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Background: The human milk proteome comprises a vast number of proteins

with immunomodulatory functions, but it is not clear how this relates to allergy

of the mother or allergy development in the breastfed infant. This study aimed

to explore the relation between the human milk proteome and allergy of both

mother and child.

Methods: Proteins were analyzed inmilk samples from a subset of 300mother-

child dyads from theCanadianCHILDCohort Study, selected based onmaternal

and child allergy phenotypes. For this selection, the definition of “allergy”

included food allergy, eczema, allergic rhinitis, and asthma. Proteins were

analyzed with non-targeted shotgun proteomics using filter-aided sample

preparation (FASP) and nanoLC-Orbitrap-MS/MS. Protein abundances, based

on label-free quantification, were compared using multiple statistical

approaches, including univariate, multivariate, and network analyses.

Results: Using univariate analysis, we observed a trend that milk for infants who

develop an allergy by 3 years of age contains higher abundances of

immunoglobulin chains, irrespective of the allergy status of the mother. This

observation suggests a difference in the milk’s immunological potential, which

might be related to the development of the infant’s immune system.

Furthermore, network analysis showed overall increased connectivity of

proteins in the milk of allergic mothers and milk for infants who ultimately

develop an allergy. This difference in connectivity was especially noted for
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proteins involved in the protein translation machinery and may be due to the

physiological status of the mother, which is reflected in the interconnectedness

of proteins in her milk. In addition, it was shown that network analysis

complements the other methods for data analysis by revealing complex

associations between the milk proteome and mother-child allergy status.

Conclusion: Together, these findings give new insights into how the humanmilk

proteome, through differences in the abundance of individual proteins and

protein-protein associations, relates to the allergy status of mother and child. In

addition, these results inspire new research directions into the complex interplay

of the mother-milk-infant triad and allergy.
KEYWORDS

breastmilk, milk proteome, allergic disease, allergy development, immunology of
human milk, differential network analysis, allergen, immunomodulatory
Introduction

Having an allergy can strongly impact someone’s quality of

life in terms of dietary, social, and psychological factors. The

burden of allergic diseases for healthcare is increasing in western

countries (1). In an attempt to decrease these socioeconomic

burdens, a primary concern is to determine in which time frame

the development of allergic diseases is triggered (window of

opportunity) and how this can be prevented. This time frame

centers around the first years, as allergic diseases often manifest

themselves in the first years of life, and healthy development of

the infant’s immune system is crucial for later immune health (2).

The role of human milk in the development of allergic

diseases has received considerable attention in recent years (3–

5). Breastfed babies receive a spectrum of nutrients through

human milk, in a stage of life that is crucial for the development

of the immune system. Several components in human milk have

functional properties that could play a role in immune

development, such as antioxidant, antibacterial, and

immunomodulating properties; e.g., vitamins, antibodies, and

cytokines, respectively (6). The effect of breastfeeding on the

development of allergic diseases is complex and has been the

subject of several epidemiological studies in the last decades (7–

9), although meta-analyses do not show conclusive evidence for

an allergy preventing effect of breastfeeding (10, 11). For

example, Kull et al. showed that exclusively breastfed (≥ 4

months) children in the general population had a reduced risk

of allergic sensitization and asthma compared to children

breastfed for less than 4 months (8), while Mihrshahi et al. (9)

reported no significant association between onset of atopy and

duration of exclusive breastfeeding. One explanation for these

contradicting findings could be differences in the definition of
02
the outcomes. However, it could also be due to the individual-

specific composition of human milk which relates to, amongst

other factors, maternal genetics or diet (12, 13).

It is possible that specific components in human milk with

levels determined by individual-specific factors could influence

the development of the immune system of the breastfed child.

Proteins are a particularly important group of such human milk

components with immunomodulatory potential, including

immunoglobulins (Igs), cytokines, and dietary antigens.

Thus far, several studies have demonstrated the importance

of human milk proteins for the development of the infant’s

immune system (14–17). In a cohort study including 398

children, Munblit et al. (14) found that higher levels of TGFb2
in human milk were related to a higher occurrence of eczema in

the infant. Österlund et al. (15) showed that eosinophil cationic

protein (ECP), a marker of eosinophil degranulation, was present

at higher levels in human milk consumed by children that

developed cow’s milk allergy or atopic dermatitis. In another

study, Järvinen et al. (16) reported that infants who received

human milk with low levels of total immunoglobulin A (IgA)

were more likely to develop cow’s milk allergy. A more recent

study conducted by Michel et al. (17) showed interdependencies

between maternal allergy status, risk of allergy development in

the infant, and IgA, TGFb1, and TGFb2 levels in human milk.

In addition to these studies showing the importance of human

milk proteins, some studies show the presence of dietary allergens

in human milk and their possible relation with maternal and

infant allergy status. It was shown, for example, that a bovinemilk

allergen is more abundant in milk from allergic mothers (18) and

that the presence of such allergens in the milk might result in

tolerance induction (19). In addition, it was shown by Adel-

Patient et al. (20) that sensitizedmice whowere exposed to bovine
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b-lactoglobulin (BLG) during lactation transferred protection for

this allergen to their offspring at a level that correlated with the

level of BLG-specific antibodies in the milk.

The research to date has been mostly limited to targeted,

assay-based protein analysis, with a small number of identified

proteins. As a result, little is currently known about the relation

between the complete human milk proteome and the allergy

status of mother and child. We set out to investigate this, using

human milk samples from a subset of the Canadian CHILD

Cohort Study, a general population birth cohort (21). This subset

included 300 mother-child dyads, equally distributed across four

groups representing all possible combinations of allergy status of

both mother and child. The human milk proteome of these

samples was analyzed with a shotgun/bottom-up proteomics

workflow, meaning that proteins were analyzed through the

identification of peptides that are released from the protein

through trypsin digestion. The resulting data was investigated

using univariate analysis, exploratory multivariate analysis,

classification models, and network analysis (see Figure 1).

Whereas in univariate analysis, the focus is on the abundance of

the individual proteins, a systems biology approach with network

analysis enables the consideration of interconnections between

proteins. A protein network is a graphic representation of

proteins (nodes) and their associations (edges or connections)

expressed by a similarity measure such as correlation coefficient.

The cause of protein-protein associations (i.e., why proteins

correlate in abundance) can be due to different factors, and no

hypothesis is set a priori. An example of a cause of such associations

is that proteins have a shared location of synthesis, mechanism of

transport, physical interaction, or molecular function, resulting in a
Frontiers in Immunology 03
correlation in their abundances. The protein connectivity

(Figure 2), i.e., the extent to which proteins are associated with

other proteins, can provide information on their interconnections

and functioning as a whole (23, 24). Analysis of protein networks is

essential in a thorough investigation of a possible relation between

the milk proteome and a pathological condition such as allergy,

because proteins are pivotal components in often interconnected

biological processes and therefore often depend on other proteins in

their functioning (25). Comparison of protein-protein association

networks across conditions such as allergy status can be carried out

using differential network analysis (Figure 2). Such analysis of

differences in protein-protein associations (differential

connectivity) can help to elucidate and better understand

molecular mechanisms that might be affected by allergy status.

