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NLRP3 inflammasome in
digestive diseases: From
mechanism to therapy

Rui Qiang*†, Yanbo Li*†, Xincan Dai and Wenliang Lv*†

Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences,
Beijing, China
Digestive system diseases remain a formidable challenge to human health.

NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is

the most characteristic multimeric protein complex and is involved in a wide

range of digestive diseases as intracellular innate immune sensors. It has

emerged as a research hotspot in recent years. In this context, we provide a

comprehensive review of NLRP3 inflammasome priming and activation in the

pathogenesis of digestive diseases, including clinical and preclinical studies.

Moreover, the scientific evidence of small‐molecule chemical drugs, biologics,

and phytochemicals, which acts on different steps of the NLRP3

inflammasome, is reviewed. Above all, deep interrogation of the NLRP3

inflammasome is a better insight of the pathomechanism of digestive

diseases. We believe that the NLRP3 inflammasome will hold promise as a

novel valuable target and research direction for treating digestive disorders.

KEYWORDS

digestive system diseases, NLRP3 inflammasome, small-molecule chemical drugs,
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1 Introduction

To keep the internal environment in balance, the body takes the form of

inflammation adaptively responding to stimuli that are noxious, like infection,

injury, poisoning, pressure, and autoimmune reaction (1). An appropriate

inflammatory response could remove damaged or dead cells from the body and

facilitate the repair of tissues. If the endogenous danger signals are excessively

activated, the inflammatory cytokines will be released. This process could adversely

affect the host and make it prone to pathological damage. NOD-like receptor family

pyrin domain containing 3 (NLRP3) inflammasome is an intracellular mediator, a

sentinel of cells, which can sense changes in cellular homeostasis, respond to cellular

stress, initiate inflammatory cascade reaction, and is in close relation to a diversity of

illnesses (2–5).
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Excessive initiation of the NLRP3 inflammasome, which is

associated with the severity of digestive disease, has been found

in patients and animal models’ blood and tissues, demonstrating

that NLRP3 inflammasome plays a vital role in the development

of digestive disorders. Moreover, NLRP3 inflammasome genes

knock-down or knock-out are valid in reducing pathological

symptoms (6–9). Accordingly, inhibiting the NLRP3

inflammasome signal may represent an emerging strategy

suitable for treating digestive illnesses.

Taken together, this paper offers an integrated overview of

priming and activation of the NLRP3 inflammasome, and its role

in the pathogenesis of digestive system diseases in recent years,

including clinical and experimental evidence. Furthermore, this

article reviews that the scientific evidence of small‐molecule

chemical drugs, biologics, and phytochemicals under

investigation or in clinical settings, acts on the NLRP3

inflammasome signaling pathway. Deep discussion of NLRP3

inflammasome is aimed at a better understanding of digestive

diseases and provides an opportunity to prevent and treat

these diseases.
2 Structure and activation of the
NLRP3 inflammasome

When body is stimulated, pattern recognition receptors

(PRRs) in the innate immune system can recognize danger-

associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs) and fight against

pathogens by causing inflammatory response. PRRs of living

organisms mainly include Nod-like roll receptors (NLRs), Toll-

like receptors (TLRs), RIG-I like receptors (RLRs), and C-type

Lectin receptors (CLRs). NLRP3 inflammasome, one of the most

popular and well-studied members of the 22 different NLRs

family members in humans (10, 11), is often composed of three

domains: nod-like receptor protein (NLRP), apoptosis-

associated speck-like proteins containing a CARD (ASC) and

pro-caspase-1. Under normal conditions, NLRP3 is in a state of

self-repression. When PAMPs or DAMPs appear, NLRP3 is

released from a self-inhibited form. Then the oligomerization

occurs and combines NLRP3 with ASC through the N-terminal

Pyrin domain (PYD). ASC acts as a bridge between the NLRP3

and the pro-caspase-1, and activates pro-caspase-1 (12). Pro-

caspase-1 is an inactive form of the proenzyme and participates

in proinflammatory and pyroptosis process of cells (13).

Activated caspase-1 turns pro-interleukin-1b (pro-IL-1b) and

pro-interleukin-18 (pro-IL-18) to mature, biologically activates

IL-1b and IL-18 (14, 15), and initiates an inflammatory cascade.
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Activated caspase-1 can also cut gasdermin-d (GSDMD), expose

its N-terminal domain and aggregate on the cell membrane to

form holes, resulting in continuous cell expansion, released

contents, and facilitated pyroptosis. Eventually, inflammatory

response and NLRP3 inflammasome reinforce each other,

forming a vicious cycle which accelerates disease progression

(16–18).

The activation of NLRP3 inflammasome consists of canonical

and non-canonical ways. The canonical NLRP3 inflammasome

activation requires two types of signals. The first signal is the

priming signal. Stimulating factors can pass through important

membrane surface receptors such as TLRs. All TLRs except TLR3

can activate myeloiddifferentiationfactor88 (MyD88) signaling

pathway which activates nuclear transcription factor-kB (NF-kB)
(19). NF-kB is a potent inflammatory activator that induces

relatively high expression of NLRP3, pro-IL-1b, and pro-IL-18

and keeps them ready for activating. Conversely, without this

step, the downstream expression would attenuate. Studies have

disclosed that fas-associated with death domain protein (FADD),

nucleotide-binding oligomerization domain 1/2 (NOD1/2), as well

as caspase-8 were also involved in the priming of NLRP3

inflammasome (20–22). Secondly, the activation signal is needed.

Conditions of activating NLRP3 inflammasome are varied,

including (1): DAMPs or PAMPs induce K+ efflux by activating

purinergic 2X7 receptor (P2X7R) on the cell surface or releasing

adenosine triphosphate (ATP), so that NLRP3 inflammasome is

triggered (23). Nevertheless, the K+ efflux is an important, but not a

specific event in the NLRP3 inflammasome activation (24) (2).

Stimulants (such as silica, asbestos, amyloid-b, alum) enter the cell

through active transport, change the lysosomal membrane

potential, interfere with its stability, and release lysoproteolytic

enzymes, among which the cathepsin B may play a vital role in

the activation of NLRP3 inflammasome (25). (3) Endogenous

danger signals promote mitochondrial production of reactive

oxygen species (ROS). Thioredoxin-interacting protein (TXNIP)

separates from thioredoxin (TRX) and interacts with NLRP3 under

ROS conditions, leading to NLRP3 inflammasome activation. These

various upstream signaling pathways may be interrelated or

independent and have been confirmed to trigger oligomerization

of the NLRP3 protein complex (26).

The non-canonical NLRP3 inflammasome activation is

mediated by caspase-11. Caspase-11 facilitates GSDMD

activation and split, then mediates pyroptosis (17). Caspase-11

does not cleave interleukins but only leads to pyroptosis. The

body also relies on caspase-4 and caspase-5 proteins, which have

similar functions to caspase-11, to promote the non-canonical

oligomerization and NLRP3 inflammasome activation (27).

Both canonical and non-canonical NLRP3 inflammasome
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activation occur independently. However, non-canonical

caspase-11 enhances canonical caspase-1 processing and IL-

1b/IL-18 production by specific stimuli (e.g., cholera toxin or

E. coli) (18) (Figure 1).
3 The role of NLRP3 inflammasome
in the pathomechanism of
digestive diseases

Different digestive diseases may be caused by persistent

inflammatory response. Studies in the field of clinical and

preclinical research have demonstrated that the NLRP3

inflammasome may be associated with digestive disorders. We

summarize current and prominent evidence to discuss in the

following sections (Figure 2).
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3.1 NLRP3 inflammasome and
stomach disease

3.1.1 Helicobacter pylori-related gastritis
Helicobacter pylori (HP) is the only harmful pathogenic

bacterium ever found that can survive in human gastric mucosa.

