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Atherosclerosis refers to the deposition of lipids and the co-existence of

inflammation and impaired inflammation resolution in pan-vasculature,

which causes lumen narrowing, hardening, plaque formation, and the

manifestation of acute cardiovascular events. Emerging evidence has

suggested that vascular circulation can be viewed as a complex homeostatic

system analogous to a mini-ecosystem which consists of the vascular

microenvironment (niche) and the crosstalk among phenotypically and

functionally diverse vascular cell types. Here, we elucidate how cell

components in the vascular wall affect vascular homeostasis, structure,

function, and atherosclerosis in a holistic perspective. Finally, we discuss the

potential role of vascular-stabilizing strategies including pharmacotherapies,

natural substances and lifestyle modifications, in preventing cardiovascular

diseases by preserving vascular integrity and homeostasis.
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Atherosclerosis and cardiovascular risk factors

Atherosclerosis is a complex and progressive disease with the interplay of multiple

cell types and mechanisms involving genetic, epigenetic, environmental, metabolic,

clonal hematopoiesis, and lifestyle factors and an evolving landscape (1) (Figure 1A).

Pan-vascular atherosclerosis is the major cause of cardiovascular disease (CVD) and

ischemic stroke (1–3). Atherosclerosis preferentially develops in medium- and large-

sized arteries. The blood vessel wall normally consists of tunica intima, tunica media,
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tunica adventitia and tunica adiposa (4). The blood vessel

microenvironment resembles a mini-ecosystem which consists

of different cell types, including cells in the blood (red blood

cells, leukocytes, monocytes etc.) and vascular cells [endothelial

cells (ECs), vascular smooth muscle cells (VSMCs),

macrophages and T-lymphocytes etc.)]. These cell types

crosstalk with each other via ligand-receptor interaction,

exosome, endothelial cell secretome as well as cell-matrix

interactions, thereby regulating vascular tone and stabilize

tissue homeostasis (Figure 1B).

Recognized traditional and non-traditional risk factors for

CVD include: hyperlipidemia, hypertension, hyperglycemia,

hyperuricemia, infection, smoking, male gender, high triglyceride-

rich lipoproteins, lipoprotein (a), sleep deprivation, physical

inactivity, gut microbiome imbalance, environmental pollution,

noise, and psychological stress (1). Taking exercise for example, a

recent study (5) has demonstrated that moderate exercise promotes

cardiovascular health; however, long-term strenuous exercise

damages tunica media, increases aortic stiffness, causes elastic

lamina to rupture and media layer thickening of intramyocardial

arteries. The authors also found that deleterious remodeling

rendered by intensive exercise persisted after withdrawal from

exercise (5). Advanced understanding of the novel mechanistic

basis of atherosclerosis by addressing how these risk factors causes

atherosclerosis will open new avenues to therapeutic interventions

aiming to prevent and treat atherosclerosis. In the following section,

we summarize the role of cell components in the vascular wall in

vascular microenvironment homeostasis and atherosclerosis, with

an aim to providing a unified and holistic overview of future

research directions in this area.
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Vascular wall components in
vascular homeostasis
and atherosclerosis

Endothelial cells in the tunica intima as
sentinels in vascular health and pivotal
regulator of atherosclerosis