Such information cannot necessarily be obtained from univariate

analyses, which only focus on the abundance of individual

proteins (26).

This study aimed to explore the relation between the

complete human milk proteome on the one hand and both

maternal allergy and child allergy development on the other

hand, and is the first to undertake an untargeted analysis of the

human milk proteome to examine this.
Materials and methods

Study design CHILD cohort

This study included a subset of n = 300 mother-child dyads

originating from the CHILD cohort (https://www.childstudy.ca)
FIGURE 1

Schematic overview showing the sample set from the CHILD Cohort Study and the approach that was used for the analysis of the data. Proteins
in a selection of 300 human milk samples from mother-child dyads with different allergy status (+ indicates allergy, - indicates no allergy) were
analyzed using mass spectrometry. The data analysis was carried out using univariate analysis, classification models, and network comparison.
Probabilistic Context Likelihood of Relatedness on Correlation (PCLRC), differential connectivity, and Covariance Simultaneous Component
Analysis (COVSCA) were used for the network comparisons.
frontiersin.org

https://www.childstudy.ca
https://doi.org/10.3389/fimmu.2022.977470
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dekker et al. 10.3389/fimmu.2022.977470
(21). In the CHILD Cohort Study, pregnant mothers were

recruited from the general population from four locations in

Canada (Vancouver, Edmonton, Manitoba, and Toronto). The

study was carried out following the Declaration of Helsinki, and

local Human Research Ethics Boards approved the study

protocols. All parents involved in the study provided written

informed consent at enrollment.

The selection of the 300 mother-child dyads for the current

study was made based on the allergy status of the mother and the

child (Figure 1). Based on a 2x2 factorial design including allergy

of both mother and child, four equal-sized groups (n = 75) were

created (allergic mother and child, allergic mother and non-

allergic child, non-allergic mother and allergic child, non-allergic

mother and child). These 4 groups are later referred to as

“mother-child allergy groups.” The groups were matched for

lactation stage, maternal age, maternal BMI, secretor status,

ethnicity, and infant sex.
Definition of allergy

The definition of maternal allergy included at least one self-

reported diagnosis of allergic disease, including asthma, food

allergy, hay fever, or skin allergy, at the time of enrollment

during pregnancy.

The definition of child allergy included atopic sensitization

(1 or 3 years of age) with one or more of the following: atopic

dermatitis (1 or 3 years of age), recurrent wheezing (1 year of

age), asthma (3 years of age), rhinitis (3 years of age), or food
Frontiers in Immunology 04
allergy (3 years of age). Atopic sensitization was determined

using standardized skin prick tests, including six inhalant

allergens (Alternaria alternata, cat hair, dog epithelium, house

dus t mi te s [Dermatophago ide s p t e ronys s inus and

Dermatophagoides farinae], and German cockroach)) and four

food allergens (bovine milk, egg, peanut, and soybean).

According to the criteria described by Williams et al. (27),

atopic dermatitis was assessed by pediatricians of the CHILD

study. At three years of age, the CHILD study physician made a

careful assessment of the child’s clinical history. Diagnoses

recorded as “yes” and “possible” were considered positive for

the purpose of defining whether the child had any of asthma,

allergic rhinitis, food allergy, or atopic dermatitis. A detailed

description of the assessments of allergic sensitization and

diseases has been given before (28).
Sample collection

Milk samples were collected according to the CHILD

protocol (29). In short, foremilk and hindmilk samples were

collected from several feedings during a day and were pooled to

minimize within feed variation and diurnal variation. Samples

were collected between 6 and 35 weeks post-partum (median =

15.6 weeks, interquartile range (IQR) = 4.6). Samples were stored

at 4°C in the home refrigerator and within 24 hours picked up

and transported on ice to the CHILD laboratory. There, samples

were aliquoted and stored until further analysis at -80°C. Further

transport of the samples was done on dry ice.
FIGURE 2

Graphical illustration of the concept of protein connectivity and differential connectivity. An unweighted protein-protein association network
with 13 proteins is shown for two groups with different mother-child allergy status. Protein i is connected (a connection is represented by the
existence of an edge) with a different number of proteins in the two groups. The connectivity ci of protein i is given by the number of

connecting edges: 6 for allergy status 1 and 4 for allergy status 2. The differential connectivity for protein i is given by Da∈S1,b∈S2
i = ca∈S1

i − cb∈S2
i .

This figure was adapted from Jahagirdar et al. (22).
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Sample preparation

Skimmed milk was obtained by centrifugation at 10,000g and

4°C for 30 minutes. Then, skimmed milk was again centrifuged at

1,000g and 4°C for 10minutes to remove any remaining lipids. The

protein concentration was determined with the Pierce bicinchonic

acid (BCA) assay (Thermo Scientific, Waltham, MA), and samples

were diluted in 100 mMTris to a concentration of 1 µg/µL protein.

The diluted skimmed milk samples were prepared with filter-aided

sample preparation (FASP) for protein analysis in randomized

order as previously described (30).

In addition to the samples from the CHILD Cohort Study,

aliquots of a pooled human milk sample were added as controls

to check for technical variation. This sample comprised multiple

aliquots of pooled human milk samples from the Dutch Human

Milk Bank (Amsterdam, The Netherlands).
LC-MS/MS analysis

Trypsin digested proteins were analyzed with LC-MS/MS as

described before, with minor adjustments (31). In short, 1.5 - 4

mL of tryptic peptide solution was loaded onto a 0.10 × 250 mm

ReproSil-Pur 120 C18-AQ 1.9 mm beads analytical column

(prepared in-house) at 825 bar. A gradient from 9 to 34%

acetonitrile in water with 0.1% formic acid in 50 min (Thermo

nLC1000) was used. Full scan FTMS spectra were obtained using

a Q-Exactive HFX (Thermo electron, San Jose, CA, USA) in

positive mode between 380 and 1400 m/z.

The 25most abundant positively charged peaks (2–5) in theMS

scanwere fragmented (HCD)with an isolationwidthof 1.2m/z and

24% normalized collision energy. MSMS scans were recorded in

data-dependent mode with a threshold of 1.2 × 105 and 15 s

exclusion for the selected m/z ± 10 ppm. Samples were analyzed

with a technical replicate added randomly to each 7 injections.
Data processing

The Andromeda search engine of the MaxQuant software

v1.6.17.0 (32) was used to analyze the raw LC-MS/MS data. For

this, a database was created by an initial MaxQuant run using the

full human proteome (downloaded from UniProtKB on 20-01-

2021, n = 194,237) (33). Protein identifiers obtained as

identification from this initial run were used to create a

human milk database for a second run (n = 24,175), in which

also a cow milk protein (n = 1,006) and an allergen protein

database (n = 721) were added, as described before (18).

In MaxQuant, digestion specificity was set to Trypsin/P, with

maximally 2 missed cleavages. A fixed propionamide

modification was set for cysteines and variable modifications for

acetylation of the peptide N-term, deamidation of the side chains
Frontiers in Immunology 05
of asparagine and glutamine, and oxidation of methionine, with a

maximum of five modifications per peptide were set.

