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Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized

by chronic inflammation of the synovial tissues and progressive destruction of

bone and cartilage. The inflammatory response and subsequent tissue

degradation are orchestrated by complex signaling networks between

immune cells and their products in the blood, vascular endothelia and the

connective tissue cells residing in the joints. Platelets are recognized as

immune-competent cells with an important role in chronic inflammatory

diseases such as RA. Here we review the specific aspects of platelet function

relevant to arthritic disease, including current knowledge of the molecular

crosstalk between platelets and other innate immune cells that modulate

RA pathogenesis.
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Introduction: RA pathophysiology

Rheumatoid arthritis (RA) is an autoimmune disease that affects ~0.4% of the global

population (1). The disease is characterized by chronic inflammation of the joints,

degradation of bone and cartilage (2), and progressive pain and loss of mobility such that

37% of RA patients become disabled (3). RA decreases life expectancy and is associated

with increased risk of lymphoma, cardiovascular disease, and lung cancer (4, 5). The

precise etiology of RA is unknown, but genetic predisposition (6), abnormal DNA

methylation patterns (7), smoking (8), infection (9), and gut microbiome dysbiosis (10)

contribute to RA development. A classic hallmark of RA is the presence of the self-

antigen binding anti-citrullinated protein antibodies (ACPA) that trigger chronic

activation of innate immune cells. Citrullination is a protein post-translational
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modification where the amino acid arginine is substituted for

citrulline, leading to the generation of ACPAs that initiate a pro-

inflammatory response (11).

During the onset of RA, the innate immune response

recruits platelets and platelet microparticles (PMPs) (12, 13) as

well as leukocytes (14) to the joints. PMPs and leukocytes are a

source of pro-inflammatory chemokines and cytokines (15) that

signal to the resident fibroblast-like synoviocytes (FLS) lining the

synovial cavity (16). FLS hyper-proliferate to form a tumor-like

structure called a pannus (2, 17). Angiogenesis lays down new

blood vessels that supply nutrients (18) and allow the pannus to

grow until it reaches the bone and cartilage where “activated”

and increasingly aggressive FLS secrete joint-destroying matrix

metalloproteinases (MMP) including MMP-1, MMP-3 and

MMP-13 (2, 17). Importantly, the distinct roles of platelets in

mediating the innate immune response are now increasingly

recognized in the context of RA.
Platelets are innate immune cells
that drive RA pathogenesis

Platelets are small (2-3 mm) anucleate blood cells responsible

for hemostasis (19). Resting platelets are activated by many

ligands, such as collagen and thrombin, via platelet surface

receptors (Figure 1A). Activated platelets change shape,

aggregate and secrete granule contents that include

prothrombotic mediators, cytokines, chemokines and growth

factors (20), resulting in thrombus formation at the site of injury

(Table 1). The process leading to activation is typically tightly

regulated, allowing most platelets to circulate in their quiescent

states under normal physiologic conditions. However, there is an

increasing body of evidence suggesting that dysregulation of

platelet activation may be a key factor in driving various chronic

inflammatory diseases, including RA (101).
A. Platelet activation and granule
secretion

There are three types of platelet granules: alpha (a)-granules,
dense granules, and lysosomes (reviewed in (102)). The first, and

most abundant, are the a-granules that contain a multitude of

cytokines, chemokines and growth factors (103). For example,

a-granules release multiple pro-inflammatory molecules,

including chemokine (C-C motif) ligand 5 (CCL5), soluble

CD40 ligand (sCD40L/sCD154), and CXCL4 (aka platelet

factor 4, PF4) (104). Furthermore, P-selectin (CD62P), a

biomarker of a-granule secretion and platelet activation (105),

is translocated from a-granules to the surface membrane upon

platelet activation. Surface P-selectin promotes activation of

leukocytes including neutrophils (see Platelet-neutrophil
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interactions section below). The second type of granule is the

dense granule, so named due to its electron-dense appearance

(102). The primary cargo of dense granules are nucleotides

(adenosine diphosphate (ADP) and adenosine triphosphate

(ATP)) and polyphosphates (102). Dense granule components

primarily regulate platelet hemostasis and thrombosis (106).

