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Rumen and fecal microbiota
profiles associated with
immunity of young and
adult goats

Tao Luo1, Yongtao Li1, Wenying Zhang1, Jianxin Liu1

and Hengbo Shi1,2*

1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China,
2Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education,
Hangzhou, China
Low immunity at birth increases risk of disease of young livestock, such as goat

kids. Microbiomes change as animals mature, and a healthy microbiome is

related to decreased risk of disease. The relationship between microbiota

profiles and immunity at different developmental stages remains unclear.

Young (female, n = 12, 30 d) and adult (female, n = 12, 2 yrs. old) Saanen

dairy goats were used to investigate changes in rumen microbiomes, fecal

microbiomes, and their correlations to circulating immune factors. Serum IgG

(P = 0.02) and IgM (P < 0.01) were higher at 2 years than 30 d of age, but there

were no differences in IgA (P = 0.34), IL-2 (P = 0.05), IL-4 (P = 0.37) and IL-6

(P = 0.73) between ages. Amplicon sequencing analysis revealed young goats

had a higher diversity of bacterial communities in rumen and lower diversity in

feces compared with adult goats. Ten genera in rumen and 14 genera in feces

were positively correlated with serum IgM concentration across both ages.

Olsenella, Methanosphaera, Quinella, Candidatus_Saccharimonas, and

Methanobrevibacter in rumen and Ruminobacter, Treponema, Rikenelaceae_

RC9_ gut_ Group in feces were positively correlated with the concentration of

IgG. The correlation analysis using weighted gene co-expression network

analysis showed the MEblue module was positively associated with the IgG

and IgM. These data provide novel insight into the association between rumen-

feces microbiota and immune response. Further experiments are needed to

investigate whether inoculating young livestock with immune-related bacteria

identified can improve the immune status. Our data suggest a possible strategy

to improve the immunity of the kids by alterative microbiota profiles.
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Introduction

Goat kids are born with immature immune systems, making

them highly susceptible to diarrhea, inflammation, or

pathogenic microbial infections (1–3). Disease incidence

decreases growth performance, feed efficiency, and survival

rates of livestock. Improving the immunity of young animals

would improve their survival rate, welfare, and economic

performance as production animals. The role of the gut or

rumen microbiome in maintaining health in farm livestock

has been gaining increasing interest (4–6). The crosstalk

between gut microbe and the host affects animal physiology,

metabolism, and immunity (7, 8). A healthy-balanced gut-

microbiome is particularly important to the growth,

development and metabolism of ruminants, as the

microorganisms that occupy the rumen act as an organ that

digest fiber to release nutrients that affect immune system

development (6, 9).

The fibrolytic activity of rumen microorganisms facilitates

the conversion of plant fibers to short-chain fatty acids (SCFA).

The SCFA in turn serve as nutrients and are immunomodulatory

factors in the host animal (9, 10). The microbiota is composed of

microorganisms that include bacteria, archaea, fungi and viruses,

for example, E.coli and Helicobacter (11), Methanobrevibacter

smithii (12) or Candida albicans (13). Homeostasis between

commensal and pathogenic organisms is essential to health (14).

An imbalance in the composition of microorganisms in the gut,

known as dysbiosis, is related to the occurrence of various

diseases in both young and adult livestock (15–17). Recent

da t a ind i ca t e en r i chment o f Pro t eoba c t e r i a and

Succinivibrionaceae family in cows is related to low somatic

count cells, suggesting that specific rumen microbes can affect

the health of the mammary gland (14). Evidence in goats

suggests that monitoring of ruminal microbiota or probiotics

improves the health of goats, suggesting a relationship between

microbiota and immunity (8, 18–20).

In recent years, progress has been made in the application of

probiotics to modulate the microbial composition of the

gastrointestinal tract to improve the health and immunity of

young livestock (7, 8, 21). Our recent studies showed that feeding

Bacillus amyloliquefaciens-9 to young goats kids increased serum

immune factors and decreased the rate of diarrhea, indicating

that modification of microbial composit ion in the

gastrointestinal tract improves the health status of kids (20).

