the worst prognosis due to the presence

of a large number of immune cell infiltration and activated

immune suppression. Interestingly, although cytotoxic CD8+ T

lymphocytes (CTLs) have antitumor properties, which can

induce apoptosis of tumor cells by recognizing tumor-specific

antigens on target cells and releasing cytotoxic enzymes and

cytokines, HCC patients with highly CTLs infiltration

sometimes have poorer survival outcomes because these CTLs

are exhausted (9). Various cancer cell-secreted metabolites, such

as Kynurenine, S-adenosyl-L-methionine (SAM), and

methylthioadenosine (MTA), have been reported to lead to T

cell exhaustion (34–36). Exhaustion CD8+ T cells may serve as a

novel biomarker for efficacy monitoring during immunotherapy

in HCC patients (37). Therefore, reducing the proportion of

exhausted T cells in the TME or relieving the exhausted state of

T cells may become the next frontier of HCC immunotherapy.

In this research, after the relative abundance of 28 immune cell

subtypes was assessed by the ssGSEA algorithm in the TCGA,

ICGC, and GSE14520 cohorts, we used WGCNA to create a scale-

free co-expression network to find the gene modules most relevant

for Tregs infiltration abundance. The overlapping genes of the

candidate genes in the three datasets were finally confirmed as

Tregs-related genes and mainly enriched in the immune-
A B

D EC

FIGURE 8

Patients in the high-risk score group had an Exhausted Immune Microenvironment. (A) Differential analysis of inflammation/immune response-
related genes. (B, C) Differential analysis of PD1 and PD-L1 expression. (D) Exhausted T cells were significantly enriched in the high-risk scores
group. (E) The low-risk scores group displayed an attenuated IFN-g response. ***p < 0.001.
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inflammatory response and regulation of lymphocytes. Based on

these Tregs-related genes, we divided patients into two clusters with

differences in survival rates and mutation rates of mutated genes

using the NMF algorithm. Compared with patients in Cluster 1,

patients in Cluster 2 not only had higher immune, stroma, and

estimated scores but also had higher proportions of almost all types

of immune cells. Interestingly, we found that CD8+ T cells in

Cluster 2 were exhausted T cells and subsequently confirmed this

finding by analyzing the expression levels of PD1, PD-L1, and genes

involved in immune/inflammatory responses and performing

GSEA enrichment analysis. To further explore the specific

mechanisms of these Tregs-related genes in HCC, we constructed

a Tregs-related prognostic score model using LASSO-Cox

regression. The model can not only stratify the prognosis of HCC

patients well, but also effectively predict the 1-, 3-, and 5-year

survival rates of patients. This Tregs-related signature was also

verified in external ICGC and GSE14520 datasets. In addition, we

found that CD8+ T cells in the high-risk scores group were

exhausted T cells and subsequently confirmed this finding by

analyzing the expression levels of PD1, PD-L1, and genes

involved in immune/inflammatory responses and performing

GSEA enrichment analysis. Finally, the Tregs-related prognostic

score model was verified in collected fresh frozen tumor biopsies

and their surrounding normal tissues by qRT-PCR and IHC
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analysis. Excitingly, we also observed an exhausted state of T cells

in the tissue of HCC patients with high risk scores.

As a target gene of miRNA-15a-3p, heme oxygenase 1

(HMOX1) may play a role in the development and

progression of HCC and is strongly correlated with the poor

prognosis of HCC patients (38). HMOX1 worked in conjunction

with genes involved in iron metabolism and the hypoxia

phenotype to forecast patient outcomes and the effectiveness

of immunotherapy (39, 40). In addition, HMOX1 has

been linked to the recurrence of cancer in rats following

ischemic liver transplantation (41) and can inhibit the

immunomodulatory effect of Treg cells through carbon

monoxide produced during metabolism (42). HMOX1

inhibitors enhance the anti-tumor effects of anti-PD-L1

antibodies in mouse melanoma and also reduce tumor size by

abolishing resistance to anti-PD1 immunotherapy in female

mice bearing E0771 mammary tumors (43). HMOX1 has also

been implicated in PD1-involved exhausted T-cell metabolic

regulation in melanoma (44). The overexpressed receptor

tyrosine kinase c-Mett in renal cancer cells can inhibit cancer

cell apoptosis by regulating the synergistic effect between

HMOX1 and PD-L1 (45). The poor prognosis of NAFLD

patients as well as HCC patients is impacted by MMP9

overexpression (46–48). Additionally, MMP9 can work with
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FIGURE 9