However, dense granules also release serotonin, which can

promote inflammation by stimulating lymphocytes and

neutrophils (95). The third type of granule is the lysosome,

which contains tissue-degrading enzymes (such as collagenase)

and acid phosphatase. As observed in other cell types, the key

role of platelet lysosomes is to orchestrate catalytic breakdown of

proteins (102).
B. Platelet extracellular vesicles

In addition to their granular contents, activated platelets

release two types of extracellular vesicles: exosomes and

microparticles (or microvesicles) (107). Firstly, exosomes are

30-100 nm vesicles contained within, and released with, larger

intracellular vesicles. Secondly, microvesicles or platelet

microparticles (PMPs) have a diameter of 100-1000 nm and

are formed by the outward blebbing of the plasma membrane.

PMPs are derived from the platelet plasma membrane and

therefore contain the same markers found on platelet surfaces,

including CD42 (glycoprotein Ib) and CD41/61 (integrin

aIIbb3) (107). Importantly, PMPs levels are increased in RA

and may drive RA progression via release of their pro-

inflammatory contents, e.g., interleukin-1 (IL-1) (12, 107).
C. Platelets are sentinels of the innate
immune system

Platelet-derived cargo molecules (Table 1) include pro-

inflammatory factors linked with chronic disorders including

arthritis and inflammatory bowel disease (12, 108). Notably,

platelets interact directly with bacteria (109), viruses (110) and

complement proteins (111) and as such, are essential

components of innate immunity. Platelets express toll-like

receptors (TLRs) that sense pathogenic molecules (112) such

as bacterial lipopolysaccharides (LPS) that induce platelet

activation, aggregation, and leukocyte chemotaxis (113). Thus,

platelets, as innate immune effectors, are recognized as critical

mediators of RA pathogenesis (114, 115).
D. Evidence of platelet involvement in RA

Early correlational evidence suggested a role for platelets in

the development and progression of RA, in that platelets were
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reportedly recruited to joints with their concentration in

synovial fluid correlating with disease activity (13, 116, 117).

Later research indicated that elevated circulating platelet count

(aka thrombocytosis) was associated with more severe RA (118).

Subsequently, seminal research identified PMPs (12) in the

synovial fluid of RA patients. Compared to patients with non-

inflammatory arthritis, RA synovial fluid contains more IL-1-

rich PMPs (12). Taken together, these data indicate that platelet

numbers are increased in RA, and that cytokine-laden PMPs are

heavily recruited to arthritic joints.

In addition to higher platelet counts, circulating levels of platelet

agonists are elevated in RA patients. For example, fibrinogen levels

correlate with the number of swollen joints and overall disease

activity (119). Thromboxane A2 (TXA2) is another platelet agonist

whose degradation product, TXB2, is correlated with disease activity

in RA (98). These data are consistent with elevated platelet activity

during active RA (120). This notion is further corroborated by

evidence of elevated soluble P-selectin (121) and sCD40L (122) in

RA plasma. Soluble CD40L levels correlate with autoantibody levels

in RA patients (123). Collectively, these data raise the possibility that

platelet-derived pro-inflammatory products and cytokines play a

role in propagating RA-associated joint inflammation. Animal

studies provide a degree of direct evidence for the involvement of

platelets in the RA pathogenesis. For example, platelet depletion

prior to the induction of arthritis in mice reduces disease severity

(12). Therefore, understanding the precise mechanisms by which

platelets drive synovial inflammation have important implications

for prospective therapies.
E. Molecules upregulated in RA promote
platelet activation

In addition to driving RA pathogenesis, platelets can also be

reciprocally activated by molecules that are elevated in RA

plasma or joint tissue. For example, a central feature of RA is

the generation of ACPA and formation of immune complexes

nucleated around citrullinated proteins (11). Immune complexes

bind and activate platelet Fc gamma receptor IIa (FcgRIIa) (124).
Platelets are also activated by complement fragments (111). As

such, complement activation during RA (125) can conceivably

create a feedback loop through which platelet activity is

continually elevated. Collectively, these data point to a two-

way relationship between platelet function and innate responses

in RA, where platelet-derived cytokines contribute to

inflammation (Figure 1B) and ACPA-immune complexes (and

other molecules) sustain platelet activation (Figure 1A).