HP is listed as a class I carcinogenic factor by the World Health

Organization (WHO) and belongs to infectious diseases (28). It

was found that the content of NLRP3 and GSDMD were

significantly higher in the gastric tissues of HP-infected

patients (29). Experiments showed that the early stages of HP

infection activate the NLRP3 inflammasome by targeting hsa-

miR-223-3p and IL-10 (30). HP also provides a second signal

required for the activation of the NLRP3 inflammasome,

including K+ efflux and ROS production, which leading to a

rise in IL-1b secretion (31). During HP infection, considerable
FIGURE 1

Schematic diagram of the molecular mechanism of NLRP3 inflammasome priming and activation. The priming steps of NLRP3 are regulated by
TLR, FADD, caspase-8, and NOD1/2, which facilitate the activation of NF-kB and induce the activation of NLRP3. Canonical conditions of NLRP3
inflammasome oligomerization and activation include ATP, P2X7R, lysosomal damage, cathepsin release, K+ outflow, mitochondrial ROS
damage, etc. On the one hand, activated caspase-1 cleaves GSDMD into a lipophilic N-terminal soluble in the cytoplasm and a hydrophilic C-
terminal that can be embedded into the cell membrane. The GSDMD-N terminal domain will combine with the phospholipids on the cell
membrane to form holes and induce pyroptosis. On the other hand, activated caspase-1 releases inflammatory cytokines such as IL-1b and IL-
18. Non-canonical NLRP3 inflammasome activation is mediated by caspase-4, caspase-5, and caspase-11. By Figdraw.
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mature IL-1b could cause atrophic gastritis and even cancer (32).

Koch KN et al. reported that excessive activation of NLRP3

inflammasome keeps HP away from the immune system,

persistently colonizes, and survive in the gastric niche (33). HP

infectious mice models with NLRP3 knocked-down or knocked-

out were protected against gastritis (34). These results indicate

that HP infection can promote NLRP3 inflammasome activation

which is involved in the persistent infection of HP. In other

words, the NLRP3 inflammasome and HP infection promote

each other and form a vicious circle.

3.1.2 Gastric cancer
Gastric cancer (GC) is a malignant tumor that arises from

the epithelial cells of gastric mucosa. It ranks fifth in terms of

prevalence and third in terms of mortality around the world,

with a poor prognosis (35). Persistent and chronic inflammation

leads to the development of GC. NLRP3, as an essential

inflammatory component, plays a crucial role in the
Frontiers in Immunology 04
progression of GC. The expression of NLRP3 in GC tissues

exhibited a higher level than healthy tissues. Furthermore,

redundant amount of ASC was found in most GC tissues in

the Oncomine database and the The Cancer Genome Atlas

(TCGA) database. It has been found that NLRP3 can enhance

the uncontrolled proliferation of epithelial cells and the

progression of GC. And when NLRP3 is inhibited, so does its

carcinogenic influence in vitro and in vivo (36, 37). The NLRP3

inflammasome induces IL-1b production, and IL-1b can

promote intestinal metaplasia, atypical hyperplasia, and

proliferation of GC cells (38, 39). Therefore, NLRP3 by a

combination of dependent and independent inflammasome

pathways may stimulate GC development. Notably, the gene

polymorphism of NLRP3 also impacts the pathogenesis of GC

(40). These findings indicate that the NLRP3 inflammasome and

its inflammatory products has a close relationship with GC

development but more molecular pathways between the

NLRP3 inflammasome and GC require further elucidation.
FIGURE 2

The mechanism of the NLRP3 inflammasome in various digestive diseases. By Figdraw.
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3.2 NLRP3 inflammasome and
liver disease

3.2.1 Viral hepatitis
Chronic infection with viral hepatitis affects half a billion

individuals worldwide (41). Chronic hepatitis B (CHB) is a

inflammatory liver illness caused by persistent infection of

hepatitis B virus (HBV), which is a non-cytopathic double-

stranded, hepatotropic DNA virus. Expression levels of NLRP3,

ASC, and IL-1b in liver tissues from CHB patients were

positively correlated with HBV-DNA concentration (42). It

has been confirmed that NLRP3, IL-18, IL-1b, and caspase-1

were highly expressed in liver tissues of patients with HBV-

related acute-on-chronic liver failure (HBV-ACLF). Patients

with HBV-ACLF are likely to have impaired immune systems

due to chronic inflammation (43). Similarly, hepatitis B core

antigen promoted the expression of NLRP3 inflammasome and

IL-1b (44). These results might suggest that persistent infection

with HBV makes the NLRP3 signaling pathway activated, which

is involved in the inflammatory response and injury of liver

tissues by mediating cytokines such as IL-1b, and IL-18.

Whereas the specific mechanism of the NLRP3 inflammasome

activation infected by HBV has not been well understood.

Hepatitis virus C (HCV), as a hepatotropic and enveloped

virus, carries a positive-sense single-stranded RNA genome,

and chronically infects around 3% of people worldwide (45).

Negash et al. showed that the serum levels of IL-1b were

significantly increased in patients with chronic hepatitis C

(CHC). Furthermore, they showed that HCV RNA triggers

MyD88-mediated TLR7 signa l ing and the NLRP3

inflammasome pathway to induce IL-1b production (46).

Once infected with HCV, ASC is recruited to NLRP3 and

dissociates from Golgi-resident protein immunity-related

GTPase M (IRGM), causing Golgi fragmentation. This process

enhances the replication of HCV and promotes chronic

inflammation of the liver (47). Ramachandran A et al.

demonstrated that the NLRP3 inflammasome, assembled and

activated in HCV-infected liver cells and regulated by post-

translational modifications, was critical in the pathogenesis of

CHC (48). A study found that inoculation with infectious

Hepatitis E virus (HEV) particles robustly triggered NLRP3

inflammasome activation in primary macrophages and

macrophage cell lines. Interestingly, inflammasome activation

antagonizes interferon response to facilitate HEV replication in

macrophages (49). Taken together, strategies to inhibit the

NLRP3 inflammasome or its inflammatory cytokines provide

therapeutic choice to alleviate the liver inflammation besides

antiviral agents.

3.2.2 Non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) is a progressive

hepatic disease with ectopic fat accumulation in the liver caused
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by harmful factors, other than alcohol. The prevalence of

NAFLD varies between 19% and 33% in epidemiological

studies and remains a challenging issue for human health (50).

Multiple studies have demonstrated that the NLRP3

inflammasome is a pivotal contributor to the amplification of

hepatic inflammation, immune cell activation, and hepatocyte

damage (51). Caspase-1, the activated form after NLRP3

inflammasome activation, is present in the serum of patients

with NAFLD, and its levels are closely correlated with disease

severity (52). A high level of NLRP3 and caspase-1 is activated in

macrophages in response to an excessive accumulation of lipids

in dead hepatocytes (53). The NLRP3 inflammasome is

associated with nonalcoholic steatohepatitis (NASH) which

is a severe procedure in the advancement of NAFLD. NASH is

distinguished from the NAFLD by the additional presence of

features of hepatocellular injury with or without fibrosis (8).

There is increasing evidence that NLRP3-mediated pyroptosis is

key to the progression of simple steatosis to NASH (17, 54).

Pyroptosis leads the NLRP3 inflammasome to the extracellular

fluid. From there, the NLRP3 inflammasome is taken up by

other cells, thus mediating inflammation and fibrosis (52). A

study has confirmed that inhibition of pyroptosis can alleviate

the inflammatory response of liver tissue by targeting the NLRP3

inflammasome (55). There is evidence that NLRP3

inflammasome plays a direct role during the development of

NASH/NAFLD in mice models. It was found that mice with

NLRP3 inflammasome loss of function are protected from diet-

induced steatohepatitis (56). NLRP3 inflammasome gain of

function leads to the early and severe onset of diet-induced

steatohepatitis in mice (9). Inhibiting the NLRP3 inflammasome

particularly alleviated inflammation, lipid accumulation, and

fibrosis in NASH/NAFLD (5, 55, 57–59). Whereas there is also

evidence that NLRP3 produces a hepatoprotective effect in

NASH/NAFLD models. Jorge Henao-Mejia et al. observed that

NLRP3-deficient aggravates NASH, which makes serum alanine

transaminase(ALT), aspartate transaminase (AST), and NAFLD

activity inflammation scores increase (60). The NAFLD mouse

model lack of NLRP3 showed higher triglyceride content,

histological score of liver injury and greater adipose tissue

inflammation (61). Different metabolic processes, tissues, and

mouse models could account for the above conflicting

findings (61).
3.2.3 Alcoholic liver disease
Alcoholic liver disease (ALD) is a kind of liver disease caused

by long-term heavy drinking. The initial stage usually presents

with alcoholic hepatitis and hepatic fibrosis, with the consequent

risk of developing into cirrhosis or liver cancer. Severe

alcoholism could induce extensive necrosis of liver cells and

even liver failure. A preliminary study showed that the

messenger RNA (mRNA) levels of the components of the

NLRP3 inflammasome (IL-1b, IL-18, and caspase 1) tended to
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be greater in patients with severe liver damage (alcoholic