Forecasting response to anti-PD-L1 therapy using the Tregs-related signature. (A) TIDE scores in the high-risk scores group were much greater
than that in the low-risk scores group. (B) T-cell exclusion scores did not differ significantly between the two groups. (C) T-cell dysfunction
scores were greater in the high-risk scores group than in the low-risk scores group. (D) Patients with low risk ratings had a significant survival
advantage over those with high risk scores. (E) Patients who had a complete response/partial response (CR/PR) had lower risk scores than
patients who had stable disease/progressive disease (SD/PD). (F) Patients in the high-risk scores group had worse Sorafenib treatment efficacy.
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several signaling pathways to encourage the development and

spread of HCC (49–52). As a crucial cytokine, MMP9 can play a

role in the control of the Th17/Treg immunological imbalance

(53). MMP9 was significantly positively correlated with PD-L1

and promoted poor prognosis in patients with tongue squamous

cell carcinoma and colorectal cancer (54, 55). MMP9 can

significantly increase PD-L1 expression by activating TGF-b-
induced epithelial-to-mesenchymal (EMT) (56, 57). By raising

CD8+ T cell cytotoxicity, MMP9 inhibitors can boost the

therapeutic efficacy of PD-1 inhibition (58). Ayse identified

significant changes in intratumoral MMP9 expression during

anti-PD1 therapy in breast cancer patients using single-cell

sequencing technology (59). Cathepsin C (CTSC), a lysosomal

cysteine protease that is highly expressed in several tissues and a

member of the papain superfamily, is essential for many

biological activities. According to reports, CTSC speeds up the

growth of some tumor types (60). Through the TNF-/MAPK

(p38) pathway, up-regulated CTSCs in HCC have been
Frontiers in Immunology 14
demonstrated to promote HCC proliferation and metastasis

(61). By controlling neutrophil infi ltration and the

development of neutrophil extracellular traps, CTSC facilitates

breast cancer lung metastases (62). Gastric and colon cancer

growth can be slowed down by CTSC silencing by promoting

apoptosis (63, 64). A vital member of the SDC family, syndecan

3 (SDC3) is essential for cell adhesion, migration, and

development. SDC3 expression is boosted by hypoxia in the

tumor microenvironment, which influences pro-inflammatory

reactions and the overall survival of melanoma patients (65).

Additionally, SDC3 was linked to more dangerous tumors and a

worse prognosis in prostate cancer (66). As a gene associated

with dendritic cells, SDC3 is also important in developing a risk

model for predicting the prognosis of HCC (67). The anti-

apoptotic activity of TNF receptor superfamily member 11B

(TNFRSF11B) can bind to and suppress TRAIL (TNF-related

apoptosis-inducing ligand), which inhibits the spread of HCC

and improves patient prognosis (68, 69). TNFRSF11B is
A

B

C

FIGURE 10

Verification of the Tregs-related signature in clinical samples. (A) All five Tregs-related genes revealed differential expression between normal
and tumor tissues. (B) Patients in the high-risk scores group had a higher abundance of Tregs and CD8+ T cells infiltration. (C) Differential
analysis of inflammation/immune response-related genes. ***p < 0.001.
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significantly upregulated in peripheral blood mononuclear cells

of chronic hepatitis C virus-infected patients and has been

implicated in PD1-mediated T cell exhaustion and biological

processes related to apoptotic signaling (70).

In this study, we found that all five genes can be acted as Treg

cell-related genes to predict the prognosis and immunotherapy

effect of HCC patients, and the expressions of HMOX1, MMP9,

and TNFRSF11B were significantly reduced in both Hep3B and

Huh7 cells after PD1/PD-L1 inhibitor treatment, suggesting that

there is a certain synergy between these genes and anti- PD1/

PD-L1 antibodies effect. Of course, more in vitro and in vivo

studies are needed to verify the relationship and mechanism

between HMOX1, MMP9, and TNFRSF11B and anti-PD1/PD-

L1 therapy in HCC. In future work, we will construct a

subcutaneous tumor model in C57 mice. In a nutshell, mice

received subcutaneous injections of 1 x 105 Hep3B and Huh7

tumor cells. After that, mice with tumors measuring 100 mm3 or

larger were divided into four groups and given various

treatments: control treatment with the PD1/PD-L1 inhibitor,

treatment with HMOX1/MMP9/TNFRSF11B antibody, and the

combination treatment of PD1/PD-L1 inhibitor and HMOX1/

MMP9/TNFRSF11B antibody. Tumor development was
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monitored every three days while anti- PD1/PD-L1 therapies

were given every three days and HMOX1/MMP9/TNFRSF11B

antibody treatments were given every day until tumor capture on

the ninth day. Finally, we observe the changes in tumor volume,

the expression of inflammation-related genes, and tumor

immune cell infiltration in the tumor to explore the synergistic

mechanism of HMOX1/MMP9/TNFRSF11B and PD1/PD-L1 in

HCC. Therefore, a deeper understanding of their mechanisms

can help us dissect the complex relationship between the tumor

microenvironment, the efficacy of anti-PD1/PD-L1antibody

immunotherapy, and HCC.