Moreover, RA-associated inflammatory mediators likely

circulate and prime platelets systemically. These mechanisms

may explain why RA patients are at higher risk for life-

threatening complications such as deep vein thrombosis,

myocardial infarction, and stroke (126, 127).
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Platelet-driven signaling in the
synovial tissues

A. Platelet growth factor signaling to FLS

Platelet a-granules store multiple forms of platelet-derived

growth factor (PDGF) (128, 129), including the hetero and

homo A/B dimers (PDGF-A/B) (130). PDGF-BB was recently

confirmed to circulate in higher concentrations in RA patients

(131). Furthermore, the invasiveness and proliferation of human

FLS is increased following treatment with PDGF (62, 132).

PDGF also promotes FLS production of pro-inflammatory

cytokines IL-6, IL-8, as well as MMP-3 (133). In addition,

platelets a-granules are an abundant source of transforming

growth factor beta 1 (TGF-b1) (134). TGF-b1 stimulates the

migratory behavior and invasiveness of cultured FLS obtained

from RA patients (135). Interestingly, TGF-b reportedly acts

synergistically along with PDGF to trigger FLS proliferation and

a pro-inflammatory phenotype (132, 133). Collectively, these

data provide both clinical and in vitro evidence of how synovial

inflammation is likely propagated by platelet growth factors.
B. Platelet-derived cytokines and FLS

In addition to growth factors, platelet granules release

several pro-inflammatory cytokines that exacerbate RA disease

activity (Table 1). For example, platelets release copious

quantities of CCL5 (RANTES) (26). CCL5 drives RA

pathogenesis by upregulating MMPs in RA FLS (136).

Activated platelets also secrete IL-1b (12, 54). IL-1b promotes

synovial inflammation and RA progression by upregulating

RANKL expression by FLS (55), which, in turn drives

osteoclastogenesis and bone resorption (137). PMPs are

another source of IL-1a (12), IL-1b (12), CCL5 (138), and

sCD40L (139). Moreover, the role of PMPs in RA is supported

by the observation that they increase the invasiveness and

motility of cultured FLS (140, 141). Taken together, the

evidence supports a role for platelet-derived cytokines and

PMPs in synovial tissue degradation by promoting the release

of MMPs and additional pro-inflammatory cytokines from FLS.
Interplay between platelets and
other elements of the innate
immune system

In addition to modulating disease by signaling to FLS,

platelets interface directly with several other aspects of the

innate immune system (Figure 1B). Platelets activate

complement proteins and recruit leukocytes to the joint
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FIGURE 1 (Continued)

