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Background: Cuproptosis is a newly discovered programmed cell death

dependent on overload copper-induced mitochondrial respiration

dysregulation. The positive response to immunotherapy, one of the most

important treatments for invasive breast cancer, depends on the dynamic

balance between tumor cells and infiltrating lymphocytes in the tumor

microenvironment (TME). However, cuproptosis-related genes (CRGs) in

clinical prognosis, immune cell infiltration, and immunotherapy response

remain unclear in breast cancer progression.

Methods: The expression and mutation patterns of 12 cuproptosis-related

genes were systematically evaluated in the BRCA training group. Through

unsupervised clustering analysis and developing a cuproptosis-related

scoring system, we further explored the relationship between cuproptosis

and breast cancer progression, prognosis, immune cell infiltration,

and immunotherapy.

Results:We identified two distinct CuproptosisClusters, which were correlated

with the different patterns between clinicopathological features, prognosis, and

immune cell infiltration. Moreover, the differences of the three cuproptosis-

related gene subtypes were evaluated based on the CuproptosisCluster-

related DEGs. Then, a cuproptosis-related gene signature (PGK1, SLC52A2,

SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2) and the scoring system were

constructed to quantify the cuproptosis pattern of BRCA patients in the training

cohort, and the testing cohorts validated them. Specifically, patients from the

low-CRG_score group were characterized by higher immune cell infiltration,

immune checkpoint expression, immune checkpoint inhibitor (ICI) scores, and

greater sensitivity to immunotherapy. Finally, we screened out RAD23B as a

favorable target and indicated its expression was associated with breast cancer
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progression, drug resistance, and poor prognosis in BRCA patients by

performing real-time RT-PCR, cell viability, and IC50 assay.

Conclusions: Our results confirmed the essential function of cuproptosis in

regulating the progression, prognosis, immune cell infiltration, and response to

breast cancer immunotherapy. Quantifying cuproptosis patterns and

constructing a CRG_score could help explore the potential molecular

mechanisms of cuproptosis regulating BRCA advancement and provide more

effective immunotherapy and chemotherapy targets.
KEYWORDS

cuproptosis, breast cancer, cancermolecular subtypes, tumormicroenvironment, immunotherapy
Introduction

Breast cancer (BRCA) is one of the most common

malignant cancers among women worldwide, with a high

incidence and recurrence rate (1, 2). According to the latest

statistics from 2022, breast cancer alone accounts for nearly

one-third of all new cancer diagnoses (287,850 new cases) in

women in the United States (3). Despite diagnostic and

therapeutic strategies that have taken into consideration the

heterogeneity of breast cancer (4), there are presently

insufficient strategies to improve the prognosis of

recurrence-free survival (RFS) and overall survival (OS) in

breast cancer. At the same time, the resistance of breast cancer

patients to chemotherapy, radiotherapy, or endocrine therapy

makes maintaining their long-term survival an urgent

challenge. In recent years, attention has been focused on the

role of the tumor microenvironment (TME) in regulating

breast cancer progression and prognosis and the effect of

immunotherapy in breast cancer treatment (5–7). However,

there is still a lack of sensitive immune-related diagnostic and

therapeutic targets for breast cancer.

Cuproptosis, unlike apoptosis, ferroptosis, pyroptosis, and

necroptosis, is a kind of non-apoptotic programmed cell death

induced by the accumulation of intracellular copper (8, 9).

Direct binding to lipid-acylated mitochondrial proteins of the

tricarboxylic acid (TCA) cycle to aggregate them, followed by

proteotoxic stress, is the crucial mechanism for the initiation

of cuproptosis. Previous studies have illustrated the

relationship between copper homeostasis and human

diseases, including Wilson disease and other neurological

copper disorders (10, 11), cancers (12–15), abnormal fetal

development (16), and so on. However, there are no studies on

the association between the newly defined cuproptosis and

breast cancer oncogenesis, immune microenvironment, or
02
immunotherapy. Therefore, exploring the physiological and

pathological activities associated with cuproptosis, elucidating

its underlying mechanisms affect ing breast cancer

progression, and identifying sensitive and effective targets

for breast cancer diagnosis and treatment are crucial for

early detection, diagnosis, and treatment of breast cancer.