Label-free quantification (LFQ) was used to obtain protein

abundances. Per identified protein group, a leading protein was

selected as described before (18) and proteins were manually

annotated with keywords using the UniProtKB database (33)

(accession date: 21-02-2022). Non-human sequences were only

included if they had an identification score >80 and if there was

no match with any human protein. The Peptide Match service of

the online Protein Information Resource (34) was used to check

for matches with human proteins. This service uses an up-to-

date UniProtKB database and sequences were matched to this

database without isoforms, where leucine and isoleucine were

treated as equivalent.

The mass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the PRIDE (35) partner

repository with the data set identifier PXD034806. Sample

metadata can be made available upon request. Requests can be

submitted via email to child@mcmaster.ca.
Statistical methods

Missing data
In dealing with the missing values in the proteomics data,

identifications were first filtered with the requirement that proteins

had a minimum of 25 valid values in at least one of the four sample

groups. In practice this resulted in a minimum of 49 and a median

of 209 valid values. This way of filtering the data prevented the

removal of proteins that had only valid values in one of the four

sample groups. Following this, the remaining missing values were

imputed using the GSimp package (36). This Gibbs sampler-based

algorithm imputesmissing values with the assumption thatmissing

values are not at random (MNAR) and left-censored.

Univariate analysis
The Kruskal-Wallis test was applied to deduce differences in

protein abundance between themilk frommothers in the different

mother-child allergy status groups (37). Resulting p-values were

corrected for multiple testing using Benjamini-Hochberg

correction (38). After correction, an adjusted p-value<0.05 was

considered significant. Dunn’s multiple comparison test (39) was

applied to determine differences between specific groups and also

these p-values were corrected for multiple hypothesis testing

using Benjamini-Hochberg correction.

Principal component analysis
For unsupervised data exploration, Principal Component

Analysis (PCA) (40) was applied on the 300 × 687 data matrix

(samples × proteins), using the FactoMineR package for R (41).

This method enabled investigation of the data structure and the

possible presence of patterns in protein abundance that cause
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differentiation between samples from groups with different allergy

status. Data was scaled to unit variance before analysis.
Random Forest modeling
Random Forest (42) classification models were built using

the R package “randomForest” (43) as described before (44). Six

different models were built to discriminate between the different

mother-child allergy groups, covering all pairwise comparisons

of allergic/non-allergic mothers with allergic/non-allergic

children. The significance of the reported results was assessed

with a permutation test using 1000 permutations.
Network inference and analysis
Probabilistic context likelihood of relatedness on
correlation (PCLRC)

For a more complete investigation of the proteome,

relationships among proteins need to be considered. Such

relationships between proteins can be captured using an index of

association like a correlation coefficient (22). Protein-protein

association networks were built using the Probabilistic Context

Likelihood of Relatedness on Correlation (PCLRC) algorithm (45).

This algorithm provides a robust estimation of correlation, using

resampling and a modified version of the Context Likelihood of

Relatedness (CLR) algorithm (46) to remove nonsignificant

background correlations. A graphical representation of the

pipeline used for the generation of the protein-protein association

networks was provided by Saccenti et al. (45).

With resampling (n iterations = 1000), 75% of each dataset was

randomly selected and subjected to the CLR algorithm. This process

resulted in a matrix with a probabilistic measure pij for each

correlation between proteins rij, where i and j indicate the i-th and

j-thprotein in theSpearmancorrelationmatrix.Withthis resampling

protocol, the likelihoodof eachobservation is obtained.Theoutput, a

probabilistic network, contains estimates of how probable the

association between any two proteins is. Correlations were retained

if pij >0.99 and all other correlations were replaced with 0.

rij =
rij if pij ≥ 0:99

0 if pij < 0:99

(

Networks were built for each different mother-child allergy

group, resulting in a total of 4 protein networks. The

connectivity of a protein i in network a with mother-child

allergy status S is defined according to:

ca∈S
i = o

J

j=1
rij
�� �� !

− 1

The differential connectivity (Figure 2) between two

networks a and b, with different mother-child allergy statuses

S1 and S2, is calculated by:

Da∈S1,b∈S2
i = ca∈S1

i − cb∈S2
i
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All p-values for differential connectivity were adjusted for

multiple testing with Benjamini-Hochberg correction (38).

Significant differential connectivities (p<0.05) were considered

for further analysis and interpretation.

Covariance simultaneous component analysis
(COVSCA)

To explore comprehensively the (dis)similarity among the

protein association networks, Covariance Simultaneous

Component Analysis (COVSCA) was used (47). With this

approach, differences and commonalities between the different

networks can be modeled.

In comparing networks with COVSCA, each network

becomes a point in the component space. Thus, the method

enables a representation and visualization of multiple networks in

a way that is similar to PCA. Points (protein association networks

of different sample groups) that are close to each other in the R-

dimensional space share similar characteristics, i.e., similar

correlation patterns between protein abundances. Furthermore,

the loadings of the components give the relative contribution of

each protein in shaping the observed network differences.

COVSCA, initially developed formodelingmultiple covariance

matrices at the same time, can also be used for the adjacency

matrices resulting from PCLRC. The K matrices are modeled as a

combination of low dimensional prototypes (L<< K):

Sk =o
L

l=1

cklZlZ
T
l

In this, ckl ≥ 0(l = 1,2,…,L) are weight coefficients, and ZlZ
T
l

are prototypical symmetric matrices consisting of loading Z of

size J × Rl that hold simultaneously for all Sk.

Two rank-1 prototype matrices were used to fit the model,

resulting in one set of loadings per component. This fit was

chosen as the best compromise between goodness of fit (74%)

and the complexity of the COVSCA model (rank and number of

the prototypical matrices). COVSCA loadings were transformed

to z-scores and loadings with z > |2| were further investigated.

Overrepresentation analysis
The GORILLA (Gene Ontology enRIchment anaLysis and

visuaLizAtion tool) (http://cbl-gorilla.cs.technion.ac.il/) tool

(48) was used for overrepresentation analysis of gene ontology

(GO) annotations in proteins that were differentially connected.

The tool was used in two list mode where all proteins identified

in the current study were used as background set. All p-values

reported were corrected with Benjamini-Hochberg correction

(38), and considered significant if p<0.05.
Results

Proteomic analysis of all samples led to a total of 1690

identified proteins before filtering on missing values. After
frontiersin.org
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filtering these proteins on the requirement of being identified ≥ 25

times in at least one of the four mother-child allergy groups, 687

proteins remained for further data analysis. In this filtered dataset,

the number of identified proteins per sample ranged between 242

and 636 (median = 480). The major milk proteins a-lactalbumin,

albumin, lactoferrin, b-casein, and as1-casein, were in all analyzed

samples among the 15 most abundant proteins. A complete

overview of the 687 identified proteins can be found in

Supplementary Table 1.
Univariate analysis

Differences in protein abundance between the different

mother-child allergy groups were assessed with Kruskal-Wallis

tests. After correction for multiple hypothesis testing, no

significant differences were found among the four groups

(Table 1). Kruskal-Wallis outcomes with uncorrected p < 0.05

were further assessed with Dunn’s post-hoc tests and subsequent

correction for multiple testing, which resulted in 30 proteins that

showed a difference between the groups with corrected p <

0.05 (Table 1).