Platelet signaling contributes to the activation of innate immunity and the development of rheumatoid arthritis (RA). (A) Section I: RA-specific
molecules activate platelets by binding to receptors on the surface of platelets. Notably, a-defensin mediates its action by forming a pore on
the plasma membrane of platelets. Section II: Activated platelets secrete mediators stored in dense granules and a-granules. Notably, some
mediators are freshly synthesized upon platelet activation and therefore not stored in granules. Also, IL-1 is stored in the cytosol of platelets,
while TGF-b is stored in an unknown subcellular compartment. Regardless of the subcellular localization, these mediators contribute to the
activation of more platelets and other cell types. Section III: Activated innate immune cells lead to more immune activation through a positive
feedback loop and the generation of RA symptoms. Also, FLSs, which are activated directly and indirectly by platelets, can activate more
platelets, resulting in a vicious cycle. (B) Platelets can activate many other cell types. First, platelets are capable of autocrine-activation and
feedback inhibition. Section I: Platelets can support monocyte transmigration using adhesion molecules. Also, platelet-derived soluble
mediators can activate monocytes. After monocytes transmigrate into subendothelial space and differentiate into macrophages, platelets can
activate macrophages. Section II: Platelets support DC transmigration into the joint using adhesion molecules. Some platelet-derived soluble
mediators activate DCs, while other mediators inhibit DCs. Section III: Platelets activate neutrophils using soluble mediators and support their
transmigration using adhesion molecules. Section IV: Platelets and FLSs can activate each other using soluble mediators, resulting in a positive
feedback loop. Section V: Activated platelets can activate endothelial cells. Section VI: Activated platelets and complement proteins can
activate each other, but feedback inhibition exists in both directions. Section VII: ILC2 express PSGL-1 and adhere to platelets (likely through P-
selectin) in select tissues. Platelet interaction with ILC2s potentiates their response to IL-33 and survival and/or proliferation, but it is not known
if this interaction occurs in synovial tissue. Also, the mechanism of platelet-mediated enhanced ILC2 function has not been determined. ILC2s
ameliorate RA pathogenesis by limiting pro-inflammatory M1 polarization and promoting M2 polarization. (C) Activated innate immune cells
result in more immune activation and the development of RA symptoms. Section I: Complement proteins and DCs can activate other innate
immune cells. Section II: Both neutrophils and DCs can activate proinflammatory subsets of CD4+ T cell and B cells. Notably, neutrophils
activate B cells and T cells not only by releasing soluble mediators, but also by generating citrullinated proteins and degraded type II collagen,
both of which serve as autoantigens. Activated proinflammatory CD4+ T cells and B cells can promote RA progression. However, DCs inhibit
CD8+ T cell cytotoxicity and induce CD4+ Treg differentation, thereby inhibiting RA progression. Therefore, the role of DCs in RA is complex.
Section III: Macrophages, monocytes, complement proteins, and neutrophils activate a pro-inflammatory and pro-joint degrading phenotype of
FLS. Endothelial cell-derived E-selectin allows these pro-inflammatory FLS to invade distant joints. Section IV: Macrophages can differentiate
into osteoclasts in RA joints. Macrophages, osteoclasts, neutrophils, and monocytes contribute to joint inflammation and degradation. Notably,
neutrophil-derived elastase and cathepsin G can cleave IL-33 into three proinflammatory peptides, which are more potent. Section V: M4
macrophages contribute to vasculitis in RA. ADAMTS-13 normally cleaves vasculitis-promoting vWF strings. Neutrophil PAD4 inhibits ADAMTS-
13, thereby promoting vasculitis. Figures were made using BioRender.com. aiibb3, integrin alpha iib beta 3; ACPA, anti-citrullinated protein
antibody; ADAMTS-13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13; ADP, adenosine diphosphate; BAFF,
B cell activating factor; CCL, chemokine C-C motif ligand; CD, cluster of differentiation; CLEC2, C-type lectin-like receptor 2; CXCL,
chemokine C-X-C motif ligand; CXCL4L1, non-allelic variant of CXCL4; C1q, complement component 1q; C1q-IC, a complex of C1q and
immune complex (which is an antibody-antigen complex); C3, complement components 3; C5a, complement component 5a; C5-C9,
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complement components 5, 6, 7, 8, and 9; DC, dendritic cell; ERp57, endoplasmic reticulum protein 57; FcγRIIa, Fc-gamma receptor IIa; FLS,
fibroblast-like synoviocyte (also known as synovial fibroblast); FPR, formyl peptide receptor; GP, glycoprotein; gp96, heat shock protein 96;
HMGB1, high mobility group box protein 1; IFN, interferon; IL, interleukin; ILC, innate lymphoid cell; JAM-C, junctional adhesion molecule-C;
LMWHA, depolymerized low molecular weight hyaluronic acid; MAC, membrane attack complex; MMP, matrix metalloproteinase; MPO,
myeloperoxidase; mtDNA, extracellular mitochondrial DNA; mtFP, extracellular mitochondrial formyl peptide; M4 macrophage, a subset of
macrophage induced by CXCL4; NET, neutrophil extracellular trap; NKC, natural killer cell; NO, nitric oxide; PAD, protein arginine deiminase; PAF,
platelet activating factor; PAR1&4, protease activated receptor 1 and protease activated receptor 4; PDGF, platelet-derived growth factor; PGE2,
prostaglandin E2; PGH2, prostaglandin H2; PSGL-1, P-selectin glycoprotein ligand 1; RA, rheumatoid arthritis; RANKL, receptor activator of nuclear
factor κB ligand; ROS, reactive oxygen species; sCD40L, soluble CD40 ligand; TGF, transforming growth factor; Th1, T helper 1 cell; Th17, T helper
17 cell; TNF, tumor necrosis factor; TNFR1, tumor necrosis factor receptor 1; TSP-1, thrombospondin 1; TXA2, thromboxane A2; VEGF, vascular
endothelial growth factor; vWF, von Willebrand factor.
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tissues. Multiple lines of evidence suggest that the pro-