In this study, a comprehensive assessment of the expression

profile of 12 cuproptosis-related genes in breast cancer was

performed to comprehensively analyze the role of CRGs on

TME and immunotherapy. First, the BRCA patients in the

training cohort were stratified into two cuproptosis-related

clusters based on CRGs expression levels. The differentially

expressed genes (DEGs) in these two clusters were then used

to classify the patients into three cuproptosis-related gene

subtypes. Further, differentially expressed genes with

prognostic significance were used to construct a cuproptosis-

related gene signature (PGK1, SLC52A2, SEC14L2, RAD23B,

SLC16A6, CCL5, and MAL2) and scoring system. Three

independent external testing cohorts also confirmed the

stability and reliability of the scoring system. We used the

cuproptosis-related gene score (CRG_score) to classify patients

into high and low-CRG_score subgroups to predict overall

survival (OS) and the immune landscape in BRCA, thus

accurately predicting the patient long-term prognosis and

response to immunotherapy. Finally, RAD23B was selected as

a valuable target for in vitro experimental validation.
Materials and methods

Data acquisition and preprocessing

The gene expression profile cohort and its corresponding

clinical data of BRCA patients were obtained from The Cancer
frontiersin.org
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Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and the

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.

gov/geo/) databases. Specifically, the training cohort consisted of

the BRCA dataset of TCGA (113 standard samples and 1091

BRCA samples) and GSE20685 (327 BRCA samples) (Table S1).

The testing cohorts consisted of the GSE7390 (198 BRCA

samples), the GSE58812 (107 BRCA samples), and the

GSE42568 (104 BRCA samples). All the gene expression data

were fragments per kilobase million (FPKM) and transformed

into transcripts per kilobase million (TPM) values for further

analysis using the R language (version 4.1.2), the “edge” R

package (Storey et al., 2021, R package version 2.26.0).

Reducing the batch impact induced by non-biotechnological

variations, was achieved by using the “ComBat” method in the

“SVA” R package (Leek et al., 2021, R package version 3.42.0.).
Construction of CuproptosisClusters and
PCA analysis

The 12 cuproptosis-related genes, including FDX1, LIPT1,

LIAS, DLD, DBT, GCSH, DLAT, PDHA1, PDHB, SLC31A1,

ATP7A, ATP7B, were retrieved from previously published

literature (8). To identify different cuproptosis patterns in

BRCA, we performed consensus classification using the

“ConsensusClusterPlus” R package (17). The tendency and

smoothness of the cumulative distribution function (CDF)

curve were used to figure out the clustering number (17).

Principal component analysis (PCA) was conducted with the

help of the function “prcomp” in the R package “stats” (R Core

Team, 2021).
Clinical characteristics and prognosis
analysis in different CuproptosisClusters

Utilizing the “survival” (Therneau et al., 2021, R package

version 3.2-13) and “survminer” R packages (Kassambara et al.,

2021, R package version 0.4.9.), we conducted the Kaplan–Meier

plot to estimate the prognostic values of BRCA patients in

different molecular subtypes (18, 19). Clinical features

(age, stage T, and stage N) were also compared among

molecular subtypes.
Gene set variation analysis in different
CuproptosisClusters

Using the “GSVA” R package (20), the gene set variation

analysis (GSVA) was conducted to estimate the differences in

biological processes responsible for the characteristic patterns of

cuproptosis (20, 21).
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Estimation of TME in different
CuproptosisClusters

By performing the “estimate” R package (Yoshihara et al.,

2016, R package version 1.0.13/r21.), the immune score of every

BRCA sample was evaluated in the ESTIMATE algorithm (22).