Most of these differences (n = 17) were found between the

non-allergic group (M-C-) and the group where only the child

ultimately developed an allergy (M-C+). Proteins that differed

between these groups were primarily Ig chains (15 out of 17) and

were mostly higher in abundance in the group where the mother

was non-allergic and the child developed an allergy (Figure 3).

Additionally, 3 of these Igs show also a higher abundance in milk

from allergic mothers with children who did not develop

an allergy.

Further investigation of all identified Ig proteins showed that

the mean abundance of these proteins is generally lower in the

groups where mother, child or both are allergic, when compared

to the non-allergic group (Figure 4). This effect is clearest in the

comparison of the group where only the child developed an

allergy with the group where both mother and child are

nonallergic. Out of 83 Ig proteins, 77 have a mean abundance

that is higher in the group where the child developed an allergy.
Non-human proteins

In the current study, several non-human proteins were

identified (n = 11), including albumin from dog, horse, and

cat, as well as bovine as1-casein and BLG (Table 2). However, the

majority of these proteins were only found with few tryptic

peptides in a low number of samples and filtered out before

further data analysis. Additional non-human proteins of

potential interest that were included in the database, but not

identified in any samples, include allergens from, for example,

peanut, egg, and house dust mite.
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Multivariate exploratory analysis

To explore whether patterns in the abundance of proteins

allow a differentiation of the different mother-child allergy status

groups, PCA was performed. The visualization of all samples

using the first two components of the PCA shows that there is no

separation between the groups of different allergy status of

mother and child (Figure 5), suggesting no major global

differences between the protein profiles of these four groups.
Prediction of allergy status using
Random Forest models

Random Forest classification was used to discriminate the

samples of the different mother-child allergy groups based on the

milk protein profile. Two-group models were built for all

combinations of maternal allergy status and child allergy

status. From the results shown in Table 3, it can be noted that

all classification models have low discriminating power and that

it was therefore not possible to discriminate between the groups.

The best accuracy, 60% which would still be considered “poor,”

was obtained for the model that discriminates between the group

where only the child developed an allergy and the group where

both mother and child were non-allergic. Together, this

indicates that difference in allergy status is only to a limited

extent reflected in the abundance of proteins in human milk, as

was also shown by the univariate analysis.
Network analysis

Next, differential network analysis was applied to investigate

whether maternal allergy status or the development of allergy in

the child is reflected in the milk protein profile in more

complex ways.

Network inference
The protein-protein association networks (Supplementary

Figure 1) of the different mother-child allergy status groups were

used to calculate the connectivity of each protein in each

mother-child allergy group. The PCLRC algorithm retained

mostly positive associations and connectivity represents the

number of associations per protein. A comparison of the

protein connectivity is visualized in Figure 6. What can be

observed from this figure is a pattern that for the groups

where at least either mother or child is allergic, there is

stronger interconnectivity between milk proteins when

compared to the group where both mother and child are

non-allergic.

To investigate this pattern further, proteins with differential

connectivity > 50 were selected for further investigation
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TABLE 1 Results of univariate analysis (Kruskal-Wallis) with subsequent post-hoc test (Dunn’s) for the comparison of protein abundance in milk
from allergic (M+) and non-allergic (M-) mothers, with children who developed an allergy (C+) and did not develop an allergy (C-) in the CHILD
Cohort Study.

Comparison

Leading protein UniProt
ID

Keyword p-
valuea

Adjusted
p-valuea

Group
1

Group
2

Adjusted
p-valueb

Trend

Prosaposin P07602 Lipid metabolism 0.046 0.915 M-/C- M-/C+ 0.035 ⇓

N-acetylglucosamine-6-sulfatase P15586 Hydrolase 0.040 0.915 M-/C- M-/C+ 0.040 ⇓

IGL c830-light A0A5C2FXC1 Immunoglobulin 0.031 0.813 M-/C- M-/C+ 0.022 ⇓

V2-7 protein A2MYD4 Immunoglobulin 0.014 0.813 M-/C- M-/C+ 0.017 ⇓

IGL c1566-light A0A5C2G1B3 Immunoglobulin 0.009 0.813 M-/C- M-/C+ 0.005 ⇓

IGL c560-light A0A5C2G943 Immunoglobulin 0.025 0.813 M-/C- M-/C+ 0.028 ⇓

IGH + IGL c632-heavy A0A5C2GC20 Immunoglobulin 0.004 0.644 M-/C- M-/C+ 0.002 ⇓

IG c662-heavy A0A5C2GE75 Immunoglobulin 0.002 0.644 M-/C- M-/C+ 0.002 ⇓

IG c326-heavy A0A5C2GF50 Immunoglobulin 0.012 0.813 M-/C- M-/C+ 0.013 ⇓

IG c56-heavy A0A5C2GL63 Immunoglobulin 0.001 0.644 M-/C- M-/C+ 0.006 ⇓

IG c1713-heavy A0A5C2GS26 Immunoglobulin 0.044 0.915 M-/C- M-/C+ 0.029 ⇓

Lambda-chain A2NUT2 Immunoglobulin 0.030 0.813 M-/C- M-/C+ 0.026 ⇓

Immunoglobulin heavy P01877 Immunoglobulin 0.003 0.644 M-/C- M-/C+ 0.002 ⇓

Immunoglobulin alpha-2 heavy P0DOX2 Immunoglobulin 0.017 0.813 M-/C- M-/C+ 0.014 ⇓

Immunoglobulin kappa light P0DOX7 Immunoglobulin 0.012 0.813 M-/C- M-/C+ 0.043 ⇓

Immunoglobulin heavy Q9NPP6 Immunoglobulin 0.048 0.915 M-/C- M-/C+ 0.036 ⇓

IgG H chain S6BGF5 Immunoglobulin 0.012 0.813 M-/C- M-/C+ 0.015 ⇓

V2-7 protein A2MYD4 Immunoglobulin 0.014 0.813 M-/C- M+/C- 0.034 ⇓

IGH c442-heavy A0A5C2G767 Immunoglobulin 0.018 0.813 M-/C- M+/C- 0.012 ⇑

IGL c560-light A0A5C2G943 Immunoglobulin 0.025 0.813 M-/C- M+/C- 0.028 ⇓

IG c56-heavy A0A5C2GL63 Immunoglobulin 0.001 0.644 M-/C- M+/C- 0.002 ⇓

Trans-Golgi network integral membrane
protein 2

O43493 Membrane
protein

0.021 0.813 M-/C- M+/C- 0.024 ⇓

Synaptobrevin homolog YKT6 O15498 Transport 0.032 0.813 M-/C- M+/C- 0.034 ⇓

Dyslexia-associated protein
KIAA0319-like protein

Q8IZA0 Membrane
protein

0.005 0.644 M-/C- M+/C- 0.003 ⇑

RNA-binding region-containing protein 3 Q96LT9 RNA-binding 0.018 0.813 M-/C- M+/C- 0.040 ⇑