inflammatory leukocyte phenotype is enhanced via association

with platelets. Here we detail the interactions between platelets

and other aspects of the innate immune system that could

explain the molecular basis underpinning the contribution of

platelets to RA.
A. Platelet-neutrophil interactions

Platelets promote neutrophil chemotaxis
A feature of RA pathogenesis is the marked influx of

immune cells, including neutrophils, into the synovium (14).

Evidence from human (142) and murine (143) studies indicate

that neutrophils are important for RA development by

participating in joint tissue degradation and by releasing

proinflammatory cytokines that further exacerbate RA (144,

145). Platelets can potentially recruit neutrophils into the joint

by four possible mechanisms. Firstly, platelet-derived serotonin

(95) and CXCL7 (146) are direct neutrophil chemoattractants;

platelets stimulate FLS to secrete IL-8, CXCL2, and CXCL3

(147), all of which attract neutrophils (148); PMPs also recruit

neutrophils to the joints (149). Secondly, exposed P-selectin on

the platelet surface facilitates neutrophil adhesion via P-selectin

glycoprotein ligand 1 (PSGL1) on the neutrophil surface (150).

Thirdly, platelet-derived membrane-bound platelet activating

factor (PAF) activates the neutrophil PAF receptor, leading to

the activation of CD18 on the neutrophil surface (151).

Neutrophil CD11b/CD18 (aka Mac-1) can then bind to

glycoprotein Iba (GPIba) on the platelets (152). Finally, both

neutrophil-derived CD11b/CD18 (153) and platelet-derived

integrin aIIbb3 (154) bind fibrinogen; CD11b/CD18 and

aIIbb3 can therefore mediate platelet-neutrophil adhesion via

fibrinogen. These data provide compelling evidence of platelet-

neutrophil crosstalk that can drive RA pathogenesis.

Platelets promote NET formation
Another central feature of neutrophils in the innate immune

response is the release of neutrophil extracellular traps (NETs)

consisting of genomic DNA, proteolytic enzymes, and reactive

oxygen species (ROS) (155). NETs contribute to self-protein
Frontiers in Immunology 06
citrullination and correlate with ACPA levels (142) (Figure 1C).

Platelets colocalize with degranulated neutrophils and NETs in

coronary thrombi (156). Moreover, platelet depletion restricts

NET formation in mouse models of endotoxemia (157).

Activated platelets releases cytosolic stores of the alarmin high

mobility group box 1 protein (HMGB1) that activates receptor

for advanced glycation end products (RAGE) expressed on the

surface of neutrophils, causing neutrophil autophagy and

subsequent NET formation (156). These evidences implicate

platelets as pivotal supporters of neutrophil-mediated

inflammation and tissue degradation in RA.
B. Platelets interactions with the
complement system

The complement system is an essential component of the

innate immune response and is comprised of 9 serum proteins

(C1-C9) activated sequentially, culminating in the formation of the

membrane attack complex (MAC) that eliminates pathogens but is

also implicated in autoimmune pathogenesis [reviewed in (158)].

There exist three separate pathways to complement activation: the

classical pathway (elicited by binding of immunoglobulin to C1),

the alternative pathway (triggered by the hydrolysis of C3

producing C3-H2O) and the lectin pathway (111).