Furthermore, the fractions of 23 human immune cell subsets in

the TME of different BRCA molecular subtypes were also

estimated using a single-sample gene set enrichment analysis

(ssGSEA) algorithm (23–26). The expression of 32 critical

immune checkpoints retrieved from previous research was

compared in different BRCA molecular subtypes (27).
Identification of DEGs in different
CuproptosisClusters, functional analysis,
and construction of gene subtypes

We ident ified 968 DEGs among the d i ff e r en t

CuproptosisClusters using the “limma” package (28) in R

with a fold-change of 6 and an adjusted p < 0.001. The

functional analysis (GO and KEGG) was conducted on the

DEGs using the “clusterprofiler” R package (17, 29, 30). The

gene set file (c2.cp.kegg.v7.2.symbols.gmt) was obtained from

the MSigDB database (https://www.gsea-msigdb.org) (30, 31).

To investigate the molecular function of these cuproptosis-

related DEGs mentioned above, we performed survival

analysis and picked out 25 DEGs with significant prognostic

values (p < 0.001) for further study (Table S8) (28, 32).

Then, consensus classification was performed using the

ConsensusClusterPlus” R package based on the 25 prognostic

genes to divide patients into three gene subtypes (Figure S2, k =

3; gene subtypes A, B, and C).
Development and validation of the
cuproptosis-related gene model and
CRG_score

We performed the LASSO Cox regression model using the

“glmnet” R package (33, 34) to filter down the candidate

cuproptosis-related genes. Finally, the 5 genes and their

coefficients were kept. We obtained the penalty parameter (l)
according to the minimum criteria. After standardizing the data

from the training cohort by the “scale” R package (Hadley

Wickham and Dana Seidel, 2022, R package version 1.2.0.),

the CRG_score was calculated as follows:

CRG_score = (0.00523335734652904 * PGK1) + (0.0185

186220360186 * SLC52A2) − (0.0261649532232335 * SEC14L2)

+ (0.0129284730002406 * RAD23B) − (0.0297061289632435 *

SLC16A6) − (0.0142610013224485 * CCL5) + (0.001455

7255170858 * MAL2).
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We also calculated the CRG_score of the testing cohorts using

the same formula. We divided the patients from the training and

testing cohorts based on the median CRG_score, and the high-

and low-CRG_score groups. We performed the Kaplan–Meier

analysis of overall survival using “survival” and “survminer” R

packages, and ROC curve analysis using the “timeROC” R

package (35). Then the calibration plots of the nomogram were

executed to predict the prognosis value between the predicted 3-,

5-, and 8- or 10-year survival events and the virtually observed

outcomes. Lastly, a stratified analysis was done to see if the

CRG_score could still predict in different subgroups of age (65

or 65), stage T (T1-2 or T3-4), and stage N (N0 or N1-3).

Finally, we reduced the batch impact of testing cohorts

(GSE7390, GSE58812, and GSE42568; n = 409) using

“ComBat” method. By performing the PAM50 algorithm (36)

with the “genefu” R package (37), we then assessed the molecular

subtypes for each patient from testing cohorts. Samples were

classified into the normal-like (n = 13), basal-like (n = 126),

HER2+ (n = 57), luminal A (n = 111), and luminal B (n = 102)

subtypes (Table S2). Each subtype was then used as an

independent external validation cohort and CRG_score was

calculated respectively. Survival and ROC curve analysis were

then performed, as mentioned above.
Analysis of chemotherapeutic
drugs effects in high-and low-
CRG_score groups

The semi-inhibitory concentration (IC50) values of

chemotherapeutic drugs in high- and low-CRG_score groups

were calculated using the “pRRophetic” R package (Paul

Geeleher, 2014, R package version 0.5.).
Analysis of protein expression in
clinical specimen

The Human Protein Atlas (HPA) database contains sections

from 46 normal human tissues and over 20 human cancers

labeled with antibodies targeting more than 11000 human

proteins (38). Based on the laser power and detector gain

parameters used for image acquisition, combined with the

image’s visual appearance, the staining intensity is rated as

negative, weak, moderate and strong (39). The scoring method

of protein expression is the same as described previously (40).
Cell culture and transfection

Our human breast cancer cell lines were obtained from the

Shanghai Institute of Biochemistry and Cell Biology, including
Frontiers in Immunology 04
MCF10A, SUM-159, MDA-MB-231, BT549, and MCF7 cells.