However, the feeding of microorganisms to change microbiome

of the gut has a low efficacy as the rate of colonization is low, and

administration by gavage increases the risk of intestinal

microbiota disorders.

Dynamic changes occur in bacterial communities in the

rumen and the feces of ruminants as they mature (9, 22). Since

immunity increases in parallel to changes in gut microbiota, it

may be assumed that the microbiota mediates some of these
Frontiers in Immunology 02
changes in host immunity. Therefore, a potential strategy to

improve the immunity of goat kids is through modifying gut

microbiome to be more adult-like. Knowledge of the

composition difference between the bacterial community in

kids and mature animals may help in the identification of

potential probiotics with immunomodulatory properties.

Further, administration of these potential probiotics to young

animals would increase the efficacy of treatment and develop

targeted outcomes. In the current study, Saanen dairy goats were

sampled at young (30 d of age) and adult (2 yrs. old) age. Serum

immune factors and the microbial composition of the rumen

and feces were measured and the relationship between

circulating immune factors and microbiome was analyzed.
Materials and methods

Animals and experiment design

This study was carried out following the regulations of

Instructive Notions with Respect to Caring for Experimental

Animals and following review and approval of the

protocol (protocol no. 201809008) by the Experimental

Animal Management Committee of the Zhejiang Sci-

technology University.

The twelve young Saanen dairy goats (female, 30 ± 2 d,

bodyweight = 6.5 ± 1.05kg) and 12 adult Saanen dairy goats (2

yrs. old, 110 ± 8 d in milk, bodyweight = 52 ± 3 kg, bred at about

twenty-month old) were selected for the study from the herd at

Baoyuan Dairy Farm (Hangzhou, China). Goats with histories of

disease were not included in the experiment. All the animals

were collected from one farm to unite the same management and

environment. The adults were fed in a block. No kid was

included the descendent of any of the old ones. Young kids

were born in the shed and stayed with their dam until they were

7 d of age. After separation from dams, each kid was raised in

individual nursery in a feeding room at 25 °C and was fed

pasteurized whole goat milk twice daily at 08:00 and 15:00 and

given free access to the alfalfa hay until 30 ± 2 d. Adult goats

were fed with total mixed ration (TMR) diet. The nutrient

compositions of the TMR diet are listed in Supplementary

Table. The adult goats were milked twice daily at 07:30 and

16:00. They were fed twice daily after the lactation at 08:00 and

16:30 and given free access to drinking water.
Sampling and analysis

Prior to sampling, the ground and walls of the building were

treated with insect repellent and disinfected with Bromo

Germaine (CAS: 7281-04-1, China National Medicines

Corporation Ltd., Beijing, China). The clinical status of
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animals was evaluated and recorded, and all animals were

healthy at both samplings with no signs of diarrhea. The

collection of rumen fluid and feces was performed according

to the methods described by Fan et al. (23), Wang et al. (24), and

Liao et al. (25). Briefly, flexible PVC tube (2 mm of wall thickness

× 6 mm of internal diameter) with holes of 2.5 mm diameter in

the 15 cm-probe head (Anscitech Co. Ltd. Wuhan, China) was

connected to an electric vacuum pump (7 mbar) and was

inserted into the rumen of goats via the esophagus to collect

the rumen sample. About 25 mL of rumen fluid from each goat

was collected 3 h after morning feeding using oral stomach

tubes. The first 5mL of rumen fluid in each sampling was

discarded to remove the potential saliva contamination and

the remaining contents was filtered through four layers of

cheesecloth. The fecal samples were collected through the

rectum stimulus. The rumen and fecal samples were snap

frozen in liquid nitrogen until DNA isolation and analysis.

The collected samples were divided into four groups: rumen

fluid of young (immature rumen, IR) and adult (mature rumen,

MR) goats, feces of young (immature cecum, IC) and adult

(mature cecum, MC) goats.