V2-7 protein A2MYD4 Immunoglobulin 0.014 0.813 M-/C- M+/C+ 0.050 ⇓

IGH + IGL c632-heavy A0A5C2GC20 Immunoglobulin 0.004 0.644 M-/C- M+/C+ 0.040 ⇓

IG c56-heavy A0A5C2GL63 Immunoglobulin 0.001 0.644 M-/C- M+/C+ 0.031 ⇓

Synaptobrevin homolog YKT6 O15498 Transport 0.032 0.813 M-/C- M+/C+ 0.034 ⇓

Immunoglobulin heavy P01877 Immunoglobulin 0.003 0.644 M-/C- M+/C+ 0.048 ⇓

Immunoglobulin kappa light P0DOX7 Immunoglobulin 0.012 0.813 M-/C- M+/C+ 0.043 ⇓

IG c662-heavy A0A5C2GE75 Immunoglobulin 0.002 0.644 M-/C+ M+/C- 0.018 ⇑

Cathepsin C B4DJQ8 Peptidase 0.026 0.813 M-/C+ M+/C- 0.019 ⇑

Complement component C7 P10643 Complement
protein

0.030 0.813 M-/C+ M+/C- 0.037 ⇑

Inactive
C-alpha-formylglycine-generating enzyme
2

Q8NBJ7 Metal-binding 0.019 0.813 M-/C+ M+/C+ 0.048 ⇓

Plectin Q15149 Cell structure 0.034 0.836 M-/C+ M+/C+ 0.046 ⇓

Protein FAM3C Q92520 Cytokine 0.007 0.790 M-/C+ M+/C+ 0.004 ⇑

Inactive
C-alpha-formylglycine-generating enzyme
2

Q8NBJ7 Metal-binding 0.019 0.813 M+/C- M+/C+ 0.018 ⇓

Matrilin-2 O00339 Matrilin 0.023 0.813 M+/C- M+/C+ 0.014 ⇓

(Continued)
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FIGURE 3

Violin plots visualizing the differences in abundance of the 4 most significantly different immunoglobulin (Ig) chains between the different allergy
status groups from the CHILD Cohort Study. Differences between groups are indicated with p-values from Dunn’s post-hoc tests, and means of
each group are shown with black, horizontal lines. In the labeling of the groups, M indicates mother, C indicates child, + indicates allergy, and -
indicates no allergy.
TABLE 1 Continued

Comparison

Leading protein UniProt
ID

Keyword p-
valuea

Adjusted
p-valuea

Group
1

Group
2

Adjusted
p-valueb

Trend

Trans-Golgi network integral membrane
protein 2

O43493 Membrane
protein

0.021 0.813 M+/C- M+/C+ 0.024 ⇑

cDNA FLJ50830 B4DPR2 Albumin 0.022 0.813 M+/C- M+/C+ 0.034 ⇓

Alpha-S1-casein D6RF34 Transport 0.030 0.813 M+/C- M+/C+ 0.037 ⇓

Immunoglobulin kappa light P0DOX7 Immunoglobulin 0.012 0.813 M+/C- M+/C+ 0.043 ⇓

Plectin Q15149 Cell structure 0.034 0.836 M+/C- M+/C+ 0.048 ⇓

RNA-binding region-containing protein 3 Q96LT9 RNA-binding 0.018 0.813 M+/C- M+/C+ 0.019 ⇓
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The trend indicates higher (⇑) or lower (⇓) abundance in the first group in the comparison. Listed are all proteins with uncorrected p-value< 0.05 (Kruskal-Wallis) and corrected p-value<
0.05 (Dunn’s), sorted by the mother-child allergy groups in the comparison.
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(Supplementary Table 1). These proteins had the largest

differences in connectivity among the four different groups and

were selected for further functional analysis, to determine

possible functional consequences of the differences between the

networks. The selection resulted in 160, 168, and 144 proteins for

the comparison of the group with non-allergic mother and child
Frontiers in Immunology 10
with respectively (i) allergic mother and non-allergic child, (ii)

non-allergic mother and allergic child, and (iii) allergic mother

and child groups. From these proteins, 79 proteins occurred in all

three selections, showing a similarity in differential connectivity.

Interestingly, GO overrepresentation analysis of these proteins

showed a significant overrepresentation of proteins involved in
TABLE 2 Identified non-human tryptic peptides in human milk samples from the CHILD Cohort Study (n = 150 allergic mothers and 150 non-
allergic mothers).

Sequence UniProt
ID

Leading
protein

Organism Identified in n (%)
samples from allergic

mothers

Identified in n (%)
samples from

non-allergic mothers

Identification
scoreb

KQTALVELLK P49822 Albumin Bos taurus
(Bovine)

15 (10) 20 (13) 87.3

LVNELTEFAK P02769 Albumin Bos taurus
(Bovine)

107 (71) 106 (71) 125.0

EKVNELSK P02662 as1-casein Bos taurus
(Bovine)

2 (1) 3 (2) 149.7

HIQKEDVPSER P02662 as1-casein Bos taurus
(Bovine)

7 (5) 2 (1) 93.6

FLDDDLTDDIMCVK P00711 Alphalactalbumin Bos taurus
(Bovine)

12 (8) 14 (9) 164.6

FLDDDLTDDIMCVKK P00711 Alphalactalbumin Bos taurus
(Bovine)

5 (3) 9 (6) 107.1

IDALNENK P02754 b-lactoglobulin Bos taurus
(Bovine)

20 (13) 18 (12) 89.8

LISVDTEHSNIYLQNGPNR F1N076 Ceruloplasmin Bos taurus
(Bovine)

40 (27) 37 (25) 203.6

MFTTAPDQVDKENEDFQESNK F1N076 Ceruloplasmin Bos taurus
(Bovine)

2 (1) 2 (1) 88.0

VTISCSGGR Q29RQ1 Complement
component C7

Bos taurus
(Bovine)

83 (55) 88 (59) 128.7

IVVDNKCK Q3SYR8 Immunoglobulin
J chain

Bos taurus
(Bovine)

125 (83) 123 (82) 124.3

AQQHYPVSAGYTK P11151 Lipoprotein
lipase

Bos taurus
(Bovine)

67 (45) 66 (44) 129.5

QEPDRNECFLAHK P49822 Albumin Canis lupus
familiaris
(Dog)

141 (94) 139 (93) 99.5

KCAADESAENCDKSLHTLFGDK A0A8C4PRE0 Albumin Equus
caballus
(Horse)

2 (1) 0 (0) 81.9

LVNEVTEFAKK A0A8C4PRE0 Albumin Equus
caballus
(Horse)

119 (79) 117 (78) 124.1

AEFAEISK P49064 Albumin Felis catus
(Cat)

69 (46) 71 (47) 84.9

AFKAWSVAR P49064 Albumin Felis catus
(Cat)

86 (57) 88 (59) 98.3

YICENQDSISTK P49064 Albumin Felis catus
(Cat)

75 (50) 79 (53) 146.1
a Score from the MaxQuant output indicating the quality of the identification of the peptide. A higher score represents a better identification.
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FIGURE 4

Volcano plots visualizing the trend in immunoglobulin abundances in milk from different mother-child allergy status groups from the CHILD Cohort
Study. Each data point represents one protein, with on the x-axes the ratio of the means of the log10 transformed label-free quantification (LFQ).
Immunoglobulin-related proteins are represented by red and other proteins with grey dots. Colored labels on left and right side of x = 0 indicate in
which mother-child allergy status group the mean abundance of the respective proteins is higher. In the labeling of the groups, M indicates mother, C
indicates child, + indicates allergy, and - indicates no allergy. A trend can be observed that most immunoglobulin-related proteins are higher in
abundance in the group where the mother is non-allergic and the child ultimately develops an allergy.
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translation initiation (p = 9.13 × 10-9). This overrepresentation is

due to 23 ribosomal proteins and translation elongation

factor EEF1A1P5.