hepatitis histological score≥5) than in patients with milder

liver damage (62). Studies have demonstrated that long-term

intake of alcohol facilitated liver damage and promoted the

expression of IL-1b, caspase-1, ASC, and NLRP3 in wild-type

(WT) mice (63). As for the mechanism of NLRP3 activation

during ALD, it has been elucidated that the metabolic disorders

of uric acid and ATP induced by alcohol could lead to

mitochondrial damage, and the activation of NLRP3

inflammasome. Additionally, alcohol decreases miR-148a

expression in hepatocytes through forkhead box protein O1

(FoxO1), facilitates TXNIP overexpression and activates the

NLRP3 inflammasome, which induces hepatocyte pyroptosis

and aggravates ALD (64). Recent studies have demonstrated

that ethanol-induced NLRP3 activation was primarily caused by

the downregulation of aryl hydrocarbon receptors and the

activation of TXNIP in human macrophages, both of which

were caused by oxidative stress (65). In summary, alcohol

induces NLRP3 inflammasome activation through various

pathways, and inhibition of NLRP3 inflammasome activation

is capable of abating ALD (66, 67). On the contrary, it is also

found that NLRP3 deficiency mice have more severe hepatic

damage with higher levels of ALT and IL-18 levels (68). These

contradictory outcomes could be explicated by various

experimental conditions and approaches.

3.2.4 Drug-induced liver injury
Drug-induced liver injury (DILI) refers to liver injury caused

by various prescription or non-prescription drugs and their

metabolites and excipients. Clinical manifestations of DILI are

acute hepatitis, cholestasis, or jaundice. It develops

independently of drug dose, route, or duration of

administration (69). The pathogenesis of DILI is complex and

different. If left untreated, liver failure may develop with high

mortality. Rifampicin (RIF) and isoniazid (INH) are the classical

anti-tuberculosis medicines (70, 71). However, INH and RIF can

significantly change the structure of normal liver tissues and

cause inflammation, leading liver damage or hepatotoxicity.

Many researches had confi rmed tha t the NLRP3

inflammasome was required for INH and RIF-induced liver

injuries (5, 72). Moreover, the knock-down of NLRP3 with small

interfering RNA (siRNA) dramatically changed the effects of

INH and RIF on hepatocytes (73). It was found that the NLRP3

inflammasome was also the key to acetaminophen(APAP)-

induced DILI (74). APAP-induced DILI is protected by aspirin

and benzyl alcohol, which inhibit the activation of NLRP3

inflammasomes and neutrophil infiltration (75, 76). However,

the role of the NLRP3 inflammasome in APAP-induced liver

injury is disputed. Studies have described no protective effect if

inflammasome components, such as NLRP3, caspase-1, ASC, are
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deficient in APAP-induced liver injury. The reason for these

opposite results remains unclear (77).

3.2.5 Cholestatic liver injury
Cholestasis, characterized by bile secretion disorder and

excessive bile acid (BA) accumulation in the liver, is clinically

associated with a variety of liver diseases, such as progressive

familial intrahepatic cholestasis, primary biliary cirrhosis (PBC),

and primary sclerosing cholangitis (PSC) etc. An injury to the

liver caused by cholestatic disease results in the death of cells

followed by inflammation and fibrosis. There is a correlation

between NLRP3 activation and chronic cholestasis in humans

and mice (78). Expression of NLRP3 was significantly elevated in

bone marrow-derived monocytes/macrophages of bile duct

ligation (BDL) mice (79). Twenty-eight days after BDL,

bridging fibrosis was observed in WT mice instead of mice

with NLRP3 knocked out. Lack of NLRP3 expression attenuated

liver injury and fibrosis after acute and chronic BDL. The NLRP3

small molecule inhibitor MCC950 could reduce BDL-induced

disease progression in WTmice (80) by reducing the production

of the pro-inflammatory cytokines IL-1b and IL-18 and

inhibiting neutrophil infiltration and hepatic cell death (72),

emphasizing the importance of the NLRP3 inflammasome in

cholestatic liver injury onset and progression.

3.2.6 Autoimmune hepatitis
Autoimmune Hepatitis (AIH) is a kind of autoimmune

diseases. In AIH, loss of tolerance against liver autoantigens

causes elevated serum aminotransferase levels, presence of non-

organ-specific autoantibodies with unknown function,

hyperglobulinemia, progressive destruction of the hepatic

parenchyma, and development of hepatic fibrosis (81). Recent

studies have indicated that the NLRP3 inflammasome drives

pathogenesis of concanavalin-A (ConA)-induced hepatitis. Liver

pathology was related to elevated levels of NLRP3, IL-1b,
caspase-1 and pyroptosis-mediated cell death (82). Moreover,

ConA could induce activation of the NLRP3, caspase-1 and IL-

1b production in macrophages in vitro. IL-1b levels were

elevated in AIH patients and correlated with aggravation of

hepatitis (83). NLRP3 inflammasome also participates in

Trichloroethene (TCE) -induced AIH (84). Using an

interleukin-1 receptor (IL-1R) antagonist could suppress

hepatic inflammation of AIH by diminishing NLRP3

inflammasome activation. The miR-223 negatively regulates

NLRP3 expression (85). The application of exosomes

containing miR-223 decreases NLRP3 and caspase-1

expression and promotes AIH to abate (86). Collectively, these

findings demonstrate that the NLRP3 inflammasome signaling

pathway plays a crucial role in the initiation, progression, and

development of AIH, and inhibition of the NLRP3
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inflammasome signaling pathway also offers a new and

appropriate therapeutic strategy for the treatment of AIH.

3.2.7 Hepatic fibrosis
Hepatic fibrosis (HF) is vigorous as well as a reversible

process of wound healing, where quiescent hepatic stellate cells

(HSCs) proliferate and transdifferentiate into myofibroblasts

which are responsible for depositing extracellular matrix

(ECM) proteins, leading to tissue scarring. HF is a crucial step

and inevitable stage in transforming various chronic liver

diseases into cirrhosis and liver cancer (87). In the progression

of HF, the aberrant regulation of inflammation is a prominent

driving factor. NLRP3 inflammasome plays an essential role in

the fibrosis process of liver tissues (88). Inzaugarat, Maria

Eugenia et al. found that NLRP3 inflammasome activated in

HSCs directly contributes to HF development without the

presence of inflammatory infiltrates (89). Transgenic mice

expressing constitutively active NLRP3 showed severe

hepatocyte pyroptosis, inflammation, and fibrosis (90). It also

has been found that the NLRP3 inflammasome participates in

HF caused by schistosomiasis (91). Deficiency or inhibition of

NLRP3 inflammasome can improve HF, hepatic inadequacy,

liver inflammation, granuloma, and hepatosplenomegaly caused

by schistosomiasis (7, 92). Many factors can activate the NLRP3

inflammasome, leading to the secretion of IL-1b and IL-18, and

induce HF (52). For example, Androgen, an activator of the

NLRP3 inflammasome, can aggravate liver damage in carbon

tetrachloride (CCL4)-induced HF mice model (93). Galectin-3 is

a multifunctional glycoprotein that promotes infiltration by

mononuclear cells by enhancing the production of NLRP3

inflammasome and IL-1b, which promotes granuloma and HF

(94). Correspondingly, many factors can delay or reverse HF by

inhibiting NLRP3 inflammasome activation (95, 96). Overall,

these findings strongly indicate that NLRP3 inflammasome plays

a key role in HF, the mechanisms by which the NLRP3

inflammasome regulates fibrogenesis are not well understood.

Further, it remains unclear whether IL-18 promotes or inhibits

fibrogenesis (97) and more research is required.

3.2.8 Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the most common

primary malignant tumor of the liver. It frequently develops in

the context of chronic hepatitis and cirrhosis and is the third

leading cause of cancer death worldwide (98). The presence of a

chronically inflammatory microenvironment is one of the

factors that can promote tumorigenesis and metastasis (99).