Three mL of blood was collected from the jugular vein of each

goat before the morning feeding. The rumen fluid and fecal

samples were collected and finished within 3 h after the morning

feeding at the same day. Serum was separated by centrifugation at

1500 × g for 15 min, transferred to microfuge tubes and stored at

-80°C until analysis. Serum immunoglobulin A (IgA, H108-1-2),

immunoglobulin G (IgG, H106), immunoglobulinM (IgM, H109),

interleukin-2 (IL-2, H003), interleukin-4 (IL-4, H005), and

interleukin-6 (IL-6, H007-1-1) were measured using commercial

ELISA kits (Nanjing Jiancheng Biotech, Jiangsu, China) according

to the manufacturer’s protocol at a wavelength of 450 nm using a

micro-titer plate reader (BioTek, USA) (26, 27).
16S rRNA gene sequencing

Total genomic DNA of the fecal samples and rumen fluid was

extracted using a commercial kit (DP328, Tiangen Biotech, Beijing,

China). Briefly, about 1 g (wet weight) of homogenized sample was

used for total genomic DNA extraction. The bacteria were lysed by

mixing 1 cm and 3 cm beads. The DNA concentration was

monitored on 1% agarose gels and was quantified using a

Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific,

Wilmington, DE, U.S.A). The DNA was amplified using the

341F/806R primer set (341 F: 5′-CCTATYGGGRBGCASCAG-3′,
806R: 5′-GGACTACNNGGGTATCTAAT-3′), which targets the

V3-V4 region of the bacterial 16S rRNA gene. Paired-end

sequencing (2 × 300 bp) was performed on the Illumina NovaSeq

6000 platform according to the standard protocols (Novogene

Technology Co. Ltd., Tianjin, China) (23–25). The identified

sequences were deposited in the NCBI Sequence Read Archive

(SRA) under the accession No. PRJNA800596.
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Processing of sequencing data

According to the method previously described (28), raw

reads of different samples were demultiplexed and quality-

filtered to obtain effective tags. QIIME2 (http://qiime.org) was

used for bioinformatics analysis. The sequencing data of MR and

IR were compared to analyze the differences of rumen

microbiome between adult and young goats, and the

sequencing data of MC and IC were compared to analyze the

differences of fecal microbiome between adult and young goats.

The Shannon, Chao1, and Simpson indices were used to

estimate the microbial richness and community diversity (29).

Principal co-ordinate analysis (PCoA) was applied to assess the

dissimilarity of microbial communities between different

samples. Linear discriminant analysis Effect Size (LEfSe) was

applied to determine differential abundance of bacterial taxa

between different samples. The PCoA and LEfSe analysis were

performed using the Novomagic (https://magic.novogene.com).
Statistical analysis

Statistical analysis of serum immune factors and microbial

diversity was performed by unpaired t tests. Data were presented

as mean ± SEM. Statistical charts were drawn by GraphPad

Prism (Version 8.2.1). P < 0.05 was considered statistically

significant. The Spearman correlation was performed using

SPSS software (SPSS v.19, SPSS Inc., Chicago, IL, USA) to

explore the relationship among immune factors and bacterial

taxa. Correlation heatmaps were generated using the R program

pheatmap package. The significant correlation between bacterial

genus and the immune globulins and cytokines was considered

when |R| > 0.4 and P < 0.05. The weighted gene co-expression

network analysis (WGCNA) package in R (Version 4.0.2) was

used to investigate the relationship between immune indices and

microbiome with the soft-thresholding power at 12. The

different colors were used to identify different modules. The

relationship of microbial composition of positive correlation

modules in WGCNA results was further explored, and the

network was drawn by Cytoscape (Version 3.8.0).
Results

Young goats had a lower concentration
of lgG and lgM compared with adults

Age of the animal significantly affected concentrations of

IgG (P = 0.02) and IgM (P < 0.01) with levels lower when goats

were 30 d versus 2 yrs of age (Figures 1B, C). There was no

difference in serum concentrations of IgA (P = 0.34), IL-2 (P =

0.05), IL-4 (P = 0.37) and IL-6 (P = 0.73) between 30 d and 2 yrs

of age (Figures 1A, D–F).
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Comparison of rumen microbiota
profiling between young and adult goats