None of the differentially connected proteins showed a

difference in abundance between the different mother-child

allergy groups with univariate analysis, indicating the

complementarity of these two approaches.

Network modeling
In addition to pairwise comparison of networks, a simultaneous

comparison was carried out using COVSCA. With COVSCA,

similarities and differences in protein-protein correlation patterns

can be analyzed for a set of networks. In the visualization of the

results of COVSCA, each network is a data point in the component

space (see Figure 7). In this comparison, the networks of the four

different groups were compared. From this, it can first be observed

that the group with both non-allergic mothers and non-allergic
Frontiers in Immunology 12
children shows differences in correlation patterns with all other

groups. Both Component 1 and 2 account for the separation

between these groups. Second, the group where only mothers are

allergic shows a difference in network correlation patterns with the

non-allergic group on Component 1. Thirdly, groups comprising

children who developed an allergy show similarities in correlation

patterns on both components.

To investigate these observations further, the loadings of the

COVSCA model with z > |2| were examined. These loadings

represent the proteins that contributed the most to the difference

in correlation patterns between the different networks.

The loadings for component 1 (see Figure 8) are

overrepresented by proteins involved in gluconeogenesis (p =

0.003), the synthesis of glucose. This component accounts for

separation between the non-allergic group and the other three

groups. The second component, which drives the separation of

the groups on allergy status of the child, does not show a
FIGURE 5

Scatter plot of principal component analysis (PCA) representing the human milk protein profile of mother-child dyads from the CHILD Cohort
Study. Each point represents one dyad. No obvious differences can be observed among protein profiles of different mother-child allergy groups
using this method.
TABLE 3 Outcome of Random Forest models on human milk proteins for the discrimination of groups with different allergy statuses from the
CHILD Cohort Study.

Comparison

Group 1 Group 2 Accuracy (%), (p-value) Specificity (%), (p-value) Sensitivity (%), (p-value) AUROC, (p-value)

M+/C+ M+/C- 47.3 (0.57) 53.3 (0.18) 41.3 (0.84) 52.1 (0.74)

M+/C+ M-/C+ 42.0 (0.87) 45.3 (0.62) 38.7 (0.93) 61.0 (0.12)

M+/C+ M-/C- 51.3 (0.28) 48.0 (0.46) 54.7 (0.14) 52.4 (0.72)

M+/C- M-/C+ 50.0 (0.37) 52.0 (0.24) 48.0 (0.50) 50.7 (0.91)

M+/C- M-/C- 46.7 (0.62) 44.0 (0.71) 49.3 (0.42) 51.5 (0.83)

M-/C+ M-/C- 60.0 (0.01) 65.3 (0.00) 54.7 (0.18) 64.3 (0.04)
Comparisons of the groups are labelled according to allergy status, with allergic (M+) and non-allergic (M-) mothers, and allergic (C+) and non-allergic (C-) children.
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significant overrepresentation of gene ontology terms. However,

among these proteins are 11 proteins involved in translation as

well as 3 members of the tailless complex polypeptide 1 ring

complex (TRiC or CCT).
Discussion

We investigated the associations of human milk proteins

with maternal and child allergy. Using univariate analysis,

predictive modeling, and network analysis, several relevant

differences and distinctive patterns were found between groups

differing in allergy status.
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Differences in immunoglobulin
abundances between groups with
different allergy statuses

Several proteins showed differences in relative abundancewhen

the differentmother-child allergy groups were compared. Although

none were statistically significant after traditional correction for

multiple testing, this does not necessarily imply they are biologically

insignificant. It is widely acknowledged that correctionmethods for

multiple hypothesis testing can be too stringent for bottom-up

proteomics data (49, 50) because each protein is represented by

multiple tryptic peptides. Therefore, we reported both corrected

and uncorrected p-values, and discuss the findings.
FIGURE 6

Human milk protein connectivity in the different mother-child allergy groups from the CHILD Cohort Study. Each subplot represents a pairwise
comparison of protein connectivity in two mother-child allergy groups and each dot represents a single protein. Protein connectivity is obtained
from the adjacency matrices build with the PCLRC algorithm and all groups are compared with one another in each subplot. In the labeling of
the groups, + indicates allergy and - indicates no allergy. The group in which both mother and child are non-allergic shows a distinct
connectivity pattern with an overall lower connectivity of the proteins.
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Most of the differences in protein abundance were found

between non-allergic mothers with non-allergic children and the

group where only the child developed an allergy. This result was

also reflected in the accuracy of the Random Forest classification

model for these two groups, which was the highest (60%) among

all models. The differentially abundant proteins were mainly Ig

variable domains. These results point to differences in specific Igs

in milk consumed by children who ultimately develop an allergy,

and these differences did not seem to be directly linked to the

mother’s allergy status. This finding raises two important

questions for future research: (i) why do these mothers secrete

these specific Igs in higher abundance in their milk, and (ii) could

the development of allergy in children be related to these Igs?

Regarding thefirst question, thefindings in this study show that,

regardlessofmaternal allergy status,milk forchildrenwhoultimately

develop an allergy had higher abundances of specific Igs. Possibly,

other factors that lead to allergy development in the child, such as

health conditions, genetics, dietary patterns, or environmental

exposures, also lead to higher abundance of Igs in the milk.

Another possibility is that infants who would develop an allergy

somehow cause higher abundance of specific Igs in the milk of the

mother. Further research is required to explore these possibilities.
Frontiers in Immunology 14
When it comes to the second question, there is contradicting

evidence. It has been shown that higher abundance of specific Igs

in human milk could help in the healthy development of the

child’s immune system. For example, a study conducted by

Ohsaki et al. (51) showed that ovalbumin-specific IgG immune

complexes in human milk fed to mice induced tolerance. A study

by Lupinek et al. (52) complements this by showing that

allergen-specific IgG originating from cord blood or breast

milk seemed to protect against allergic sensitization.

Nevertheless, Järvinen et al. (16) showed that cow’s milk

specific IgA levels in human milk did not correlate with the

development of cow’s milk allergy in the child.

Unfortunately, more details on the function or specificity of

the identified Ig variable domains are not available. A complete

analysis of the sequence diversity of the antibody repertoire

could be done with targeted approaches (53–55), but was outside

the scope of the current study.