The overexpressed NLRP3 in HCC indicated worse overall

survival. In HCC, inhibition of NLRP3 promotes the killing

effect of T cells to cancer cells by repressing the expression of

immune checkpoints (100). A study found that a deletion of

NLRP3 suppresses cancer development and metastasis of HCC

cells in vitro and in vivo (97). However, it was also demonstrated

that a deficiency in NLRP3 inflammasome expression is involved
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in HCC progression, which suggests that the NLRP3

inflammasome has a protective role against the development

of HCC (101). These opposite conclusions may be due to the

different functions of the NLRP3 inflammasome. It is important

to note that the NLRP3 inflammasome represents the first line of

defense against pathogenic microbes within the innate immune

system. When the body is exposed to a pathogenic insult, the

NLRP3 inflammasome acts as a guard and is assembled and

activated to elicit hepatic inflammation and return the system to

homeostasis. However, chronic persistent inflammation and

inflammasome abnormal activation induces massive cell death,

and NLRP3’s homeostatic threshold could be exceeded, then

causing compensatory hepatocyte proliferation and HCC.
3.3 NLRP3 inflammasome and
pancreatic disease

3.3.1 Chronic pancreatitis
Chronic pancreatitis (CP) is a syndrome caused by genetic

and environmental factors (102) and characterized by

inflammatory cell infiltration, progressive organ atrophy, and

disorder of collagen deposition (103). There is increasing

evidence that NLRP3 inflammasome plays a vital role in the

inflammatory response of pancreatic tissues. Zhang G et al.

observed that NLRP3 activation mediates caspase-1 activation

and promotes the activation of pro-IL-1b and pro-IL-18, which

are key pro-inflammatory cytokines in the pathological

mechanism of CP (104). Through P2X7R inhibitor, Zhang GX

inhibited the secretion of IL-1b and IL-18 which were dependent

on NLRP3 to reduce chronic pancreatic inflammation and

fibrosis, which confirms the pivotal role of the NLRP3

pathway in the occurrence and development of pancreatitis

(105). Furthermore, NLRP3 inflammasome also participates in

the fibrotic process of CP (106). Abnormal activation of

pancreatic stellate cells (PSCs) releases a vast amount of ECM

containing type I collagen (Col I), type III collagen (Col III), and

fibronectin (FN), which plays a significant role in the extensive

fibrosis of pancreatic tissues (107). Li CX et al. verified the

causality between NLRP3 inflammasome and the abnormal

activation of PSCs. They observed that the NLRP3

inflammasome is directly involved in activating PSCs in vivo

and in vitro. Inhibiting NLRP3 suppresses the activation of PSCs

and ECM deposition, thus alleviating pancreatic fibrosis (108).

In conclusion, the above data reveals that NLRP3 inflammasome

has a pro-inflammatory and pro-fibrogenic role in CP.

3.3.2 Acute pancreatitis
Acute pancreatitis (AP), one of the fatal diseases of the

gastrointestinal tract, is a kind of aseptic inflammation

characterized by pancreatic enzyme activation and partial

pancreatic inflammatory reaction. Studies have confirmed that

while pancreatic inflammation may be initially triggered by intra-
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acinar events such as trypsinogen activation, it ultimately depends

on the subsequent immune responses induced by the activation of

inflammasome of the innate immune system. Neutrophils and

macrophages from pancreatic acinar cells (PACs) recognize

PAMPs and DAMPs in the damaged pancreatic tissues of AP

(12), increase NF-kB and NLRP3 inflammasome expression and

inducie the release of downstream inflammatory factors, which

eventually promote the damage and inflammation of pancreatic

tissues (109). IL-1b and IL-18 have been recognized as markers of

severity of AP (110). In contrast to other cytokines, IL-1b and IL-18
are synthesized as precursor proteins and require cleavage in order

to be biologically active. A key component of this process is the

NLRP3 inflammasome. It has been demonstrated by Hoque and

Mehal that the NLRP3 inflammasome is substantially activated

during AP, and that components of this inflammasome are crucial

for the development of total pancreatic injury. An experimental

model of cerulein-induced AP in mice showed significant

reductions in edema and systemic inflammation when caspase-1,

ASC, and NLRP3 were not present (12). Wang, J, etc. reported that

the activation of NLRP3 inflammasome and promotion of caspase-

1-induced pyroptosis aggravate AP (111). Overactivation of NLRP3

inflammasome had also been found to contribute to the

pathomechanism of AP by exacerbating intestinal dysfunctions

(112). Recently, a meta-analysis demonstrated that the inhibition

of NLRP3 inflammasomes significantly decreased pancreatic

histopathological scores, serum amylase levels and lipase levels as

well as circulating levels of inflammatory cytokines and reduced the

severity of acute lung injury and acute intestinal injury as a result of

AP. It has been recognized that the NLRP3 inflammasome plays a

significant role in the pathogenesis and complications of AP (113).

3.3.3 Severe acute pancreatitis
Approximately 20% of AP patients suffer from acute

exacerbation, pancreatic necrosis, systemic inflammatory

response, and multiple organ failure, which candevelop into

severe acute pancreatitis (SAP) (114). SAP is a common acute

disease in the digestive system, with the characteristic of rapid

progression, which might cause multi-organ complications.

Previous studies have confirmed that the fast production and

release of a large number of inflammatory cytokines damage the

pancreas and other organs (115). This process plays a crucial role

in the pathological process of SAP. Sendler M et al. observed that

mRNA content of NLRP3 and protein content of NLRP3

inflammasome were significantly increased in tissues of SAP

mice, and deletion of NLRP3 reduced neutrophil maturation

and macrophage infiltration, thereby reducing immune/

inflammatory responses of the body (116). A significant

reduction in systemic inflammatory response syndrome and

compensatory anti-inflammatory response syndrome was

observed in mice with severe pancreatitis that were inhibited

by NLRP3 (116). By comparing the pathological tissues of

(NLRP3 +/+) and (NLRP3 -/-) WT mice, it was found that

knock-out NLRP3 plays a crucial role in alleviating SAP-related
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inflammation and lung injury. Similar results were confirmed in

SAP mice models treated with NLRP3 inhibitors (117). Overall,

the above findings suggest that SAP and its complications were

characterized by activation of NLRP3 inflammasome. Most

importantly, these results provide a potential molecular target

for treating pancreatic disease.

3.3.4 Pancreatic ductal adenocarcinoma
A tumour of the digestive system that is highly malignant and

highly invasive is pancreatic cancer. Pancreatic ductal

adenocarcinoma (PDAC) is the most common type of

pancreatic cancer, accounting for about 90% of pancreatic

cancer (118). Pancreatic ductal adenocarcinoma (PDAC) is a

substantial global threat to human health. Previous studies have

confirmed that inflammatory injury is a significant risk factor for

PDAC. Romero JM et al. observed up-regulation of NLRP3

inflammasome pathway by RNA sequencing and whole-genome

sequencing in cancer tissues of patients with primary resected

PDAC and PDAC liver metastases (119). Similar results were

obtained in experiments, in which up-regulation of NLRP3

inflammasome expression was observed in platelets of mice

models with primary PDAC (120). Daley D et al. further

verified the indispensable role of the NLRP3 inflammasome in

the pathological mechanism of PDAC by observing the protective

effect of pharmacological inhibition or deletion of NLRP3, ASC,

and caspase-1 in PDAC mice models (121). Findings identify a

new modality for immune evasion in PDAC that depends on

IL-1b production by tumor cells through TLR4-NLRP3

inflammasome activation. IL-1b is an essential component of

PDAC’s immune toleranc (122). NLRP3 plays a significant role in

establishing the microenvironment surrounding the PDAC tumor

by modulating the expression of IL-1b (123).
3.4 NLRP3 inflammasome and
intestines disease

3.4.1 Inflammatory bowel disease
Inflammatory bowel disease (IBD) is a chronic, recurrent

gastrointestinal disorder that does not present structural or

biochemical abnormalities, and it is associated with abdominal

pain, distention of the abdomen, changes in the bowel habits,

and changes in stool characteristics. The etiology is caused by

environmental factors, infectious agents, and genetic

susceptibility, including ulcerative colitis (UC) and crohn’s

disease (CD). Clinical evidence uncovered that upregulation of

NLRP3 and IL-1b were observed in UC patients (124) and CD

patients (125). It was also shown that NLRP3 inflammasome and

downstream effector expression including IL-1b are increased in

inflamed mucosa of IBD patients and correlate with disease

activity. Inflammasome gene expression increased with the

abundance of immature intestinal macrophages (126).