The amplicon sequencing of the 16S rRNA gene in rumen

samples found 4677 Operational Taxonomic Units (OTU,

Supplementary File). The MR and IR group shared 1466

OTUs, and 1194 and 2017 OTUs were uniquely detected,

respectively (Supplementary Figure 1A). The rarefaction

curves (Supplementary Figure 1B) gradually leveled off,

indicating an even distribution of species and a reasonable

amount of sequencing data progressively, allowing for

subsequent analysis. Principal co-ordinate analysis (PCoA)

based on unweighted UniFrac distances of OTUs showed

distinct clustering of samples by age-stage of development

(PCoA1 = 36.64%, PCoA2 = 6.8%, Figure 2A). Similar data

was confirmed by PCoA result based on weighted UniFrac
Frontiers in Immunology 04
distances (Supplementary Figure 1C). Compared with MR

group, the index of Chao1 (P < 0.01), Simpson (P < 0.01), and

Shannon (P < 0.01) were significantly higher in IR group,

indicating a greater diversity of microbial species in the

immature compared with mature rumen (Figure 2B).

According to the data at the phylum level, the dominant phyla

of MR and IR were Firmicutes, Bacteroidota, and Euryarchaeota.

As shown in Figure 2C, the abundances of Bacteroidota (P <

0.01), Verrucomicrobiota (P < 0.01), and Desulfobacterota (P <

0.01) in IR group were higher compared with MR group. Lower

levels of Euryarchaeota (P < 0.01) and unidentified_Bacteria (P <

0.01) were also observed in the IR group compared with MR.

Linear discriminant analysis Effect Size (LEfSe) was used to

determine differential abundance of bacterial taxa between MR

and IR ages with LDA Score > 4. Methanobrevibacter and

Quinella were enriched in MR whereas the genera
B C

D E F

A

FIGURE 1

Comparison of serum immune factors concentrations between young (30 ± 2 d) and adult (2 yrs old) goats. (A) The concentration of IgA. (B)
The concentration of IgG. (C) The concentration of IgM. (D) The concentration of IL-2. (E) The concentration of IL-4. (F) The concentration of
IL-6. The data were analyzed with unpaired t tests, and the data were expressed as mean ± SEM. *P < 0.05 was statistically significance. ****P <
0.0001 was the extremely significance.
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FIGURE 2

Comparison in rumen microbiome between adults and young goats. (A) Principal coordinate analysis (PCoA) of microbial based on unweighted
UniFrac distances. (B) Alpha diversity (Chao1 index; Simpson index; Shannon index). (C) Relative abundance of top10 phyla. (D) Bar chart shows
LDA score of young and adult goats. LDA score > 4. MR: rumen of adult goats. IR: rumen of young goats. The data were analyzed with unpaired
t tests, and the data were expressed as mean ± SEM. **P < 0.01, ****P < 0.0001.
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Christensenellaceae_R-7_group was enriched in the IR

group (Figure 2D).
Comparison of fecal microbiota profiles
between young and adult goats

The amplicon sequences of the 16S rRNA gene were

assigned to 2803 OTUs across all the fecal samples

(Supplementary File), and the data quality was supported by

the rarefaction curves (Supplementary Figure 1E). The MC and

IC group shared 443 OTUs, and 1257 and 1103 OTUs were

uniquely detected, respectively (Supplementary Figure 1D).

Principal co-ordinate analysis (PCoA) based on unweighted

UniFrac distances (Figure 3A) and weighted UniFrac distances

(Supplementary Figure 1F) of OTUs showed two distinct

clusters by age of the animals. Compared with IC group, the

indices of Chao1 (P < 0.01), Simpson (P < 0.01) and Shannon

(P < 0.01) were significantly higher in MC group (Figure 3B).