Considerable evidence implicates complement activation as

a contributing factor in RA [recently reviewed in (159)]. For

example, MAC is upregulated in RA serum and synovial fluid

(125), while an endogenous inhibitor of MAC, CD59, is

downregulated in RA synovium (160). In addition, the role of

complement proteins in neutrophil activation (161) is likely

related to RA progression since neutrophils contribute to tissue

degradation (144, 145) (Figure 1C).

Platelets contribute to complement activation in multiple

ways. For example, a leukocyte-derived molecule termed

properdin binds the platelet plasma membrane and recruits C3

(H2O) thus activating the alternative pathway (162). Moreover,

P-selectin on activated platelets binds C3b (163). Activated

platelets also bind ficolin, which stimulates the lectin pathway

(164). The evidence collectively supports a role for platelets in

RA pathogenesis via the complement system.
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C. Platelet interactions with monocytes/
macrophages

Macrophages phagocytose invading pathogens and as such

are critical elements of the innate immune response. As reviewed

by Ley (165), macrophages may be polarized to a

proinflammatory (M1) or an anti-inflammatory (M2)

phenotype; in addition, M1 macrophages exacerbate bone

degradation in RA. Accordingly, the number of macrophages

in the synovium correlates with RA severity in humans (166),

and depletion of monocytes attenuates the development of

experimental murine arthritis (167).
Frontiers in Immunology 07
Platelets and monocyte chemotaxis
As is observed with neutrophils, platelets serve to recruit

monocytes. First, monocytes adhere to endothelium-bound

platelets through the interaction between platelet surface P-

selectin and PSGL1 expressed on the monocyte surface (168).

Second, platelet-derived molecules promote adhesion between

monocytes and the endothelium. Platelet-derived CCL5, CXCL4

(platelet factor 4, PF4), and CXCL7 promote monocyte

chemotaxis as well as monocyte-endothelium adhesion (37).

These chemokines and the anaphylatoxin C5a (generated by

platelet-induced complement activation) upregulate CD11b

(169), b1 integrin (170), and CD18 (b2 integrin) (170) on the
TABLE 1 Platelet-derived mediators with documented role(s) in RA pathogenesis.

Mediator Target cells Role(s) in RA pathogenesis Refs

CCL3 B cell, monocyte, macrophage, neutrophil,
FLS

Immune cell recruitment and activation, autoantibody production, pro-inflammatory
cytokine production

(21–25)

CCL5 Monocyte, B cell, CD4+ T cell, FLS Immune cell recruitment and activation, pro-inflammatory cytokine production,
autoantibody production

(23, 26–30)

CD40L &
sCD40L

Neutrophil, DC, endothelial cell, B cell, FLS Endothelium activation and leukocyte recruitment, DC maturation, angiogenesis, pro-
inflammatory cytokine production, ROS production, autoantibody production

(31–36)

CXCL4 Monocyte, macrophage, DC, neutrophil,
endothelial cell, CD4+ and CD8+ T cell

Immune cell recruitment and activation, endothelium activation, ROS and pro-
inflammatory cytokine production

(37–47)

CXCL7 monocyte, neutrophil, endothelial cell Immune cell recruitment and activation, ROS production (37, 46, 48, 49)

CXCL12 Pre-B cell, CD4+ and CD8+ T cell,
Monocyte, FLS

Immune cell recruitment and activation, proinflammatory cytokine production (30, 50–53)

IL-1a &
IL-1b

FLS, endothelial cell Endothelial activation and immune cell recruitment, pro-inflammatory cytokine secretion,
osteoclastogenesis, angiogenesis, FLS proliferation

(12, 36, 54–57)

MMP-1 Leukocyte Immune cell recruitment, collagen degradation (58, 59)

MMP-2 Leukocyte Immune cell recruitment, collagen degradation (58, 60)

MMP-3 Leukocyte Immune cell recruitment, connective tissue degradation (58, 61)

MMP-9 Leukocyte Immune cell recruitment (at high concentrations), inhibition of immune cell recruitment
(at low concentrations)

(58)

PDGF DC, FLS, macrophage Immune cell recruitment, Treg polarization, pannus formation, cartilage degradation,
inhibition of DC maturation

(56, 62–65)