MCF10A and SUM159 cells were cultured in DMEM/F12 (1:1)

medium, MDA-MB-231 and MCF7 cells were cultured in a

DMEM medium, and BT549 cells were cultured in an RPMI-

1640 medium, with all recommended supplements, respectively.

All cells were cultured at 37°C in a humidified incubator in an

atmosphere of 5% CO2.

SUM-159 and MCF7 cells were transfected with

corresponding siRNAs using Lipofectamine 8000 (#C0533,

Beyotime, Nanjing, China) following the manufacturer’s

protocol. The RAD23B siRNA constructs and a negative

con t ro l s iRNA wer e a s f o l l ows : RAD23B-1 , 5 ’ -

CUCCAGCAUCAGCGACAGCAUTT −3’ and 5’- AUG

CUGUCGCUGAUGCUGGAGTT −3’; RAD23B-2, 5’- AGA

AGCUGGAAGUGGUCAUAUTT −3’ and 5’- AUAUG

ACCACUUCCAGCUUCUTT −3’; NC siRNA, 5’- UUCUC

CGAACGUGUCACGUdTdT −3 ’ and 5 ’- ACGUGAC

ACGUUCGGAGAAdTdT −3’.
Cuproptosis cell model construction and
mRNA expression analyses

To promote the occurrence of Cuproptosis (8), SUM-159

and MCF7 cells were treated with 100 nM elesclomol (+1 µM

CuCl2 in medium) for a 2-hour-pulse. After 24 h, cells were

harvested and lysed. The real-time RT-PCR was performed as

previously described (40). All primers were synthesized (Sangon

Biotech, Shanghai, China) and listed in Table S3.
Cell viability and IC50 assay

After transfection for 48h, SUM-159 and MCF7 cells (5 ×

103 cells/well) were loaded on a 96-well plate and cultivated

for 0 h, 24 h, 48 h, and 72 h for cell viability assays or 48 h for

the IC50 assay of Paclitaxel (0, 0.125, 2.5, 5, 10, 20 µM/L).

After incubation with 20 mL of 3-(4.5-Dimethylghiazol-2-yl)-

2,5-diphenyltetrazolium Bromide (MTT; 5 mg/mL; Absin

Bioscience, Shanghai, China; Catalog no. abs50010) for 4 h

at 37°C, the culture medium was removed, and 150 mL
dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO, USA)

was added. Afterward, the cells were shaken for 15 min in

the dark, and the optical density (OD) at 490 nm was

measured using a Benchmark microplate reader (Bio-Rad,

Hercules, CA, USA).
Statistical analysis

All the data analysis was conducted by R (version 4.1.2) and

in vitro experimental data were analyzed with the GraphPad
frontiersin.org
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Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA). The Log-

rank test, Spearman test, Wilcoxon test, Student’s t-test, and

Two-way ANOVA tests were applied in this study. p < 0.05 was

considered as significant. P-values were adjusted to control for

the false discovery rate (FDR) using the Benjamini-Hochberg

method (41). Each experiment was done in triplicate and

repeated at least three times.
Results

The landscape of cuproptosis-related
genes in BRCA

Figure 1 shows the overall design and flow chart of this

study. The expression of twelve cuproptosis-related genes

(CRGs) was obtained from previous studies (8). By performing

the “limma” package, we analyzed the mRNA expression of

CRGs based on the data of 113 normal and 1091 BRCA tissues

from TCGA. As shown in Figure 2A, the transcriptional levels of

DLAT, PDHB, SLC31A1, and ATP7B were significantly higher

in the BRCA tissues than in the normal tissues. At the same time,

FDX1, LIPT1, LIAS, DLD, DBT, GCSH, PDHA1, and ATP7A

were significantly lower. Furthermore, we developed the

correlation network containing twelve CRGs in Figure 2B (red:

positive correlations; blue: negative correlations). Then,
Frontiers in Immunology
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univariable Cox regression analysis also showed significant

differences in overall survival between patients with high or

low expression of the CRGs (Table S4). Specifically, LIPT1 (HR

= 0.79, 95% CI: 0.65–0.95, p < 0.01), PDHB (HR = 0.97, 95% CI:

0.94–1.00, p < 0.01), and ATP7B (HR = 0.96, 95% CI: 0.93–1.00,

p < 0.01) were “protective” factors for BRCA patients with HR <

1, while the DLAT (HR = 1.06, 95% CI: 1.02–1.09, p < 0.01),

SLC31A1 (HR = 1.03, 95% CI: 1.01–1.05, p < 0.01), DBT (HR =

1.05, 95% CI: 0.94–1.18, p < 0.01), PDHA1 (HR = 1.01, 95% CI:

0.99–1.03, p < 0.05), ATP7A (HR = 1.00, 95% CI: 0.93–1.09, p <

0.05), and DLD (HR = 1.02, 95% CI: 0.99–1.04, p < 0.05) were

“risk” factors with HR > 1.

To explore their mutation landscape, the single nucleotide

variation (SNV) and copy number variation (CNV) data were

downloaded from the TCGA database. Moreover, CNVs were

prevalent and mostly involved deletion, though DLD had a

high frequency of amplification (Figure 2C). Figure 2D shows

the locations of the CNV alterations in the CRGs on their

respective chromosomes. Next, we analyzed the incidence of

somatic mutations in these 12 CRGs, which showed that 29

(2.94%) of the 986 BRCA samples had mutations in the CRGs.

Specifically, ATP7A had the highest mutation frequency (1%),

followed by ATP7B, while others did not have any significant

mutations (Figure 2E). Therefore, our findings on the

landscape of CRGs in BRCA showed that they might play

an essential role in the development and progression

of BRCA.
Identification of CuproptosisClusters
in BRCA

To further explore the expression pattern of CRGs

implicated in BRCA tumorigenesis, we integrated patients

from TCGA-BRCA (n = 1091) and GSE20685 (n = 327) as

training cohort. First, the comprehensive landscape of CRG

interactions and their prognostic value in the BRCA training

cohort was demonstrated in a cuproptosis network (Figure 3A).

We did the unsupervised clustering analysis using the

“ConsensusClusterPlus” R package and picked k= 2 based on

the empirical cumulative distribution function (CDF) plots,

which suggested the highest intragroup correlations and the

lowest intergroup correlations compared with others

(Figures 3B, C, and Figure S1). Thus, two CRG-expression

patterns were observed: CuproptosisCluster A and

CuproptosisCluster B. Furthermore, the BRCA patients in the

training cohort could be completely distinguished (Figure 3D).

We also performed the Kaplan–Meier (K-M) survival analysis of

the two clusters, suggesting a poor overall survival of patients in

Cluster B (Figure 3E). Finally, we examined the clinical and

pathological characteristics of the two BRCA clusters and the

expression of the CRGs (Figure 3F).
FIGURE 1

The Flowchart of the Study Design.
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Characteristics of the TME in
CuproptosisClusters of BRCA