According to the data at the phylum level, the dominant phyla of

MC and IC were Firmicutes, Bacteroidota, Proteobacteria, and

Actinobacteriata. As shown in Figure 3C, compared with MC

group, the abundances of Actinobacteriota (P < 0.01) and

Desulfobacterota (P < 0.01) in IC group were higher. Lower

levels of Proteobacteria (P < 0.01) and unidentified_Bacteria (P <

0.01) were also observed in the IC group compared with MC.

The most differentially abundant bacterial taxa in the MC group

tested by the LEfSe analysis (LDA Score > 4) belonged to the

genera Succinivibrio, Rikenellaceae_RC9_gut_group, and

UCG_005. The genera Phascolarctobacterium, Anaerostipes,

Desulfovibrio, Bifidobacterium, Blautia, Collinsella, and

Lactobacillus were enriched in the IC group (Figure 3D).
Comparison of microbiota profiles
between rumen and feces

The microbial compositions between rumen and feces at

young and adult age, respectively, were analyzed to assess the

fluctuation of microbiota with ages. Venn diagram and PCOA

results indicated differences in rumen and fecal microorganisms

(Supplementary Figure 2). The indices of Chao1 (P < 0.01),

Simpson (P < 0.01) and Shannon (P < 0.01) were significantly

higher in the IR group compared with IC group (Figure 4A).

Higher indices of Simpson (P = 0.03) and Shannon (P < 0.01)

were observed in the MC group compared to the MR

(Figure 4B). Compared with IC group, IR group has higher

abundances of Bacteroidota (P < 0.01) and Chloroflexi (P = 0.02)

and lower abundance of Actinobacteriota (P = 0.01) and

Desulfobacterota (P < 0.01) (Figure 4C). Compared with MC

group, lower levels of Firmicutes (P < 0.01), Proteobacteria (P <

0.01), Spirochaetota (P < 0.01) and Verrucomicrobiota (P < 0.01)

and higher levels of Euryarchaeota (P < 0.01) and
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Actinobacteriota (P = 0.01) were also observed in the MR

group (Figure 4D).
Rumen and fecal microbiome
associated with increasing
concentration of immune factors

Spearman correlation analysis was performed to determine

whether genera of fecal and rumen bacteria were associated with

circulating levels of IgA, IgG, IgM, IL-2, IL-4, and IL-6. Data analysis

across both ages found IgM was positively correlated to 10 genera in

rumen including Olsenella (P < 0.01, R = 0.73),Methanosphaera (P <

0.01 , R = 0.65) , Quinel la (P < 0.01 , R = 0.76) ,

Candidatus_Saccharimonas (P < 0.01, R = 0.72), Gilliamella (P =

0.04, R = 0.42), Acetitomaculum (P < 0.01, R = 0.52),

Lachnospiraceae_NK3A20_group (P = 0.02, R = 0.48),

Methanobrevibacter (P < 0.01, R = 0.62), Selenomonas (P < 0.01, R =

0.64), and Lachnospira (P < 0.01, R = 0.63). Five rumen bacteria were

positively correlated with serum IgG includingOlsenella (P = 0.04, R =

0.43), Methanosphaera (P = 0.02, R = 0.49), Quinella (P = 0.01, R =

0.50), Candidatus_Saccharimonas (P < 0.01, R = 0.52), and

Methanobrevibacter (P = 0.04, R = 0.43). The 13 genera in rumen

were negatively correlated with IgM including Prevotellaceae_UCG.003

(P < 0.01, R = -0.62), Christensenellaceae_R.7_group (P < 0.01, R = -

0.75), Succiniclasticum (P < 0.01, R = -0.77), UCG.002 (P < 0.01, R = -

0.60), Butyrivibrio (P < 0.01, R = -0.68), Bibersteinia (P < 0.01, R =

-0.69), Lachnospiraceae_XPB1014_group (P < 0.01, R = -0.74),

V9D2013_group (P < 0.01, R =- 0.71), NK4A214_group (P < 0.01,

R = -0.53), Flexilinea (P < 0.01, R = -0.53),Desulfovibrio (P <0.01, R = -

0.58), SP3.e08 (P < 0.01, R = -0.55), and Prevotellaceae_UCG.001 (P <

0.01, R = -0.55). Whereas Christensenellaceae_R.7_group (P = 0.03,

R = -0.44), Succiniclasticum (P = 0.02, R = -0.47), and

Prevotellaceae_UCG.001 (P = 0.05, R = -0.41) were negatively

correlated with IgG (Figure 5A).