Immune checkpoint blockade response in HCC patients can

be predicted using the TIDE score. Patients in the low-risk score

group had lower TIDE scores, which suggests that they may

respond to ICIs better (71). In various cancer types, ICIs-related

immunotherapy, particularly PD-1/PD-L1, has shown good

therapeutic effectiveness in reversing local immunosuppression

in the TME. For tumor patients with significant immune cell

infiltration but compromised immunity, such as those in our

study’s low-risk score group, PD-1/PD-L1 inhibitors are

appropriate. The IMvigor210 dataset was utilized as an

external anti-PD-L1 cohort for this study to see if our created
A

B

FIGURE 11

Verification of the Tregs-related signature after PD-L1 blockade. (A) All five Tregs-related genes were related to PD1 and PD-L1 expression. (B)
Differential expression of the five Tregs-related genes after PD-L1 blockade. ns, not significant; **p <0.01.
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Tregs-related risk score can predict patient response to anti-PD-

L1 medication. When compared to patients in the high-risk

scores group, we discovered that patients in the low-risk scores

group had substantial clinical and survival advantages. Finally,

we evaluated how well Tregs-related risk scores predicted the

effectiveness of sorafenib in patients with HCC. Patients with

low risk scores performed better with sorafenib, according to our

research. Anti-PD1/PD-L1 with sorafenib may be a viable option

for HCC patients in the low-risk score category to improve

their prognosis.

The efficacy and prognosis of HCC patients receiving

immunotherapy are significantly impacted by drug resistance,

which is mostly caused by the complexity and diversity of TME

components. Promising treatment now involves reducing the

number of tumor-associated macrophages (TAMs) by

preventing monocyte recruitment to the TME, eliminating

invading TAMs, or re-educating TAMs to the more pro-

inflammatory M1 subtype (72). By attracting macrophages and

Tregs to the TME of HCC, tumor-associated neutrophils

(TANs) cause sorafenib resistance in HCC patients,

encouraging cancer development and post-treatment

recurrence (73). Targeting Tregs may modify TME

composition and speed tumor remission, but it may also result

in significant systemic autoimmunity and inflammation (74).

Immune-checkpoint molecules, such as PD1, are expressed by

tumor-infiltrating Tregs at levels that rely on the TME,

suggesting that PD1 inhibitors may have an impact on Tregs

infiltration (75). It is clear that PD1 signaling lessens the

immunosuppressive effect of Tregs since PD1-deficient Tregs

or PD1 inhibition had enhanced immunosuppressive activity

that was sufficient to reverse the auto-immune phenotype (76).

Furthermore, human glioblastoma tissues with high PD1

expression levels in Tregs have a fatigued phenotype, which is

linked to diminished immunosuppressive activity (77). When

PD1 on Tregs interacts directly with PD-L1 on CD8+ T cells,

immunosuppressive effects are directly mediated, and PD1

inhibitors can drastically reduce these effects (78). Monitoring

tumor-infiltrating Tregs alterations in patients taking PD1

inhibitors may be important since PD1 appears to have a

detrimental influence on Tregs-mediated immunosuppression

in tumors and anti-PD1 medication appears to increase Tregs

activity (79). For HCC patients, comprehensive immunotherapy

targeting both tumor cells and immunosuppressive cells in the

TME may become the treatment of choice, and it will likely play

a significant guiding role in the choice of patient-specific

immunotherapy regimens in the future.

Undoubtedly, our study has certain flaws. First off, it was

hard to fully investigate the effect of our Tregs-related signature

on the prognosis of HCC patients due to the small number of

HCC tissues we gathered and the paucity of survival data. To

verify the precision of our prognostic model, we require a

prospective multicenter investigation with a bigger sample size.

Additionally, the outcomes of single-cell sequencing can aid in
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our understanding of how the Tregs-related genes have changed

in the TME. Finally, to further understand the molecular

processes by which Tregs-related genes influence HCC

development, functional tests (in vitro and in vivo) should be

carried out in the future.
Conclusions

In summary, our study uncovered and validated a Tregs-

related prognostic model that could identify TME- exhausted

subpopulations and revealed that PD1/PD-L1 inhibitors could

alter the expression levels of HMOX1, MMP9, and TNFRSF11B

in Hep3B and Huh7 cells, which might help us better understand

Tregs infiltration and develop personalized immunotherapy

treatments for HCC patients.
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