Notably, soluble CD14, a protein in human milk that may be

protective against the development of food allergies (56, 57), was not

different between the allergy groups in our study (uncorrected p =

0.43). This and other contradictions with prior studies could be

related to our clinical definition of allergy. For example, in a
FIGURE 7

Score plot of the COVSCA model for the protein correlation network obtained using PCLRC of different groups based on maternal and child
allergy status in the CHILD Cohort Study. Each point represents a protein-protein association network of one mother-child allergy group (+
indicates allergy, and - indicates no allergy). Protein importance for each component is shown in Figure 8. The groups with children who
ultimately developed an allergy show similarities, whereas all the other groups show dissimilarities in correlation patterns.
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previous study, significant differences were observed in comparing

milk from mothers with house dust mite allergy and non-allergic

mothers (58). These differences concerned especially protease

inhibitors and apolipoproteins. We did not find these proteins to

be different in abundance, which is possibly due to differences in the

definition of allergy.Hettinga et al. (58) used a rather strict definition

of house dust mite allergy, combined with high immunoglobulin E

(IgE) levels in the blood and high environmental exposure to house
Frontiers in Immunology 15
dust mite, whereas we applied a more heterogeneous definition

encompassing diagnosis of multiple allergic conditions.

Relatively few non-human proteins were identified in a low

number of samples, and no apparent differences were observed

between the different allergy groups (Table 2). Nevertheless,

some studies have argued that non-human proteins, especially

allergens, play an important role in allergy development (19, 59,

60). Data from several sources show that most of these proteins
FIGURE 8

COVSCA loadings of the COVSCA model of different groups based on maternal and child allergy status in the CHILD Cohort Study. Loadings indicate
the importance of each protein for the differences or similarities in correlation patterns observed in the COVSCA score plot (Figure 7). Proteins are
labeled with gene IDs along the y-axis, and colors indicate shared gene ontology annotations. Among the proteins important for explaining the
variability between the networks are proteins involved in gluconeogenesis, translation, and the tailless complex polypeptide 1 ring complex (TRiC).
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originate from the diet and especially from cow’s milk or cow’s

milk products (18, 61). The difference between prior studies and

the current study might be due to differences in, e.g., maternal

consumption of dairy products. The presence of horse albumin

in nearly half of the samples, is an intriguing finding. The

respective sequence was identified before in human milk (18)

and might originate from horse dander (62) or other products

containing horse. Another explanation might be that the

respective sequence is not unique for horse, although no

evidence was found for this.
Distinctive patterns of connectivity for
groups with different allergy statuses

A particularly novel aspect of our study was the network

analyses, which demonstrated distinctive association patterns

between proteins when groups differing in allergy status were

compared. These differences in the networks point to differences

in pathway regulation being specific for one or more groups. Our

most striking finding is the overall lower protein connectivity

observed in the group where both mother and child are non-

allergic. This overall difference in connectivity might reflect

maternal lifestyle, environmental exposures, or health. For

example, a recent study by Yan et al. (63) showed that disease-

associated stress brought about the remodeling of protein

pathways, leading to a proteome-wide increase in interaction

strength and change in connectivity. Although such an increase

in connectivity has not been described before regarding the

human milk proteome and allergy, there is evidence showing

that allergies are linked to systemic inflammation (64, 65). Such

a state of systemic inflammation might, in turn, result in a

change in protein connectivity in the human milk proteome.

Interestingly, in the COVSCA model, we observed that

correlation patterns of proteins involved in gluconeogenesis were

important for separation between the non-allergic group and the

other threegroups.The importanceof theseproteins intheseparation

points to differences in the regulation of glucose allocation to the

mammary epithelial cells, which could reflect a competition between

immune and epithelial cells for glucose, as it is known that during an

immune response, immune cells need more glucose (66).

We also detected an overrepresentation of proteins involved in

the translation machinery among the differentially connected

proteins, which suggests a difference or dysregulation in

translation machinery in allergic and non-allergic mothers with

children who will develop an allergy. In addition, COVSCA

loadings show different correlation patterns between these groups

for proteins from the TRiC/CCT complex, which plays an essential

role in protein folding and proteostasis (67). How these TRiC/CCT

proteins and proteins from the translationmachinery end up in the

milk is not known, but theymight originate fromcells present in the

milk (68). Their difference in connectivity among the different
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groups might then be due to, for example, different types of cells

ending up in milk or different metabolic pathways being active in

these cells. The latter would be in line with Calvano et al. (69), who

found that in blood leukocytes from patients with systemic

inflammation, there are dysregulations in, amongst others,

elongation initiation factors and ribosomal proteins. This

dysregulation could explain the stronger connectivity of the

protein synthesis machinery in milk from allergic mothers, who

possibly have a higher level of systemic inflammation. Nevertheless,

stronger connectivity was also observed in milk from non-allergic

mothers with children who would develop an allergy. No studies

were found that could explain this observation, and further research

should be undertaken to investigate and clarify this.
Limitations and strengths

Although bottom-up proteomics has many advantages, it

also has limitations. One of these is the dependence on a

database; in other words, protein sequences not present in the

database cannot be identified. This limitation poses a challenge,

for example, in the identification of the variable regions of the

Igs, of which many sequences are not available in databases.

Another limitation is the large number of identifications

resulting from these techniques, which requires stringent

multiple hypothesis testing in classical univariate data analysis.

Finally, although a relatively large sample size was used in the

current study, it included considerable clinical heterogeneity in

the definition of ‘allergy.’ It is possible that this clinical

heterogeneity could have obscured the effect resulting from

specific allergy phenotypes (e.g., food allergies or asthma) if

these would have distinct associations with milk proteins.

In summary, this study set out to investigate the human milk

proteome and its relations with both maternal allergy status and

child allergy development. The results show trends in differential

abundances of immune-related proteins between the mother-

child allergy groups, suggesting possible variation in the

immunological potential of human milk. However, an attempt

to exploit these differences to build Random Forest classification

models resulted in low predictive power. This outcome was

confirmed with multivariate exploratory analysis which did not

show differences in the data structure for the different groups.