The 14 genera in feces were also positively correlated with IgG

including Succinivibrio (P = 0.01, R = 0.50), Monoglobus (P < 0.01,

R = 0.56), Prevotella (P < 0.01, R = 0.73), Ruminobacter (P < 0.01,

R = 0.78), Treponema (P < 0.01, R = 0.77), Rikenelaceae_ RC9_ gut_

Group (P < 0.01, R = 0.68), Alistipes (P < 0.01, R = 0.61), UCG.002

(P < 0.01, R = 0.71), Ruminococcus (P < 0.01, R = 0.67), UCG.005 (P

< 0.01, R = 0.68),Christensenellaceae_R.7_group(P < 0.01, R = 0.66),

Fibrobacter (P < 0.01, R = 0.73), Prevotellaceae_UCG.004 (P < 0.01,

R = 0.70), and Prevotellaceae_UCG.003 (P < 0.01, R = 0.66).

Ruminobacter (P = 0.02, R = 0.49), Treponema (P = 0.02, R =

0.46), and Rikenelaceae_RC9_gut_Group (P = 0.04, R = 0.42) were

positively correlated with IgM. Furthermore, 17 genera in feces were

negatively correlated with IgM including Collinsella (P < 0.01, R = -

0.73), Anaerostipes (P < 0.01, R = -0.71), Lactobacillus (P < 0.01,

R = -0.70), Subdoligranulum (P < 0.01, R = -0.74), Intestinimonas

(P < 0.01, R = -0.74), Tuzzerella (P < 0.01, R = -0.71), Blautia (P <

0.01, R = -0.83), Faecalibacterium (P < 0.01, R = -0.78), Bilophila

(P < 0.01, R = -0.55), Desulfovibrio (P < 0.01, R = -0.58),
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FIGURE 3

Comparison in fecal microbiome between adults and young goats. (A) Principal coordinate analysis (PCoA) of microbial based on unweighted
UniFrac distances. (B) Alpha diversity (Chao1 index; Simpson index; Shannon index). (C) Relative abundance of top10 phyla. (D) Bar chart shows
LDA score of young and adult groups. LDA score > 4. MC: feces of adult goats. IC: feces of young goats. The data were analyzed with unpaired
t tests, and the data were expressed as mean ± SEM. **P < 0.01, ****P < 0.0001.
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FIGURE 4

Rumen-feces microbial composition fluctuates with age. (A) Alpha diversity of young (Chao1 index; Simpson index; Shannon index). (B) Alpha
diversity of adult (Chao1 index; Simpson index; Shannon index). (C) Relative abundance of top10 phyla of young. (D) Relative abundance of
top10 phyla of adult. MC: feces of adult goats. IC: feces of young goats. MR: rumen of adult goats. IR: rumen of young goats. The data were
analyzed with unpaired t tests, and the data were expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Erysipelotrichaceae_UCG.003 (P < 0.01, R= -0.63), Paraeggerthella

(P < 0.01, R = -0.63), Bifidobacterium (P < 0.01, R = -0.65),

Parabacteroides (P < 0.01, R = -0.66), X.Ruminococcus._torques_group

(P = 0.03, R = -0.45), Campylobacter (P < 0.01, R = -0.52), and

Phascolarctobacterium (P = 0.02, R = -0.47). Ten genera in feces were

negatively correlated with IgG includingCollinsella (P = 0.03, R = -0.43),

Anaerostipes (P = 0.05, R = -0.41), Lactobacillus (P = 0.04, R = -0.43),

Subdoligranulum (P = 0.04, R = -0.42), Intestinimonas (P < 0.01, R =

-0.60), Tuzzerella (P < 0.01, R = -0.53), Blautia (P < 0.01, R = -0.59),

Faecalibacterium (P = 0.01, R = -0.51), Bifidobacterium (P = 0.02, R =

-0.49), and Parabacteroides (P = 0.03, R = -0.46) (Figure 5B).
Hub microbiota correlated with the
immune factors

At the genus level, we further investigated the relationship

between immune indices and microbiome using WGCNA. A total

of seven related microbiota modules were identified (Figure 6A).