Research demonstrates that NLRP3 acts as a molecular switch
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by shifting local immune cells toward an inflammatory

phenotype via IL-1b (122). Experiments observed the effects of

NLRP3 deletion or inhibition or blocking oligomerization on the

development of intestinal inflammation and concluded that the

overactivation of NLRP3 inflammasome and its major cytokines

promotes the development of IBD (127–131). It was also found

that mice genetically deficient in miR-223 display markedly

exacerbated experimental colitis, as indicated by increased

immune infi l t rat ion (neutrophi ls and monocytes) ,

hyperactivated NLRP3, and IL-1b release. Meanwhile,

nanoparticle delivery of miR-223 mimetics can constrain the

level of NLRP3 activation, provides an early break, limiting

cytokine-mediated immune disequilibrium, and attenuate

experimental IBD (4). There is, however, debate regarding

whether the NLRP3 inflammasome contributes to IBD in a

beneficial or pathogenic manner. A number of studies have

shown that the NLRP3 inflammasome plays a key role in

regulating mucosal immune responses as well as intestinal

homeostasis (61). NLRP3-induced IL-18 is required for the

proliferation of intestinal endothelial cells. Hence, it has been

speculated that the appropriate activation of the NLRP3

inflammasome in the intestinal epithelial cells contributes to

the maintenance of internal environmental stability and

integrity of the barrier. This discovery could be related to the

compensatory response of the NLRP3 inflammasome

stimulating the proliferation of epithelial cells (132). It has

identified that early activation of NLRP3 in intestinal epithelial

cells limits pathogen colonization and prevents subsequent

intestinal inflammation (133). Reports are suggesting that IL-

1b and IL-18 induced by the NLRP3 inflammasome confer

protection against colitis and colitis-associated tumorigenesis

(134–136). Moreover, hyperactive NLRP3 maintains gut

homeostasis by inducing regulatory T cells (Tregs) (137).

Studies also found the deficiency of NLRP3 inflammasome

composition increases susceptibility to experimental colitis in

mice (134, 138, 139). NLRP3 also plays a protective role in the

probiotic-based therapy of colitis (140). These controversial

outcomes may be due to the experimental protocols, different

facilities, variable effects of microbiota, and the genetic

background of mice. IBD therapeutic approaches will be

inspired by further studies on the molecular regulation of the

NLRP3 inflammasome activity during inflammation.

More and more evidence focus on autophagy and NLRP3

inflammasome interaction in the development of IBD in its

extended form. Autophagy has an excellent negative regulatory

effect on the activation of NLRP3 inflammasome, including

removal of the sources of endogenous activation of NLRP3

inflammasome, ROS inhibition, removal of damaged

mitochondria, and selective degradation of inflammasome

components (14, 141). NLRP3 inflammasome signal also

negatively regulates autophagy. NLRP3 may be a binding

partner of the inhibitors of autophagy. In IBD mice models,

NLRP3 binds to mTOR (an autophagy inhibitor) to promote the
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phosphorylation of mTOR and inhibite autophagy (142). Quach

C et al. found NLRP3 inflammation hyperactivation in an

autophagy inhibition mouse model. NRLP3 inflammasome

inhibition also might be a strategy that promotes the

activation of autophagy in an efficient manner. Collectively,

the NLRP3 inflammasome activation dynamically interacts

with autophagy during the development of intestinal

inflammation (143), and the balance between autophagy and

the NLRP3 inflammasome helps to maintain the homeostasis of

the host. These findings also raised the possibility of using

NLRP3 inhibitors that induce autophagy or autophagy

activators that inhibit inflammasome as potential therapeutic

strategies for IBD treatment.

To further explore the pathological mechanism of IBD from

the perspective of gene polymorphism, the role of NLRP3

inflammasome-related genes in IBD has been researched.

ZhouL et al. found that NLRP3 is encoded by RS772009059

(R779C) in 3 patients with early-onset IBD. In dextran sulphate

sodium (DSS)-induced models of acute colitis, R779C promotes

the activation and apoptosis of the NLRP3 inflammasome in

macrophages and is positively correlated with the incidence of

severe diseases (144). Studies indicate that some genotypes of the

NLRP3 inflammasome may be associated with the affectability of

patients with IBD and could represent biomarkers for the

evaluation of IBD severity. A Swiss cohort study found that

three NLRP3-related single nucleotide polymorphisms

(RS10733113, RS55646866, rs4353135) were negatively related

to CD (145). Moreover, some negative results were found (146).

In short, the gene polymorphism of the NLRP3 inflammasome

will provide new insights into IBD pathogenesis. Different

NLRP3 gene therapy methods are waiting to be developed in

the future. But the role of gene polymorphism of NLRP3

inflammasome in IBD has not yet been fully discovered. More

research is needed in the future.

3.4.2 Colorectal cancer
Colorectal cancer (CRC) is the third common malignancy

and the second common cause of death from malignancies (147).

Chronic gut inflammation is a critically predisposing factor for the

development of CRC. Shi F et al. observed that NLRP3 expression

is elevated in human tissues of CRC (100 cases) and mice models

of colorectal adenocarcinoma. The elevated levels of NLRP3 are

correlated with distant metastasis, vascular infiltration, and

positive lymph nodes. In addition, the survival analysis of

kaplan-Meier showed that high expression of NLRP3 was

associated with a lower 5-year survival rate and lower 10-year

survival rate (148). These results might elucidate that NLRP3 is an

independent risk factor for CRC prognosis. Similarly, Marandi Y

et al. compared the cancer tissues and adjacent normal tissues of

43 patients with CRC and concluded that the development of

CRC was related to the NLRP3 inflammasome activation (149).

NLRP3 activation was also found to accelerate the rate of cell

migration of CRC. Blocking the NLRP3 signaling suppressed CRC
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cell migration in vitro, and metastatic ability in vivo (150). The

NLRP3 inflammasome regulates the activation of caspase-1.

Activation of caspase-1 enhances the secretion of IL-1b and IL-

18. IL-1b and IL-18 lead to the infiltration of more immune cell,

result in the generation and maintain an inflammatory

microenvironment of CRC (151). Interestingly, the pro-

inflammatory and carcinogenic effect of dietary cholesterol in

CRC (152) and the carcinogenic effects of porphyromonas

gingivalis in CRC are also related to NLRP3 inflammasome

overactivation (153). Whereas the inflammasome complex is

also a protectant in the intestinal epithelium. In research,

NLRP3 deficient mice showed an increased diarrhea, rectal

bleeding and mortality (135). The anti-tumor effect of IL-18

blocks tumors development as well as inhibits angiogenesis and

may induce epithelial cell recovery (136). Furthermore, IL-18 can

reduce cell proliferation in the intestinal epithelium at the tumor

zone in the colitis remission phase (154). There are studies

revealed that protective effect of pyroptosis mediated by NLRP3

on CRC. Tang Z et al. confirmed in vivo and in vitro experiments

that NLRP3 inflammasome mediated pyroptosis could inhibit the

proliferation, migration, and invasion of CRC cells (155). NLRP3

inflammasome has also been reported to enhance NK cell

tumoricidal function mediated by IL-18 by inhibiting CRC

metastatic growth (156). It has been found that in the intestinal

mucosa with high expression of antigen, inflammation with low

levels is indispensable for the harmony between the immune

system and the microbiota and helps to maintain homeostasis

(157). To sum up, controversy remains and some people believe

that the NLRP3 inflammasome is a double-edged sword in the

development of CRC (158, 159). While long-term effects of the

NLRP3 inflammasome activation, and inflammatory reaction are

associated with poor outcomes, mild inflammation may

be beneficial.
3.5 Discussions

The discovery of NLRP3 inflammasomes has enriched our

knowledge of the pathogenesis of multiple digestive diseases.

The NLRP3 has emerged as the most versatile and well-

characterized inflammasome. Undoubtedly, as tremendous

advances in NLRP3 inflammasome continues, the possibility of

NLRP3 inflammasome becoming a therapeutic target for the

treatment of diseases is advanced. However, some mechanisms

of NLRP3 inflammasome are still incompletely characterized,

and even remain controversial and conflicting. We suggest that a

primary role of NLRP3 is to sense noxious stimuli that

accumulate, with NLRP3 driving inflammation to facilitate

their clearance. These factors might accumulate during normal

tissue damage, and the NLRP3 response would be self-limiting as

the clearance succeeds. However, with more and more stimuli,

NLRP3 becomes pathologic accumulation and leads to diseases.