Interestingly, using a network approach, which enables

investigation of protein-protein associations, significant

differences were found among the different groups. The major

finding was an overall stronger connectivity of proteins in the

milk of allergic mothers and milk for infants who ultimately

developed an allergy, showing that the allergy status of either

mother, child, or both is reflected in the interconnectedness of

the milk proteins. Collectively, these results show that network

analysis complements univariate analysis, multivariate analysis,

and classification models to reveal complex relationships
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between maternal-child allergy phenotypes and the human milk

proteome. Specifically, the network analysis points to a

difference in the regulation of translation processes and

protein folding in the groups where the child ultimately

developed an allergy, possibly reflecting the physiological state

of the mother. Further research is warranted to investigate these

associations and the implicated biological pathways to

understand their possible functional role in allergy

development and prevention.
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SUPPLEMENTARY FIGURE 1

Network representation of proteins in milk from the different mother-

child allergy status groups from the CHILD Cohort Study. Networks are
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inferred from the adjacency matrices obtained with the Probabilistic
Context Likelihood of Relatedness on Correlation (PCLRC) algorithm

and are created with a circular layout. In the labeling of the groups, +
indicates allergy and - indicates no allergy. It can be observed that there is

less protein connectivity (fewer edges) in the group where mother and
child are non-allergic when compared to the other groups.
SUPPLEMENTARY TABLE 1

Table with all identified proteins in human milk from the CHILD
Cohort Study.
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56. Labéta MO, Vidal K, Nores JER, Arias M, Vita N, Morgan BP, et al. Innate
recognition of bacteria in human milk is mediated by a milk- derived highly
expressed pattern recognition receptor, soluble CD14. J Exp Med (2000) 191:1807–
12. doi: 10.1084/jem.191.10.1807

57. Friedman NJ, Zeiger RS. The role of breast-feeding in the development of
allergies and asthma. J Allergy Clin Immunol (2005) 115:1238–48. doi: 10.1016/
j.jaci.2005.01.069

58. Hettinga KA, Reina FM, Boeren S, Zhang L, Koppelman GH, Postma DS,
et al. Difference in the breast milk proteome between allergic and non-allergic
mothers. PloS One (2015) 10:e0122234. doi: 10.1371/journal.pone.0122234

59. Schweitzer M, Macchiaverni P, Tulic MK, Rekima A, Annesi-Maesano I,
Verhasselt V, et al. Early oral exposure to house dust mite allergen through breast
milk: A potential risk factor for allergic sensitization and respiratory allergies in
children. J Allergy Clin Immunol (2017) 139:369–372.e10. doi: 10.1016/
j.jaci.2016.07.021

60. Pastor-Vargas C, Maroto AS, Dıáz-Perales A, Villaba M, Casillas Diaz N,
Vivanco F, et al. Sensitive detection of major food allergens in breast milk: First
gateway for allergenic contact during breastfeeding. Allergy Eur J Allergy Clin
Immunol (2015) 70:1024–7. doi: 10.1111/all.12646

61. Zhu J, Garrigues L, Van Den Toorn H, Stahl B, Heck AJR. Discovery and
quantification of nonhuman proteins in human milk. J Proteome Res (2019)
18:225–38. doi: 10.1021/acs.jproteome.8b00550

62. Davenport J, Smith D. Equine hypersensitivity: the dark horse of allergy.
Clin Rev Allergy Immunol (2020) 59:352–8. doi: 10.1007/s12016-020-08807-4

63. Yan P, Patel HJ, Sharma S, Corben A, Wang T, Panchal P, et al. Molecular
stressors engender protein connectivity dysfunction through aberrant n-glycosylation
of a chaperone. Cell Rep (2020) 31:107840. doi: 10.1016/j.celrep.2020.107840

64. Qi S, Barnig C, Charles AL, Poirot A, Meyer A, Clere-Jehl R, et al. Effect of
nasal allergen challenge in allergic rhinitis on mitochondrial function of peripheral
blood mononuclear cells. Ann Allergy Asthma Immunol (2017) 118:367–9.
doi: 10.1016/j.anai.2016.11.026

65. Czarnowicki T, Gonzalez J, Bonifacio KM, Shemer A, Xiangyu P, Kunjravia
N, et al. Diverse activation and differentiation of multiple b-cell subsets in patients
with atopic dermatitis but notin patients with psoriasis. J Allergy Clin Immunol
(2016) 137:118–129.e5. doi: 10.1016/j.jaci.2015.08.027

66. Habel J, Sundrum A. Mismatch of glucose allocation between different life
functions in the transition period of dairy cows. Animals (2020) 10:1–21.
doi: 10.3390/ani10061028

67. Grantham J. The molecular chaperone CCT/TRiC: An essential component
of proteostasis and a potential modulator of protein aggregation. Front Genet
(2020) 11:172. doi: 10.3389/fgene.2020.00172

68. Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, et al.
Leukocyte populations in human preterm and term breast milk iied by multicolour
flow cytometry. PloS One (2015) 10:e0135580. doi: 10.1371/journal.pone.0135580

69. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A
network-based analysis of systemic inflammation in humans. Nature (2005)
437:1032–7. doi: 10.1038/nature03985
frontiersin.org

https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/bioinformatics/btt484
https://doi.org/10.1093/bioinformatics/btt484
https://doi.org/10.1093/nar/gkv1145
https://doi.org/10.1371/journal.pcbi.1005973
https://doi.org/10.2307/3001968
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1037/h0071325
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
https://doi.org/10.1021/acs.jproteome.0c00882
https://doi.org/10.1021/acs.jproteome.0c00882
https://doi.org/10.1021/pr501075r
https://doi.org/10.1109/ICCITechn.2015.7488088
https://doi.org/10.1109/ICCITechn.2015.7488088
https://doi.org/10.1002/cem.2707
https://doi.org/10.1186/1471-2105-10-48
https://doi.org/10.1021/jasms.9b00142
https://doi.org/10.1002/pmic.201600044
https://doi.org/10.1084/jem.20171163
https://doi.org/10.1016/j.jaci.2018.11.051
https://doi.org/10.1016/j.tibtech.2021.08.006
https://doi.org/10.1016/j.celrep.2017.08.036
https://doi.org/10.3390/nu13051645
https://doi.org/10.1084/jem.191.10.1807
https://doi.org/10.1016/j.jaci.2005.01.069
https://doi.org/10.1016/j.jaci.2005.01.069
https://doi.org/10.1371/journal.pone.0122234
https://doi.org/10.1016/j.jaci.2016.07.021
https://doi.org/10.1016/j.jaci.2016.07.021
https://doi.org/10.1111/all.12646
https://doi.org/10.1021/acs.jproteome.8b00550
https://doi.org/10.1007/s12016-020-08807-4
https://doi.org/10.1016/j.celrep.2020.107840
https://doi.org/10.1016/j.anai.2016.11.026
https://doi.org/10.1016/j.jaci.2015.08.027
https://doi.org/10.3390/ani10061028
https://doi.org/10.3389/fgene.2020.00172
https://doi.org/10.1371/journal.pone.0135580
https://doi.org/10.1038/nature03985
https://doi.org/10.3389/fimmu.2022.977470
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	The human milk proteome and allergy of mother and child: Exploring associations with protein abundances and protein network connectivity
	Introduction
	Materials and methods
	Study design CHILD cohort
	Definition of allergy
	Sample collection
	Sample preparation
	LC-MS/MS analysis
	Data processing
	Statistical methods
	Missing data
	Univariate analysis
	Principal component analysis
	Random Forest modeling
	Network inference and analysis
	Probabilistic context likelihood of relatedness on correlation (PCLRC)
	Covariance simultaneous component analysis (COVSCA)

	Overrepresentation analysis


	Results
	Univariate analysis
	Non-human proteins
	Multivariate exploratory analysis
	Prediction of allergy status using Random Forest models
	Network analysis
	Network inference
	Network modeling


	Discussion
	Differences in immunoglobulin abundances between groups with different allergy statuses
	Distinctive patterns of connectivity for groups with different allergy statuses
	Limitations and strengths

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References 