To thoroughly analyze the role of cuproptosis-related genes

in the TME of BRCA, we conducted the GSVA enrichment

analysis. As shown in Figure 4A, cluster A was significantly

enriched in progesterone-mediated oocyte maturation, cell cycle,

oocyte meiosis, cysteine and methionine metabolism, basal

transcription factors, homologous recombination, DNA

replication, mismatch repair, glycosphingolipid biosynthesis

lacto and neolacto series, pathogenic escherichia coli infection,

proteasome, pyruvate metabolism, pentose phosphate pathway,

glycolysis gluconeogenesis, pyruvate metabolism, citrate cycle

TCA cycle, terpenoid backbone biosynthesis, amino sugar and

nucleotide sugar metabolism. Moreover, the results of the

ssGSEA algorithm indicated that CuproptosisClusters A and B

were rich in different innate immune cell infiltrations with

significance (Figure 4B). We also examined the expression of

32 immune checkpoints in two clusters, which showed a higher

expression of most immune checkpoints (BTLA, CDC20R1,

CD244, CD27, CD274, CD28, CD40, CD40LG, CD48, CD80,

CTLA4, HHLA2, ICOS, IDO1, IDO2, KIR3DL1, LAG3,

LGALS9, PDCD1, TIGIT, TMIGD2, TNFRSF9, TNFSF14) in

cluster B (Figure 4C). In addition, NRP1 and TNFRSF14 were

highly expressed in cluster A. Using the “estimate” package, we
Frontiers in Immunology 06
evaluated the TME score in Figure 4D. Cluster A had a higher

stromal score, while Cluster B had a higher immune score.

According to the results above, we identified two clusters with

distinct immunological and metabolic characteristics, suggesting

that cuproptosis may affect the immune microenvironment and

metabolic processes that lead to breast cancer progression.
Identification of gene subtypes based on
CuproptosisClusters of BRCA

Next, we identified 968 CuproptosisCluster-related DEGs by

performing the “limma” package further to explore the different

biological behaviors of each cluster (Table S5). Firstly, functional

enrichment and GO (Gene Ontology) analysis and KEGG

(Kyoto Encyclopedia of Genes and Genomes) pathway analysis

were conducted among the CuproptosisCluster-related genes

(Figure 5A, B, Table S6 and S7). Then a univariable Cox

regression analysis was performed to screen out 25 genes with

significant prognostic values (p < 0.001) for the subsequent

investigation (Table S8). Moreover, we applied the consensus to

divide patients into three gene subtypes based on the 25

prognostic genes (Figure S2). As shown in Figure 5C, patients

of gene subtype A showed the best OS, while patients of gene

cluster C showed the worst OS (p < 0.001). The comparison of
A B

D

E

C

FIGURE 2

The Landscape of Cuproptosis-Related Genes in BRCA. (A) The gene expression levels of CRGs in BRCA compared to normal tissue (Wilcoxon
test; blue: normal; red: BRCA). (B) The correlation network of the 12 CRGs (red: positive correlation; blue: negative correlation). (C) The
frequency of CNV variation in CRGs (green: CNV deletion; red: CNV amplification). (D) The location of the CNV alteration of the CRGs changes
on 23 chromosomes. (E) The genetic alteration on a query of CRGs. CRGs, cuproptosis-related genes; BRCA, breast cancer; CNV, copy number
variant. *p < 0.05, **p < 0.01, ***p < 0.001.
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the clinicopathological characteristics and the expression of

DEGs between the three gene subtypes was shown in the

heatmap (Figure 5D). Finally, we observed the different

expressions of the cuproptosis-related genes in the three gene

subtypes (Figure 5E).
Development of the cuproptosis-related
gene signature and CRG_score in the
BRCA training cohort

To further investigate the underlying mechanisms regulating

breast cancer progression, we constructed a cuproptosis-related

gene signature by performing the LASSO regression analysis

based on the 25 prognostic subtype-related genes. And the

Cuproptosis-Related Gene Score (CRG_score) was calculated

as follows: CRG_score = (0.00523335734652904 * PGK1) +

(0.0185186220360186 * SLC52A2) − (0.0261649532232335 *

SEC14L2) + (0 .0129284730002406 * RAD23B) −
Frontiers in Immunology 07
(0.0297061289632435 * SLC16A6) − (0.0142610013224485 *