TGF-b1 &
TGF-b2

FLS, macrophage, CD4+ T cell, B cell Activation of immune cells, angiogenesis, cartilage degradation, osteoclastogenesis (36, 62, 66–70)

TSP-1 Monocyte, macrophage, endothelial cell,
neutrophil, DC, CD4+ T cell

Immune cell recruitment, Treg formation, inhibition of antigen presentation, inhibition of
angiogenesis, inhibition of neutrophil elastase

(71–80)

VEGF Endothelial cell, monocyte, macrophage,
FLS

Angiogenesis, immune cell recruitment and activation, osteoclastogenesis (81–84)

vWF Leukocyte Immune cell recruitment (85, 86)

Glutamate T cell, FLS Pro-inflammatory cytokine secretion, T cell activation (at low concentrations), inhibition
of T cell activation (at high concentrations)

(87–89)

Histamine FLS, endothelial cell Endothelial activation, immune cell recruitment, FLS proliferation, MMP production (90–92)

NO FLS Inhibition of FLS apoptosis (93, 94)

Serotonin CD4+ T cell, neutrophil Immune cell recruitment and activation, ROS production (95–97)

TXA2 Endothelial cell, FLS Endothelium activation, FLS proliferation (98–100)
ADP, adenosine diphosphate; CCL, chemokine C-C motif ligand; CD, cluster of differentiation; sCD62P, soluble P-selectin; CXCL, chemokine C-X-C motif ligand; CXCL4L1, non-allelic
variant of CXCL4; DC, dendritic cell; FLS, fibroblast-like synoviocyte; IL, interleukin; MMP, matrix metalloproteinase; NO, nitric oxide; PAF, platelet activating factor; PDGF, platelet-
derived growth factor; PGE2, prostaglandin E2; RA, rheumatoid arthritis; ROS, reactive oxygen species; sCD40L, soluble cluster of differentiation 40 ligand; TGF, transforming growth factor;
Treg, regulatory T cell; TSP-1, thrombospondin-1; TXA2, thromboxane A2; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor.
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monocyte surface. CD11b/CD18, which is expressed by

monocytes (168), binds to platelet-derived junction adhesion

molecule C (JAMC/JAM3) (171) and GPIba (172) to facilitate

firm adhesion.

Platelet-monocyte interactions
Once inside the joint, platelet-monocyte interactions

contribute to joint pathology. In vitro experiments show that

PAF, P-selectin, and CCL5 (RANTES) induce the secretion of

CCL2, TNF-a, and IL-8 from monocytes (27, 173); these

mediators can then in turn upregulate inflammation in the

joint. Moreover, CXCL4 (PF4), a major platelet-derived

chemokine, polarizes macrophages to an M4 subtype (distinct

from M1 and M2 subtypes) that secretes pro-inflammatory

TNF-a (38) and generates reactive oxygen species (ROS) (39).

In addition, the differentiation of monocytes into bone-

resorbing osteoclasts is accentuated by platelet-derived TGF-

b1 (66). Taken together, these data illuminate multiple pathways

through which platelets could promote synovial inflammation

through interactions with monocytes/macrophages.
D. Platelet interactions with
dendritic cells

Dendritic cells (DCs) are immune cells whose morphology is

characterized by tree-like (dendritic) processes (174). Activated

dendritic cells present pathogen-derived antigens to T cells, thus

acting as a bridge between the innate and adaptive immune

responses (175). Evidence suggests that DCs play an important

role in RA (176). As is the case with neutrophils and monocytes,

evidence supports a potential role for platelets in recruiting DCs.

For example, in vitro data indicate that platelet-derived P-

selectin and JAMC bind to PSGL1 and CD11b/CD18

expressed on DCs to promote platelet-DC adhesion (40).

However, the platelets’ effects on DCs in disease are

ambiguous since platelet-DC interactions can either promote

or dampen inflammation. Platelet-derived sCD40L and CXCL4

(PF4) induce DC maturation, pro-inflammatory cytokine

secretion from DCs, and interferon-a (IFN-a) secretion from

stimulated plasmacytoid DCs (pDCs) in vitro (40, 177, 178).