ECs are the key cell type that connects circulating blood and

the vascular wall. ECs serve as a natural barrier in the pan-

vascular system (6). ECs sense the mechanosignals via

mechanosensing complex or mechanosensors like plexin D1

(7). ECs serve as the sentinel as well as safeguard for vascular

health and tissue homeostasis. The vascular endothelium is thus

deemed as a protype of homeostatic regulation of endothelial

function (8). Following insults, ECs initiate powerful backup

systems/mechanisms to prevent vascular injury. As long as

vascular injuries are not overwhelming and reparable, existing

cellular defense machineries will be working to maintain

vascular homeostasis (8). However, when the injury persists

and ECs become activated, leading to endothelial dysfunction,

such as inflammation, hyperpermeability, leukocyte adhesion,

and cell senescence (6, 9). The earlier stage of low-degree of EC

activation is a compensatory tissue repair mechanism that

promotes endothelial rehabilitation and preserves vascular

health. However, persistent activation of ECs prepares ECs to

transit into a decompensatory stage, which leads to endothelial

dysfunction (6). After the initial stage of endothelial dysfunction,

ECs will recruit more leukocytes to the site of injury, followed by
BA

FIGURE 1

Hallmark of atherosclerosis. (A) The pathogenesis of atherosclerosis. Vascular components of atherosclerotic artery which include tunica
adiposa, tunica adventitia, tunica media, sub-endothelium space and tunica intima. For simplicity, external elastic lamina in the blood vessel was
not depicted. The interplay of different vascular cell types within the local vascular niche drives atherosclerosis development. Both “inside-out”
and “outside-in” mechanism contribute to the development of atherosclerosis. (B) A holistic overview of hallmarks of atherosclerosis and
crosstalk among vascular cell components. Atherosclerosis is complex disease involving different cell types at different vascular layers. The
hallmark events in different cell types act in concert to promote atheroprogression. CHIP, clonal hematopoiesis of indeterminate potential; ECs,
endothelial cells; ECM, extracellular matrix; EndoMT, endothelial-mesenchymal transition; ROS, reactive oxygen species; VSMC, vascular smooth
muscle cells.
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cell adhesion, rolling, crawling, and diapedesis that contributes

to atherosclerosis development (6). It is proposed that the

protective functions rendered by ECs at resting states include

the maintenance of EC quiescence, anti-inflammation, anti-

oxidation and anti-proliferation (10).

Beyond canonical physiological functions, ECs also emerge

as a new type of innate immune cells (11) which execute a

plethora of immune functions, such as cytokine production,

phagocytosis of cell debris and bacteria, sensing danger and

pathogen-associated molecular patterns, antigen presentation,

immune metabolism and trained immunity (11, 12). For

example, trained immunity is an immunological concept

which refers to long-lasting pro-inflammatory phenotype

(similar as innate immune memory) after prior stimulation

with or exposure to microbial products and pro-atherogenic

stimuli (such as b-glucan, aldosterone, oxidized LDL and LPS),

leading to sustained hyperactivation of innate immune system

(13). Trained immunity is an important biological mechanism

which contribute to atherosclerotic cardiovascular disease via

epigenetic modification and reprogramming immune-

metabolism (13, 14). Recent studies have revealed that, upon

infection with virus and bacteria, the anti-viral signaling

pathway is activated, the RIG-I (retinoic acid-inducible gene I)

pathway in particular (12). Infection with coronavirus, such as

SARS-CoV-2, can cause trained immunity in ECs, potentially

leading to enhance inflammation in ECs (15).

ECs in their native state also maintain anti-thrombotic and

hemostatic functions, which prevent platelet activation and

adhesion to activated endothelium. In addition, ECs have

active secretory pathways, vesicles and granules to produce

huge proteomes to maintain vascular homeostasis and

integrity (16). Secreted proteins from ECs play an important

role in regulating vascular ECs crosstalk with other vascular cell

types. The local microenvironment (niche) in vascular wall and

cardiovascular disease conditions can modify endothelial

function by regulating ECs’ secretome. Recently, quantitative

proteomic analysis of the endothelial secretome (17) has greatly

accelerated the discovery of novel secreted proteins from ECs

which regulate vascular homeostasis and atherosclerosis. In

addition, EC secretome also provides promising biomarkers

which have diagnostic and prognostic value for various

vascular disorders (16).