Most studies have also focused on the role of the canonical
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NLRP3 inflammasome pathway and its downstream products,

ignoring other possible pathogenic mechanisms. The purpose of

further investigation might be to elucidate the function of non-

canonical NLRP3 signaling, other inflammasomes such as NLR

family, pyrin domain containing 1 (NLRP1) and absent in

melanoma 2 (AIM2) in digestive disorders, and the activation

of the NLRP3 inflammasome in the complex mechanisms of

organ-to-organ communication.
4 Treatment strategy

As indicated by various published reports, pharmacological

inhibition of the different steps underlying NLRP3

inflammasome activation may be a suitable strategy for

treating digestive system disorders. The article details in-depth

studies of small molecule chemicals, biologicals, and

phytochemicals, focus on their mode of action and therapeutic

potential, and summarize in Tables 1–4 and Figure 3.
4.1 Small-molecule chemical drugs

It may be possible to treat digestive system diseases by

directly targeting NLRP3 inflammasome. Several such

inhibitors have been discovered to date. MCC950 is a potent

and specific inhibitor of NLRP3 that acts on both canonical and

non-canonical processes of NLRP3 inflammasome activation.

MCC950 has the characteristics of high selectivity, strong

inhibi t ion effect , and good pharmacodynamic and

pharmacokinetic properties (219). Previous studies have

confirmed that MCC950 could modify the active conformation

of NLRP3 (220) and target the NLRP3 ATP-hydrolysis motif in

the NLRP3 NACHT domain, thus affecting the hydrolysis of

ATP (221). MCC950 has been shown to play a therapeutic role

in many digestive diseases involving pancreatic cancer, liver

injury, HF, and UC (222). To be specific, in multiple cell lines

derived from pancreatic cancer (SW1990, Panc1, & Panc10.05),

MCC950 down-regulated NLRP3 expression and decreased cell

activity to varying degrees. Interestingly, the effect was

corresponded with the level of ACS (160). In addition,

MCC950 could alleviate cholestatic liver injury (80) and CCL4-

induced acute liver injury (161). MCC950 also reduced the levels

of inflammatory factors and liver enzymes and improved HF in

the NASH model (5). In a mouse model simulating UC,

MCC950 reduced multiple pro-inflammatory factors released

in the tissues of colon, relieved symptoms, and alleviated

histopathological changes (162). OLT1177 is an active b-
sulfonyl nitrile molecule and a selective NLRP3 inhibitor.

OLT1177 can inhibit the activation of the NLRP3

inflammasome, reduce the activity of caspase-1, and inhibit

the production of IL-1b and IL-18 (223). Oizumi T et al.

reported that OLT1177 could block inflammasome assembly
frontiersin.org

https://doi.org/10.3389/fimmu.2022.978190
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiang et al. 10.3389/fimmu.2022.978190
TABLE 1 Small‐molecule chemical drugs able to inhibit NLRP3 activation in animal models of digestive diseases.

Drugs Molecular mechanisms Experimental
model

Reference Clinical
trials

MCC950 Modifying the active
conformation of NLRP3
Affecting the hydrolysis of ATP

Pancreatic cancer
Liver injury and
fibrosis
UC

(80, 160–
162)

null

OLT1177 Preventing NLRP3 aggregation with ASC DSS-induced colitis (163) null

WT161 HDAC6 inhibitor IBD (164) null

Blocking NLRP3 inflammasome activation, disrupting ASC speck formation, and decreasing the
expression of NLRP3

Withaferin A
(WA)

Inhibition of NF-kB signaling pathway Pancreatitis (165) null

F240B Induction of SIRT1-dependent autophagy Peritonitis (166) null

Inhibiting ASC oligomerization and pro-IL-1b expression

GL-V9 Trigger of autophagy to degrade NLRP3 inflammasome Liver cancer (167–169) null

Colorectal cancer

Iguratimod (T-
614)

Inhibition of NLRP3 inflammasome activation SAP (170) null

Methane Inhibition of TLR4/NF-kB/NLRP3 signaling pathway Cholestatic liver
injury

(171) null

Angiotensin-
(1–7)

Inhibition of Ang II-mediated ROS HF (172) null
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TABLE 2 Small‐molecule chemical drugs currently approved for clinical use and endowed with the ability to inhibit NLRP3 activation.

Drugs Molecular mechanisms Experimental model Reference clinical trials

Calcipotriol Activation of Yes-associated protein Cholestatic liver Injury and
fibrosis

(173) null

Dehydroepiandrosterone Inducing autophagy via GPER activation inhibited ERK Inhibition
of NF-kB signaling pathway

Colitis (174) NCT00106314

Colchicine Inhibition of NLRP3 inflammasome activation Intestinal damage (175) null

Dapagliflozin Inhibition of NF-kB/AMPK signaling pathway Ulcerative colitis (UC) (176, 177) null

Inhibition of NLRP3/caspase-1 signaling pathway Steatohepatitis

Ursolic acid Inhibition of NF-kB signaling pathway Gastric cancer (GC) (37, 178) null

HF

Acetylsalicylic acid Inhibition of assembly and activation of NLRP3 inflammatory Alcohol-and atorvastatin-
induced hepatotoxic

(179) NCT00898950

NCT00272311

NCT01250340

Saxagliptin Activation of AMPK/mTOR-driven autophagy Gastric mucosal damage (180) null

Rabeprazole Suppression of Pyroptosis executed by GSDMD HP infection (29) NCT02490839

NCT02483715

NCT01643785 etc

Metformin ROS suppression via TXNIP-NLRP3-GSDMD pathway Intestinal ischemia-reperfusion
injury

(181) NCT04750135

Simvastatin Increase in antioxidant level UC (182) null

Empagliflozin combined
with Metformin

Interference With the AMPKa/mTOR/NLRP3 signaling UC (183) null

Auranofin Inhibition of NLRP3 inflammasome NAFLD (59) null

Taurine Inhibition of TXNIP/NLRP3 signaling pathway HF in schistosomiasis (7) null

Rosuvastatin combined with
Lactobacillus

Suppression the TXNIP/NLRP3 Interaction UC (184) NCT04883840
(Rosuvastatin)
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by preventing NLRP3 aggregation with ASC. As a result,

OLT1177 effectively compensated for weight reduction,

reduced disease activity index, histological score and

inflammatory cytokines factors and alleviated DSS-induced

colitis ultimately (163). Histone deacetylase 6 (HDAC6)

inhibitor is recently reported as a NLRP3 small molecule

inhibitor. Magupalli et al. proved that NLRP3 inflammasome

activation depends on regulated ubiquitination (224) and

engagement of the dynein adaptor HDAC6 to transport
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NLRP3 inflammasome to the microtubule-organizing center

for activation in a ubiquitin-misfolded protein-like manner.

HDAC6 deficiency compromises activation of the NLRP3

inflammasome, but not AIM2, NLR family CARD-containing

protein 4 (NLRC4) and non-canonical inflammasomes (225).

Moreover, selective HDAC6 inhibitors have therapeutic roles in

IBD (164) and gastrointestinal cancers, including esophageal,

gastric, colorectal, liver, and pancreatic cancer, as well as

cholangiocarcinoma (226).
TABLE 3 Biologics able to inhibit NLRP3 inflammasome in digestive diseases.

Drugs NLRP3 signaling molecular target Experimental model Reference Clinical trials

Liraglutide Inhibition of NLRP3 inflammasome and pyroptosis activation NAFLD (185–187) NCT02147925
NCT03068065

NCT01399645 etc

Lactobacillus casei atc 393 Inhibition of NLRP3/Caspase-1/IL-1bpathway
Reduction of NLRP3, caspase-1, IL-1b and IL-18

UC (188) null

b-acetylaminohexosidase (Amuc_2109) Inhibition of TNF-a, IL-1b, IL-6 and NLRP3 expression Colitis (189) null

AC-YVAD-CMK Inhibition of caspase-1
Regulating the NF-kB pathway and P38 MAPK pathway

Acute gastric injury (190) null

Anakinra IL-1RI inhibitor Acute liver injury (191) null

Kinsenoside Inhibition of NF-kB/NLRP3 signaling pathway NASH (192) null
TABLE 4 Phytochemicals targeting on NLRP3 inflammasome in animal models of digestive diseases.