IFN-a causes DCs to secrete more TNF-a upon TLR4

stimulation, exacerbating RA (179). However, IFN-a can

induce the polarization of both pro-inflammatory (180) and

anti-inflammatory (181) T-cells, which can worsen or alleviate

RA. Moreover, platelets also influence DC-mediated

proliferation of T-cells (40) although it is not clear whether

these T-cells adopt a pro-inflammatory (Th1/Th17) or anti-

inflammatory regulatory (Treg) phenotype (Figure 1C). Further

research is required to clarify the significance of DC cell function

in RA pathogenesis and determine how DC function could be

regulated through interactions with platelets.
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E. Platelet interactions with innate
lymphoid cells

Innate lymphoid cells (ILCs) include five subsets of antigen-

independent effector and helper cells that mirror the phenotypes

of T-cell subsets (182). This group includes natural killer (NK)

cells, lymphoid tissue inducer (LTi) cells and three subtypes of

innate lymphoid ‘helper-like’ cells [ILC1, ILC2 and ILC3,

reviewed in (183)]. ILCs have developmental, tissue-specific,

and context-dependent roles in immunity with considerable

phenotypic heterogeneity that are still under investigation

(183, 184). Thus, the full picture of ILC biology, particularly in

the context of RA [recently reviewed in (185)], is incomplete.

Generally, the ILC subsets (NK/ILC1, LTi, ILC3 cells) that

promote Th1/Th17-l ike responses, M1-macrophage

polarization or recruitment of neutrophils likely exacerbate RA

(185). Conversely, ILC2s, which promote Th2/Treg-like

immunity, M2-polarization, and recruitment of eosinophils

likely attenuate RA severity (185).

The role of platelets in modulating ILC function is poorly

understood. ILC2 cell counts are elevated in the circulation and the

synovial fluid of RA patients compared to healthy controls although

their presence was inversely correlated with disease severity (186).

In mouse models of arthritis, ILC2 appear to diminish

inflammation and bone destruction (186). Limited data are

available regarding platelet interactions with ILC2 cells. Naïve

ILC2 cells express PSGL-1 and adhere to platelets in murine lung

tissue, presumably via P-selectin on the platelet surface (187, 188).

This interaction maintains elevated ILC2 numbers in naïve lung,

enhances response to IL-33, amplifies production of Th2-cytokines

(IL-5 and IL-13) and, exacerbates lung inflammation in response to

Alternaria (fungus) (187, 188). While documented ILC2-platelet

adhesion is limited to lung tissue thus far (187), platelet-ILC2

interactions in the synovium could also conceivably attenuate RA. It

is tempting to speculate that platelet-derived mediators would

recruit and/or activate most ILC subsets, however, considerable

further research is required to identify relevant platelet-ILC

interactions in the synovium.
Perspectives

Considerable evidence now indicates that activated platelets

participate in pro-inflammatory signaling in the synovial tissues, in

part through activating other cellular elements of the innate

immune system. However, pro-inflammatory molecules in RA

also potentiate platelet activity, suggesting a reciprocal

relationship between RA and platelet activation. Platelets are

therefore well-positioned to occupy a central role in RA

pathogenesis as it relates to the innate immune response. Indeed,

the concept of platelets as a therapeutic target for RA has been

explored (189) although due to the nature of many of the currently
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available antiplatelet drugs, it may be difficult to exploit the anti-

inflammatory effects without conferring increased bleeding risks.

Moreover, the sheer complexity of the biological system (Figure 1B)

highlights the challenges associated with pinpointing the most

clinically significant platelet-centric signaling pathways in RA.

Since multiple pro-inflammatory cytokines are expressed in more

than one tissue type, future research could employ experimental

murine models with platelet-specific conditional knockouts of

specific cytokines (and/or their cognate receptors). Such an

approach could identify the exact contributions of specific

platelet-derived molecules to RA pathogenesis. This information

would then be applicable for identifying viable platelet-based

therapeutic targets that could reduce disease severity, and mitigate

the increased risk of cardiovascular complications resulting

from RA.
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