More importantly, ECs are the innermost layer of cells

that are directly exposed to a wide variety of cardiovascular

risk factors, including hyperglycemia, hyperlipidemia,

hyperuricemia, hyperhomocysteinemia, and cigarette smoking

(12). In addition, a recent study has demonstrated an intimate

relationship between cholesterol homeostasis and inflammation/

immunity in ECs by showing that pro-inflammatory cytokines

upregulated SREBP2 (sterol regulatory element binding protein

2) cleavage/activation and augmented the expression of genes

involved in cholesterol biosynthesis via NF-kB (nuclear factor-

kappa B) and SREBP2 pathway (18).
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Other biological functions of ECs include the secretion of

nitric oxide (NO) and other vasoactive molecules, such as

hydrogen sulfide (H2S), prostacyclin (PGI2), endothelin-1 (ET-1)

and endothelium-derived hyperpolarization factor (EDHF) (6).

By balanced production of these molecules, ECs regulate

vascular tone. Furthermore, ECs are highly heterogenous and

plastic cell types that can acquire a mesenchymal-like phenotype

through endothelial–mesenchymal transition (EndoMT)

process via the TGFb/Smads, YAP/TAZ, Snail, Twist, and ZEB

family of transcription factors. Undergoing EndoMT, EC-

specific markers are lost, and mesenchymal cell-specific

markers are acquired, thus impairing normal EC function.

EndoMT is strongly implicated in the development of

atherosclerotic plaques in mice and in huma patients (6).

Endothelial homeostasis is regulated by several master

transcription factors, such as KLF2, KLF4 and Nrf2, the

activation of which leads to anti-inflammatory, anti-oxidant,

anti-thrombotic and inflammation-resolution effects (10, 19).

Also, upon injurious stimuli exposure (such as aging, irradiation,

anti-cancer therapy, inflammation, virus/bacterial infection and

cigarette smoking etc.), ECs will become senescent, and

senescence-associated secretory phenotype (SASP) will be

acquired, leading to inflammation and dysfunction of

neighboring cells (6). The concerted actions of multiple

cardiovascular risk factors will cause endothelial cell death and

cell loss, leading to plaque erosion and subsequent formation of

plaque rupture. Altogether, ECs function far beyond a physical

barrier and participate in vital processes in atherosclerosis (20).
Sub-endothelium space: The fertile “soil”
of atherosclerosis

Atherosclerosis preferentially develops in the subendothelial

space (SES) of large- and medium-sized arteries in aortic regions

with oscillatory blood flow. The SES is a fertile “soil”

(microenvironment or niche) for atherosclerosis development

due to the intricate interplay among subendothelial low-density

lipoprotein (LDL) retention, LDL transcytosis, VSMC

proliferation and migration, endothelial dysfunction, foam cell

formation, and necrotic core formation (21). After endothelial

injury, VSMCs migrate from the media layer to SES and secrete

pro-fibrotic extracellular cellular matrix proteins, such as

collagens, and fibronectins, leading to vascular remodeling and

intimal thickening (21). LDL can pass injured endothelium via

passive transport or receptor-mediated transcytosis across

vascular endothelium. Afterward, LDL can be retained in the

SES or oxidatively modified to be oxLDL, which was

subsequently uptaken by VSMCs or macrophages to form

foam cells , the hallmark of atherosclerosis (22). A

proliferation-inducing ligand (APRIL) is a cytokine that binds

to heparan-sulfate proteoglycans (HSPGs). APRIL exerts

atheroprotective effects by binding to heparan sulfate chains of
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HSPG2, thus limiting LDL-C retention in the vessel wall,

reducing macrophages content and size of necrotic cores (23).