Phytochemicals Molecular mechanisms Experimental model Reference

Celastrol Inhibition of NF-kB pathway and pyroptosis
Regulating oxidative stress level
Block the cleavage of caspase-1

Liver damage
colitis

(193, 194)

Sulforaphane Suppression on oligomerization of TLR4
Blocking the transcription of NLRP3 and pro-IL-1b genes
Promotion of autophagy

AP
NAFLD

(195, 196)

Curcumin Prevention of K+ efflux and Ca2+ influx
Regulating P2X7R and NF-kB signaling pathway
Impacting ASC oligomerization and spot formation

UC
liver injury

(197, 198)

Formononetin Inhibiting the NF-kB transcription signaling pathway AIH, Colitis (199, 200)

Salidroside Regulating ROS and AMPK-dependent TXNIP/NLRP3 pathways Acute liver injury
NAFLD
UC

(201–203)

Dihydromyricetin Activating antioxidant pathways liver injury (204–206)

Dihydroartemisinin Inhibition of the activation of NLRP3 inflammasome via p38 MAPK signaling Colitis (207)

Artesunate Interrupting crosstalk of inflammatory and oxidative stress Hepatic ischemia/reperfusion (208)

Cardamonin Inhibition of NLRP3 inflammasome activation via AhR/Nrf2/NQO1pathway IBD (209)

Pristimerin Inhibition of NLRP3 and IL-1b secretion Peritonitis (210)

Chrysanthemum indicum Inhibits NLRP3 inflammasome activation via regulating ASC phosphorylation Peritonitis (211)

Fraxinellone Suppression NLRP3, PY-CARD, caspase-1, Il-18, IL-1b activation Acute pancreatitis (AP) (212)

C-phycocyanin Inhibition of HMG-B1/NLRP3/NF-kB pathway Gastric ulcers (213)

Genipin Inhibition of NLRP3 inflammasome activation Acute gastric injury (214)

Cryptotanshinone Blocking Ca2+ signaling
Reducing mitochondrial ROS

Non-alcoholic steatohepatitis (NASH) (215)

Apocynin Suppression NLRP3 inflammasome activation and NF-kB signaling pathway Severe Acute Pancreatitis (SAP) (216)

DSC Inhibition of the activation of NF-kB, STAT3, and NLRP3 inflammasome Acute Pancreatitis (AP) (217)

Evodiamine Regulation of NF-kB and NLRP3 inflammasome Colitis (218)
fro
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In addition to directly inhibiting the NLRP3 inflammasome,

some pharmacological strategies can also be used to indirectly

inhibit this inflammasome by taking advantage of its complex

signaling cascade, including transcription and oligomerization

inhibition, autophagy modulation, GSDMD cleavage

inhibition, etc.

Blocking the NF-kB-mediated transcriptional efforts can

significantly inhibit NLRP3 oligomerization. Kanak MA et al.

showed that withaferin A (WA), a steroidal lactone derived from

the Withania somnifera plant, could effectively reduce immune

cell infiltration, acinar cell death and sustained ER stress

response in CP by blocking the activation of the NLRP3

inflammasome through NF-kB pathway (165). It has been

found that ursolic acid (UA) reduced the expression of the

NLRP3 inflammasome and release of pro-inflammatory

cytokines by inhibiting the NF-kB signaling pathway, thus

showing significant inhibit proliferation in both gastric tumour

models and human gastric carcinoma cells (37). Dapagliflozin

(DPZ) is a drug employed in the treatment of diabetes. Recently,
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it has been found that DPZ could inhibit the activation step of

NLRP3 inflammasome by regulating the NF-kB/Adenosine 5’-

monophosphate (AMP)-activated protein kinase (AMPK)

interplay and interrupting NLRP3/caspase-1 signaling. DPZ

exhibits beneficial effects in UC models induced by acetic acid

(176). The histological and macroscopic characteristics of colon

tissue were improved, and the survival time was prolonged. DPZ

could also improve hepatic lipid accumulation and fibrotic

response in steatohepatitis with diabetes mellitus (177).

The use of ROS inhibition as a pharmacological target is

beneficial for blocking the assembly and activation of NLRP3

inflammasome. Angiotensin II (Ang II) has been proved to

increase recombinant nicotinamide adenine dinucleotide

phosphate oxidase 4 (NOX4) expression and ROS and leads to

the NLRP3 inflammasome activation. Angiotensin (1–7) has a

reverse regulatory effect on Ang II and can regulate redox

equilibrium, thereby improving HF (172). Simvastatin (SIM)

can increase the antioxidant level of glutathione (GSH) and

super oxide dismutase (SOD) in a dose-dependent manner,
FIGURE 3

Molecular mechanism of small-molecule chemical drugs, biologics, and phytochemicals treat digestive diseases by inhibiting different steps in
the NLRP3 inflammasome signaling pathway. Black font represents small-molecule drugs. Orange font represents phytochemicals. Green font
represents biologics. By Figdraw.
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thereby reducing the IL-1b, caspase-1, NLRP3, tumor necrosis

fac tor -a (TNF-a ) , ma londia ldehyde (MDA) , and

cyclooxygenase-2 (COX-2) content in the colon, and

improving the mucosal histological score of UC (182).

Another critical pharmacological strategy with beneficial

effects in digestive disorders is to modulate autophagy.

Autophagy is vital self-protective process for recycling and

removal of damaged proteins and organelles, has been proved

to inhibit the activation process of the NLRP3 inflammasome.

F240B is a new synthetic 4-hydroxy auxarconjugatin B (4-HAB)

analog. 4-HAB is an autophagy inducer (227). It has been found

that F240B could inhibit ASC oligomerization and pro-IL-1b
expression in an autophagy-dependent manner and accelerated

the degradation of NLRP3 and IL-1b. Additionally, F240B
showed an anti-inflammatory effect in peritonitis mice model

(166). GL-V9 (5-hydroxy-8-methoxy-2-phenyl-7-(4-

(pyrrolidine-1-yl) butoxy)4 H-chromen-4-one) is a new

synthesized flavonoid derivative. GL-V9 induces autophagy by

activating AMPK, thereby blocking NLRP3 inflammasome

activation, and exhibits therapeutic potential in liver cancer

model (167, 168). A recent study has shown that GL-V9 had a

significant anti-inflammatory effect in a colorectal cancer model

associated with colitis. Gl-v9 also reduced intestinal mucosal

injury and relieved the severity of enteritis by degrading NLRP3

inflammasome (169). The dipeptidyl peptidase-4 inhibitor

saxagliptin is a selective inhibitor of the enzyme. It was

reported that saxagliptin could induce autophagy via AMPK/

mTOR and inhibit NLRP3, ASC, NF-kB, caspase-1, IL-1b
expression, and decrease gastric pathological symptoms,

including ulcer area, ulcer index score, and histopathologic

abnormalities (180). Dehydroepiandrosterone is a vital

cholesterol metabolic intermediate and shows protection

against DSS-induced colitis both in vivo and in vitro (174).

Notably, a recent study reported that Dehydroepiandrosterone

induced autophagy via G protein-coupled estrogen receptorgper

(GPER) activation and inhibited NF-kB signaling pathway,

leading to decreasing the expression of NLRP3 inflammasome

components (228).

Of note, preclinical studies have reported the beneficial

effects arising from inhibiting GSDMD cleavage and blocking

the proinflammatory cytokine cascade. Rabeprazole could

reduce inflammatory responses through inhibition of

GSDMD-mediated pyroptosis in gastric epithelial cells and

reducing the maturation and secretion of IL-1b and IL-18

(29). Metformin could decrease pro-inflammatory factors,

protect against intestinal ischemia-reperfusion injury in a

TXNIP-NLRP3-GSDMD-dependent manner (181).
4.2 Biologics

Multiple biological agents, including both inhibitors of

NLRP3 activation and blockers of inflammasome signaling,
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have been demonstrated to have beneficial effects in studies of

disorders of the digestive system.

Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue that

has become the first-line treatment for type 2 diabetes mellitus

(T2DM), is found beneficial in digestive diseases. Experiments

show that liraglutide could suppress NLRP3 inflammasome-

induced hepatocyte pyroptosis via mitophagy to slow the

progression of NASH (185). Clinical studies have

demonstrated that liraglutide can effectively reduce the visceral

adipose tissue and the proton density fat fraction estimated by

magnetic resonance imaging in patients with T2DM and

NAFLD (186).

AC-YVAD-CMK can selective block caspase-1, which can

suppress the IL-1b production (229). Besides the inhibition of

caspase-1, AC-YVAD-CMK can also alleviate the acute gastric

injury by regulating the NF-kB pathway and P38 mitogen-

activated protein kinase (MAPK) pathway, and inhibiting

NLRP3 inflammasome activation indirectly (190). Kinsenoside

(KD), naturally isolated from Anoectochilus roxburghii, could

also inhibit NF-kB/NLRP3 signaling pathway and alleviate

experimental NASH (192).