MEBlue was significantly correlated with both IgM (P = 0.01, R =

0.36) and IgG (P = 0.05, R = 0.29) while theMEred was significantly

correlated with IgM (P = 0.01, R = 0.36). The network exported

f rom the MEred module showed that Mai lhe l la ,

Candidatus_Soleaferrea, Hydrogenoanalobacterium, Oscillibacter,

and Prevotellaceae_UCG-004 were the hub microbiota in the

MEred module (Figure 6B). The network derived from the
Frontiers in Immunology 09
MEblue module showed that that Methanosphaera ,

Acetitomaculum, Marvinbryantia, Lachnospira, and Jeotgalicoccus

were the hub microbiota in the MEblue module (Figure 6C).
Discussion

Young livestock are highly susceptible to microbial

infections due to their immature immune systems, which leads

to an unbalanced microbiome (4, 5). In the current study,

microbial profiles of rumen and feces of 24 healthy dairy goats

were measured and compared between early development and

adult stages to identify changes that occur in distribution and

their relationship to circulating immunoglobulins. As animals

mature, the microbial distribution changes and we found

bacterial microbiota abundance in rumen and fecal matter

associated with serum IgM and IgG levels.

The immune system of ruminants provides defense against

pathogenic microbiome by secreting immunoglobulins (30, 31).

The serum immunoglobulin concentrations directly reflect the

resistance to exogenous pathogenic microbiota (32). In the

current study, the higher concentrations of IgG and IgM in

adult goats suggested a mature immune system in adults. No

differences between goats at 30 d and 2 yrs were observed for

interleukins, agreeing with the fact that interleukin levels in

ruminants are sensitive to diseases caused by bacterial infections
BA

FIGURE 5

Correlation between the immune factors and the rumen and fecal bacteria at the genus level. (A) Spearman correlation between rumen samples
(MR, IR) and serum immune factors. (B) Spearman correlation between fecal samples (MC, IC) and serum immune factors. *P < 0.05, **P < 0.01.
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B

C

A

FIGURE 6

Correlation between the serum immune factors and abundance of microbiome in rumen and feces at the genus level. The correlated module
was analyzed using a weighted gene co-expression network analysis (WGCNA). Correlation networks were generated using Spearman’s rank
correlation coefficients. (A) The heatmap of the WGCNA module. (B) Microbiome interaction network and hub microbes in the MEred module.
(C) Microbiome interaction network and hub microbes in the MEblue module.
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(e. g., mastitis and diarrhea) and there are no differences between

healthy individuals (26, 33, 34).

The diversity of fecal microbiome in adults was higher than

that of young, indicating a continuous colonization of intestinal

microbiome (35, 36). In particular, the diversity of gut microbes

has been proposed as a new marker for assessing gut health and

metabolic capacities (37). In agreement with previous reports

(38), the dominant phylum among gut microbial community in

kids and adults were Firmicutes and Bacteroidota. The increasing

abundance of Proteobacteria at 2 yrs old is consistent with the

fact that Proteobacteria contributed to the host’s energy and

nutrient demands (39). The levels of IgM and IgG were strongly

associated with the abundance of the microbiota profiles,

suggesting the idea that modulating IgM- and IgG-associated

microbial community in the gastrointestinal tract of young goats

could improve their immunity early in life. The abundance of 14

genera in the feces positively associated with the concentration

of IgM supports the idea. Among the 14 genera, at least,

Prevotella (40) and Alistipes (41) are related to inflammation

and disease protection. These results suggest that IgM- and IgG-

associated microbiota play an important role in maintaining

gut health.

Goats at 30 d have been on a milk hay-diet and the rumen is

just starting to develop and at 2 yrs old fully functional.