Infiltrated monocytes also differentiate into macrophages, which

is a classical innate immune cell type that mediates inflammatory

response in SES. A recent study (24) has shown that the olfactory

receptor Olfr2 (human ortholog olfactory receptor 6A2, OR6A2)

can detect octanal in the circulating blood, leading to

interleukin-1b (IL-1b) in macrophages by activating NLRP3

inflammasome. In addition to mediating the activation of

inflammasome and inflammation (25), macrophages can also

become senescent, and senescent macrophages can accumulate

in SES and drive the expression of pro-atherogenic and pro-

inflammatory cytokines/chemokines, thus favoring features of

plaque vulnerability, including the thinning of fibrous cap and

fragmentation of elastic fibers. In contrast, selective clearance of

these senescent cells by senolytics prevents atheroma formation

(26). Other mechanisms include lipid toxicity induced by free

cholesterol and cholesterol crystal, continued buildup of lipid,

impaired inflammation resolution, and infiltration of immune

cells such as CD3+ and CD4+ T lymphocytes, fan the flame of

inflammation, cell death, and atherosclerosis (15), leading to

plaque necrosis and vulnerability. Within the plaques,

macrophages are the main decomposing machinery in the

atherosclerotic plaque that clears necrotic cell debris via the

efferocytosis mechanism (27). Other decomposing machinery

include autophagy as well as chaperone-mediated autophagy

(CMA). Recent evidence has suggested that defective CMA via

LAMP2A (lysosome-associated membrane protein type 2A)

occurs in mouse and human vasculature and that decline of

CMA in VSMCs and macrophages promote NLRP3

inflammasome activation, metabolic dysfunction and

atherogenesis (28–30).
VSMCs in tunica media as a key mediator
of atherosclerosis

The tunica media consist of multiple layers of VSMCs and is

interval-arranged with the elastin lamina. VSMCs are the main

scaffold cell type that constitutes tunica media, which is essential

for the optimal functioning of arteries by eliciting vasodilation

(31). The proliferation and migration of VSMCs are strongly

impacted by interaction of VSMCs with extracellular matrix

(ECM) proteins, such as proteoglycans, fibronectin, collagen and

elastic fibers (32). ECM dysregulation is an important

mechanism for disrupted vascular function, atherosclerosis

and aortic dissection (32). VSMCs are highly plastic with at

least two phenotypes, contractile and synthetic VSMCs, which

play an essential role in the embryonic development of

vasculature and onset of various diseases (31). Under basal

conditions, VSMCs are in the quiescent stage, which is less

proliferative and has a relatively low turnover rate. Upon

vascular injury, such as chronic hypercholesterolemia or
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endothelial denudation by drug-eluting stents, the contractile

VSMCs switch to synthetic phenotype and undergo

proliferation, as well as migration from vascular media to

the injury site, to propagate wound repairing (31). During

this process, the synthetic VSMCs secrete abundant cytokines

and extracellular matrix proteins to create a favorable

microenvironment for cell migration and vascular remodeling.

During this phenotypic switch, the expression of multiple

VSMCs-specific markers is decreased, such as a-smooth

muscle actin (SMA), smooth muscle 22 a (SM22a), calponin
1 (CNN1), smooth muscle myosin heavy chain (SM-MHC) and

transform to the synthetic phenotype, which contributes to

neointima hyperplasia, atherosclerosis and aortic aneurysm

(31). In addition, the expression of contractile marker SM22a
blocks VSMC-derived foam cell formation via augmenting liver

X receptor (LXR)-dependent cholesterol efflux (33).

The expression of genes associated with the contractile

phenotype of VSMCs is regulated by multiple transcription

factors, epigenetic regulators, and noncoding RNAs, such as

Myocardin/SRF (34), TET2 (35), SENCR (36), MYOSLID (37),

and CARMN (38). While the synthetic phenotype of VSMCs is

transcriptionally and epigenetically regulated by krüppel-like

factor 4 (KLF4) (35) and NEAT1 (39). In addition to this

phenotypic switch, VSMCs can also undergo calcification by

augmented expression of calcification-related proteins, such as

osteopontin (OPN, also known as SPP1), bone morphogenetic

proteins (BMPs), alkaline phosphatase (ALP), the expression of

which are regulated by ERK1/2, Runt-related transcription

factor 2 (RUNX2) and Wnt signaling pathway (20). Besides,

VSMCs can also form foam-like cells after loading with

cholesterol, and this source of foam cells from VSMCs has

long been underestimated for their role in atherosclerosis (40).