Anakinra is a recombinant interleukin-1 receptor type I (IL-

1RI) inhibitor (230). Studies have shown that Anakinra can

reduce the severity of liver injury induced by D-galactoamine

(D-GALn) and LPS, which is manifested by the reduction of

AST and ALT (191). IL-1b, the most widely recognized

downstream mediator of the NLRP3 inflammasome. Anti-IL-1

biologic drugs could represent innovative therapeutical options

for the management of digestive system diseases. However, it is

worth noting that IL-1b production can be mediated by other

inflammasomes or by inflammasome-independent pathways.

Therefore, inhibitors aimed at IL-1b may result in

unintentional immunosuppressive effects. In this respect,

further investigations are needed to better understand the role

of NLRP3-dependent IL-1b release.
4.3 Phytochemicals

According to the results of in vitro and in vivo studies,

natural products can also act as inhibitors of NLRP3

inflammasomein vitroin vivo, and have clinical value once the

efficacy and safety are verified.

Inhibition of upstream ROS/TXNIP/NLRP3 interaction, has

also been found to alleviate digestive diseases. Salidroside (SAL)

is a naturally occurring phenolic compound found in Rhodiola

Sachalinensis. SAL reduced obesity, abnormal blood glucose and

liver lipid deposition in NAFLDmouse model by regulating ROS

and AMPK-dependent TXNIP/NLRP3 pathways (201).

Moreover, SAL also showed therapeutic potential in UC and

CCl4-induced liver injury models (202, 203). Dihydromyricetin

(DHM) is a polyphenol which isolates from Ampelopsis

grossedentata. DHM through activation antioxidant pathways
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and reducing inflammasome expression, significantly improved

liver injury induced by LPS, decreased liver enzyme levels,

reduced histopathological changes and ultrastructure (204).

DHM also showed similar liver-protecting and lowering

enzymes effect in CCL4-induced liver injury model (205). In

addition, DHM led to the inhibition of NLRP3, caspase-1, IL-1b
and IL-18 expression as well as the damage of intestinal mucosa

induced by pyroptosis in LPS-induced ileum injury model (206).

Numerous phytochemicals are known to protect against

digestive disorders by blocking both of the steps that lead to the

activation and priming of the inflammasome. Formononetin

(FMN) is a major flavonoid component extracted from

Astragalus membranaceus. Liu G et al. found that FMN inhibits

the NF-kB transcription signaling pathway, and inhibits the

activation of the NLRP3 inflammasome in the liver tissue of

ConA-induced AIH model, significantly reducing the levels of

proinflammatory cytokines in mouse serum and liver tissue,

inhibiting hepatocyte apoptosis and alleviating liver tissue

damage (199). In addition, FMN also shows a protective effect

on the colonic mucosa (200). Sulforaphane (SFN), a dietary

phytochemical, is a significant member of isothiocyanates. SFN

can suppress on oligomerization of TLR4, promote autophagy

through the AMPK signaling pathway, and block expression of

the NLRP3 gene and pro-IL-1b, but not AIM2 inflammasome

(231, 232). At present, the research of SFN in digestive system

diseases is mainly concentrated in AP and NAFLD (195, 233).

Curcumin, the main polyphenol contained in turmeric root

(Curcuma longa), is popular as dietary supplements and topical

medications for treating inflammatory conditions (234). The

inhibiting effect of curcumin in NLRP3 inflammasome and IL-

1b depends on preventing K+ efflux and Ca2+ influx, reversing the

activation of P2X7R, regulating NF-kB signaling pathway,

interfering with the effective spatial arrangement of

mitochondria, impacting ASC oligomerization and spot

formation (235, 236). Curcumin can alleviate DSS-induced

colitis (237) and aflatoxin B1 (AFB1)-induced liver injury (197).

It has been demonstrated that Celastrol, derived from the

medicinal plant tripterygium wilfordii, is capable of significantly

reducing inflammation in various digestive disorders. Celastrol

inhibits NLRP3 inflammasome activation via suppressing NF-kB
pathway as well as OS level, significantly reducing the secretion of

IL-1b and IL-18. Celastrol can also selectively block the cleavage of
caspase-1 and inhibit pyroptosis (193, 238). Celastrol has been

found to improve the histopathological features of colitis,

protect intestinal mucosal homeostasis (193), and reduce

propionibacterium acnes/LPS-induced liver injury (194).
4.4 Discussions

The NLRP3 inflammasome is a promising drug target. This

pathway appears to be central to a broad range of indications as

evidenced by the variety of indications for which it is implicated. In
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clinical and preclinical trials, small-molecule chemical drugs,

biologics, and phytochemicals have been shown to block the

transcription, oligomerization, and activation of the NLRP3

inflammasome. These studies may provide innovative therapeutic

options for digestion problems. Therein, some medications work

more effectively when they are combined with others. For example,

empagliflozin and metformin combination strongly activated

AMPK phosphorylation and suppressed mTOR expression

leading to a robust inhibitory effect on NLRP3 inflammasome

assembly and caspase-1 cleavage. The combined administration of

both drugs bypassed the decreased efficacy of their individual

administration and exhibited greater protective and ameliorative

effects on ulcerative colitis (183). rosuvastatin and lactobacillus

combination attenuated the inflammatory response by inhibiting

NLRP3 inflammasome assembly, and significantly suppressed the

DSS/high-fat diet-induced IBD (184). Compared to one medication

only, the combination of Rosuvastatin with Lactobacillus provides

further protection by correcting dysbiosis. Of interest, although IL-

1b blockage presents an attractive avenue to treat inflammatory

disease, IL-1b production can bemediated by other inflammasomes

or by inflammasome-independent pathways. Inhibitors aimed at

IL-1b can result in unintentional immunosuppressive effects.

Therefore, direct targeting of NLRP3 activation may be more

effective, specific, and cost-effective. However, there remain

considerable challenges for the use of NLRP3 blockade. At

present, most of the pharmacological entities have been tested

only in animal models and are not approved for clinical use

(239). A Phase II clinical trial of MCC950 for rheumatoid

arthritis was suspended due to hepatic toxicity (51). On these

bases, patient-centered long-term randomized clinical trials with a

larger sample size are urgently needed to assess the therapeutic

effects, integrated safety, pharmacokinetic properties, stability, oral

bioavailability, and off-target immunosuppressive effects of NLRP3

inhibitors. A direct structure-induced inhibitor with improved

specificity and efficacy should also be developed using the

advantage of the existing NLRP3 structure. Continued profiling,

refinement and repurposing of these specific NLRP3 inhibitors will

boost future clinical translation, epitomizing the use of precision

medicine in NLRP3 inflammasome related digestive disorders.

Given that the good safeties and broad biological activities of

phytochemicals, future studies may confer additional insights on

these potential inhibitors and bring them to clinic.
5 Prospect

One of the most important components of the innate

immune system is the NLRP3 inflammasome, which is not

only one of the vital components of pattern recognition

receptors, but also a critical link in initiating the downstream

inflammatory cascade reaction, which has become one of the

research hotspots in recent years. As a key regulatory factor of

inflammatory response, its expression level and activation
frontiersin.org

https://doi.org/10.3389/fimmu.2022.978190
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiang et al. 10.3389/fimmu.2022.978190
intensity play an important role in the occurrence and

development of digestive system diseases. The multilevel fine

regulation of NLRP3 inflammasome pathway contributes to the

treatment of digestive diseases and facilitates the research and

development of precision therapeutic targets. Despite the

current results of NLRP3 inflammasome studies, many

questions remain to be answered. The inflammasome cross-

links with other signaling pathways, and existing drugs are

difficult to avoid targeting molecules other than the NLRP3

signaling pathway. Therefore, in the future inhibitor screening

process, we should identify the range of possible drug targets and

try to avoid potential side effects. The benefits of these inhibitors

still need to be tested in large, multicenter, prospective

randomized controlled clinical trials. At the same time, our

understanding of the role of NLRP3 inflammasome in the

digestive system is still limited, given the complexity of

diseases and the diversity of NLRP3 inflammasome regulatory

networks. To understand the exact role of NLRP3

inflammasome in digestive disorders, more extensive research

and experiments are required.
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