Although the process of the microbial construction in the

young livestock is still unclear (22, 42), along with the fact that

young livestock are immunocompromised, higher diversity in

the young rumen suggests that young rumen is more susceptible

to the invasion of exogenous microorganisms from food or

environment. This is further supported by the instability of the

rumen microbiota of young goats (43) and the finding of higher

diversity in the rumen microbiota of young goats. Compared

with less mature communities, a well-established microbial

community within the rumen has higher resilience and is

more resistant to disturbances (44–46). Along with the fact

that a long-term early life intervention can affect the

composition of the rumen microbial community, the

rudimentary status of the ruminants’ microbiota in the early

life provides a possibility for rumen microbiota modification

(44). Consistent with previous data in the rumen of goats and

sheep (24, 47), the dominant phylum in kids and adults were

Firmicutes and Bacteroidota, which are associated with

carbohydrate and protein metabolism.

Early-life microbial succession in newborn offspring is

essential for immune development and may play a crucial role

in animal resilience to pathogens later in life (48). This idea is

supported by the evidence that probiotics feeding efficiently had

a positive effect on diarrhea of young goats (20) and mice (49).

The correlation analysis showed that the 10 genera in the rumen

strong positive associated with the concentration of IgM. Among

the 10 genera, both Lachnospira (50, 51) and Acetitomaculum

(52, 53) belong to the Lachnospiraceae family, which is a major

producer of SCFA, known to enhance the integrity epithelial
Frontiers in Immunology 11
barrier and inhibiting inflammation. Methanosphaera and

Methanobrevibacter are typical methanogens, which have been

reported to be associated with inflammatory response (54, 55).

The dominance of Lachnospira, Acetitomaculum, and

Methanosphaera in microbial interactions network in

WGCNA data further highlights their importance in the

immune response.

The fact that inoculation of the rumen microbiota in the

early life stages of goats is an effective strategy to accelerate

rumen development (56), suggested that probiotics collected

from the rumen may be more accessible to the microbial

community than in non-ruminal species. It is supported by

the evidence that feeding rumen fluid to newborn lambs

significantly improved their feed digestibility and growth

performance, and the finding that the presence of adult

companion goats interfered with the development of rumen

function in young goats (57, 58). The previous data that

inoculation of calves with rumen microbiota reduce diarrhea

(59) is consistent with the current data that the rumen is an ideal

targeted organ to improve the immune response at the young

stage for the livestock. However, further research is needed to

assess the immune-related bacteria identified in the current

study to improve the immunity in young livestock.

A limitation of the present study is realized. Firstly, the

function of the immune system is influenced by various factors,

including hormones (60). The experimental animals used in this

study were all females and the sex hormones may affect the

development of the adults and, thus, change the microbiota

profiles in rumen or feces. However, adult female goats are the

dominant individuals in the farms, and they have a direct

interaction with the kids through milk feeding. Although the

correlation between bacteria and IgG and IgM parameters is of

interest, the interpretation could be problematic or questionable

based on 16S sequencing. The measurement of specific

antibodies against those bacteria would be required to

understand the effects of the observed results.
Conclusion

It is considered an ideal strategy using endogenic microbiota

from the rumen or feces to keep the health status of young

livestock. In the current study, we firstly jointly considered both

rumen and fecal microbiota and their correlation with immunity

response at different development stages. A higher level of IgM

and IgG was observed in adult goats. Ten genera in rumen and

14 genera in feces were positively correlated with serum IgM

concentration. Olsenella , Methanosphaera, Quinella ,

Candidatus_Saccharimonas, and Methanobrevibacter in rumen

and Ruminobacter, Treponema, Rikenelaceae_ RC9_ gut_ Group

in feces were positively correlated with the concentration of IgG.

Further experiments would be performed to investigate whether

the immune-related bacteria identified in the current study
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would improve the immunity in young livestock. However, our

results in the current study improve our understanding of the

rumen and fecal microbiota under different ages and their

association with immune response. These data suggest a

possible strategy to improve the immunity of the kids by

alterative microbiota profiles.
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