Specifically, by genetic inducible fate mapping in mice, medial

VSMCs can lose classical VSMC marker genes and

transdifferentiate into macrophage-like cells and mesenchymal

stem cells in a KLF4 -dependent manner, suggesting high VSMC

plasticity in the development of atherosclerosis (41, 42). Single-

cell RNA-sequencing studies have confirmed that VSMCs are

highly heterogenous, possessing different phenotypes, including

senescent, foam cell-like, and osteoblast-like phenotypes (20).

Future studies should be directed to elucidate the interaction

between VSMCs and vascular niche and how this interaction

instructs atherogenesis (20).

The tunica media could be one of the most critical layers in

atherosclerosis development. On one hand, being localized

underneath the tunica intima, VSMCs are shielded from direct

contact with the bloodstream unless the endothelial monolayer

is compromised (43). The integrity of the tunica intima

fundamentally influences the behavior of VSMCs. Once

injured, monocytes could infiltrate into the tunica media and

transform into macrophages, which release multiple cytokines

and/or growth factors that re-shape the VSMC phenotype (43).

Moreover, the platelets could be activated upon vascular injury
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and release a large number of inflammatory cytokines and

chemokines, which induces the phenotypic switch of VSMC

from contractile to synthetic phenotype (31). On the other hand,

interventions in adventitia also significantly impact tunica

media. For example, direct elastase immersion on the

adventitia of the aorta could eventually result in the formation

of the aortic aneurysm (44). Therefore, it is important to protect

tunica media from being disrupted by the external factors

(including dietary, environmental factors) from either inner or

outer layers of the blood vessel. It also suggests that the

progression of atherosclerosis, could be very difficult to

alleviate unless VSMC-derived factors are properly controlled.
Tunica adventitia and tunica adiposa:
The “wonderland” of atherosclerosis

The tunica adventitia consists of a more complex mixture of

multiple cell types, including fibroblasts, pericytes, macrophages,

T cells, dendritic cells, and mast cells etc (4). Most

atherosclerosis research has been focused on studying the role

of ECs (intimal cells), macrophages/immune cells (SES in disease

vessel), VSMCs (media layer cells) in atherosclerosis (20);

however, the role of adventitial components and derived

factors in atherosclerosis has long been understudied. It is

assumed that the cells in the adventitia offer supporting

functions to the blood vessel and can also regulate the

structure and function of other vascular cells by cell-cell

communications, exosome, secretome (such as growth factors,

angiocrine factors, cytokines/chemokines, and vasoactive

peptides/hormones) etc. (20). Adventitial cells are involved in

regulating vascular tone and blood pressure as well as

atherosclerosis via paracrine and endocrine signaling (45). As

plaques in the SES are devoid of innervation. A recent study has

elegantly shown that the peripheral nervous system utilizes the

adventitia as the main conduit to directly interact with diseased

arteries to regulate atherosclerosis via the existence of

neuroimmune cardiovascular interfaces (NICIs) in adventitia

segments (46).

Also, another intriguing and largely unexplored research

question is the precise role of perivascular adipose tissue (PVAT)

in vascular health and diseases, such as atherosclerosis (45, 47).

Recent evidence has implicated PVAT as the fourth layer of the

blood vessel wall (the tunica adiposa), which produces

adipokines and vasoactive substances (such as leptin,

adiponectin, resistin, and visfatin)/cytokines/growth factors

that regulate vascular tone/homeostasis (4, 48). One study

from Tang laboratory have revealed that periaortic knockdown

of ribosomal protein S3A (RPS3A) in mouse PVAT impaired

PVAT browning, promoted vascular inflammation and

atherosclerosis development by modulating UCP-1 expression

in ApoE-/- mice (49). Similarly, another recent study from the

Tang laboratory demonstrated that BMP4 (bone morphogenetic
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protein 4) depletion in PVAT increased endothelial

inflammation in an EC/adipocyte co-culture system via

amplifying IL-1b-driven inflammatory response. More

importantly, BMP4 deficiency in adipose tissues exacerbates

atherosclerosis, while BMP4 overexpression in adipose tissues

promotes PVAT browning and atheroprevention in ApoE-/-

mice (50). These findings uncover the important role of PVAT

in regulating endothelial function, inflammation and

atherosclerosis. Future studies including PVAT in measuring

aortic wall’s mechanical behavior, such as aortic stiffness and

vasorelaxation/constriction is important (48).

The emergence of single-cell RNA-sequencing and the

generation of PVAT-specific Cre to precisely manipulate

PVAT-derived factors will be useful research tools to answer

this question due to the fact that tunica adiposa is a mixture of

heterogenous adipocytes (including white, brown and beige

adipocytes) (4). The endocrine and paracrine functions of

PVAT-derived factors in “outside-in” mechanism of

atherosclerosis is an important research direction (4).
Strategies that stabilize the vascular
system to prevent atherosclerosis

Based on the pivotal role of deregulated vascular

homeostasis in atherosclerosis, the “multiple hits” hypothesis

of atherosclerosis is gaining more evidence (Figure 2A). To this

end, several categories of drugs are able to stabilize the “vascular

niche” (51) and prevent atherosclerosis (Figure 2B). These drugs

include statins (lipid-lowering drugs) (52), Angptl3 inhibitors

(53), ACLY inhibitors (such as Bempedoic acid) (54), gliflozins

(SGLT2 inhibitors, anti-diabetic drugs) (55), glutides (GLP-1

receptor agonists, anti-diabetic drugs) (56), metformin (anti-

diabetic drugs) (57–59), aspirin (COX inhibitor, NSAIDs),

Angiotensin II converting enzyme inhibitors (ACEI, anti-

hypertensive drugs) (60), Angiotensin II receptor blockers

(ARBs, anti-hypertensive drugs) (60, 61), naturally-occurring

NLRP3 inflammasome inhibitor (colchicine) (62), KLF2

activators (63, 64), AMPK activators (endothelial protective

drugs) (65) and many others. Based on the complex

nature of atherosclerosis, polypill or ploypharmacology

targeting established mechanisms/risk factors are needed.

Vasoprotective effects of these drugs include maintenance of

vascular homeostasis by generating NO, maintaining normal

vascular tone, reducing oxidative stress, inhibiting NF-kB-
dependent pro-inflammatory response, and reducing the

production of vasoconstrictive molecules (such as AngII and

ET-1) as well as stabilizing glycocalyx microstructure in vascular

endothelium (8). These strategies also reduce foam cell

formation in macrophages by limiting lipid uptake and

augmenting cholesterol efflux, attenuating macrophage

inflammation and skewing from M1 pro-inflammatory

phenotype toward tissue-repairing M2 phenotype (66).
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In addition, these strategies also halt VSMC proliferation,

migration and phenotypic switch from contractile to synthetic

phenotype (43). Detailed studies in assessing the effects and

mechanism of action of these pharmacotherapies in cell-cell

crosstalk warrants further studies.

In addition to these drugs, lifestyle modifications, such as

exercise, healthy habitual eating, smoking cessation also

maintains vascular homeostasis and prevent atherosclerotic

cardiovascular diseases (67, 68). Therefore, pharmacological

and non-pharmacological strategies aimed at recuperating

vascular stabilization and homeostasis hold promise for anti-

atherosclerotic therapies (8).
Concluding remarks and
future perspectives

Atherosclerosis is a progressive disease with a changing

landscape which needs to be understood in a holistic view (1).

The main theories of atherosclerosis have changed

considerably during the past decades. It is increasingly

recognized that lipid (both LDL-cholesterol and triglyceride-

rich lipoproteins) and inflammation are two predominant

mechanisms of atherosclerosis (1). However, the development

of atherosclerosis is a slow but progressive process with the

interplay of multiple mechanisms. Therefore, a “multiple-hit”

hypothesis is possible, including mechanisms of an aberrant

lipid profile, inflammation, vascular injury, oxidative stress,

hemodynamic forces, epigenetics and others (Figure 2A). In

this hypothesis, different vascular cell types interact with each

other via ligand-receptor pairs or proteins in the secretome or

cargos (such as miRNAs, circular RNAs, and lncRNAs) carried

by exosomes (Figures 1A, B). The “multiple-hit” hypothesis of
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atherosclerosis expands previous established “response-to-

injury”, “inflammation”, “LDL oxidation” hypothesis (1), and

involve both the “inside-out” (intima-subendothelium-media-

adventitia-adiposa) and “outside-in” (adiposa-adventitia-media-

subendothelium-intima) mechanisms (Figure 1A). This

bidirectional mechanism of atherosclerosis reminds us the

need to consider cell-cell/cell-environment interaction in

atherosclerosis research.

In this article, we reviewed the biological functions of

the structural components of the vessel wall in the

vascular homeostasis and atherosclerosis. Considering that

atherosclerosis is a focal disease that preferentially develops in

regions where disturbed blood flow occurs, and the flow pattern is

turbulent/oscillatory flow (10, 19), the spatio-temporal and

biomechanical basis of atherosclerosis remain to be validated

(69). The focal nature of atherogenesis resembles the zonation

phenomenon in the liver, which is coordinated by multiple cell

types (70, 71). We term this phenomenon “aorta zonation”.

Tentatively, the aorta can be categorized into 5 zones, zone 1 is

the inner curvature of the aortic arch; zone 2 is the greater

curvature of the aortic arch; zone 3 is the arterial branches of

the aortic arch; zone 4 is the thoracic aorta; zone 5 is the rest of

arterial branches in the aorta. Zone 1, 3, and 5 are predilection

sites of atherosclerosis development; however, zone 2 and 4 are

protected against atherosclerosis. It is speculated that vascular cells

in zone 1 to zone 5 are highly heterogenous and plastic, with

different genetic, epigenetic, and metabolic traits. Systems biology

techniques such as next-generation single-cell spatial

transcriptomics will be an important tool to delineate zone-

specific gene expression programs in the aorta and further

understand the mechanistic basis of the heterogeneity of

vascular cells in different aortic zones and reveal novel

therapeutic targets for atherosclerosis. Last but not least, it is of
BA

FIGURE 2

Evolving hypothesis of atherosclerosis and vascular homeostasis-targeted therapies. (A) Evolving hypothesis of atherosclerosis. (B)
Pharmacological and non-pharmacological strategies to promote vascular stabilization and homeostasis and to prevent atherosclerosis. ACEI,
angiotensin-converting-enzyme inhibitors; ARB, angiotensin II receptor blockers; SGLT2i, sodium-glucose cotransporter 2 inhibitor; GLP-1 RA,
glucagon-like peptide 1 receptor agonist; KLF2, kruppel-like factor 2.
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vital importance to elucidate how the vascular microenvironment/

niche instructs vascular health and diseases and how homeostatic

control of vascular function is achieved. It is well established that

atherosclerosis arises and progresses when the homeostatic

control is perturbed-pro-atherogenic signaling overwhelms anti-

atherosclerotic signaling, leading to complex regulatory loops

signaling and atheroprogression (69). Basic and translational

research into the mechanisms of maintaining vascular

homeostasis raises the exciting prospect of alleviating the ever-

growing burden of atherosclerosis by addressing residual

cholesterol and inflammation risk in patients with CVD.
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