CCL5) + (0.0014557255170858 * MAL2). To better estimate

the characteristics of patients with different levels of CRG_score,

we divided the BRCA training cohort into high- and low-

CRG_score groups depending on the median CRG_score. The

alluvial diagram depicted the distribution of BRCA patients

within the two cuproptosis clusters, three gene subtypes, and

two CRG score groups (Figure 6A). As shown in Figure 6B, gene

subtype C had significantly higher CRG_scores than the other

two gene subtypes. Moreover, cuproptosis cluster B had higher

CRG_scores than cluster A (Figure 6C). Figure 6D also showed

the distribution plot of the survival of each BRCA patient from

the training cohort, which indicated a higher death probability in

the high-CRG_score group. The Kaplan-Meier curve

consistently suggested a worse prognosis for the high-

CRG_score group than the low-CRG_score group (p < 0.001;

Figure 6E). Moreover, we performed the time-dependent

receiver operating characteristic (ROC) analysis to calculate

the AUC values of this cuproptosis-related gene signature
A
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FIGURE 3

Identification of CuproptosisClusters in BRCA. (A) The interaction among CRGs in BRCA (green: favorable factors for overall survival; purple: risk
factors for overall survival). (B) The relative change in area under consensus CDF curve for k=2 to 9. (C) The consensus clustering of BRCA
patients for k = 2. (D) The PCA analysis of the two CuproptosisClusters. (E) The OS of the two CuproptosisClusters (Log-rank test). (F) The
heatmap for the connections between clinicopathologic features and the two CuproptosisClusters (blue: low expression; red: high expression).
CDF, cumulative distribution function; PCA, Principal component analysis; OS, overall survival. *p < 0.05, **p < 0.01, ***p < 0.001.
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(0.741 for 3-year, 0.707 for 5-year, and 0.716 for 10-year;

Figure 6F). We also conducted a nomogram plot analysis,

which suggested an excellent advantage for CRG_score in

long-term survival prediction (Figure 6G). Finally, the

calibration chart revealed an excellent performance of the

CRG_score among the predicted and observed overall survival

with a C index of 0.69 (Figure 6H).
Validation of the cuproptosis-related
gene signature in BRCA testing cohorts

To validate the reliability and reproducibility of our

cuproptosis-related gene signature, we calculated CRG_scores

of three independent external validation BRCA groups,

including GSE7390 with 198 BRCA patients, GSE58812 with

107 BRCA patients, and GSE42568 with 104 BRCA patients.

Then the patients in each testing cohort were classified into

high- and low-CRG_score groups based on the median

CRG_score value. Patients with high CRG_scores in all three

testing cohorts showed worse survival status (Figures 7A–C).

Similarly, survival analysis revealed a significantly better overall

survival of patients with low CRG_scores than those with high

CRG_scores (p = 0.001, 0.038, 0.003, respectively; Figure 7D–F).
Frontiers in Immunology 08
Moreover, the high AUC values also suggested an excellent

ability of the CRG_score to predict the long-term prognosis of

BRCA patients in testing cohorts (Figures 7G–I). Thus, the

results above showed a similar tendency to the training cohort,

indicating the cuproptosis-related gene signature was stable

and reliable.

Moreover, to further clarify the applicability of different

molecular subtypes of breast cancer to our predictive gene

signature, the PAM50 algorithm was conducted on the testing

cohorts (GSE7390, GSE58812, and GSE42568; n = 409). The

distribution of molecular subtypes according to the PAM50

signature was as follows: 13 normal-like (3%), 126 basal-like

(31%), 111 luminal A (27%), 102 luminal B (25%), and 57 HER2

+ (14%). We also calculated the CRG_scores of each PAM50

subtype and divided them into high- and low-CRG_score groups

based on the median CRG_score value, respectively. The survival

and ROC curve analyses were also performed for each PAM50

subtype (Figure S3). Patients of luminal A and HER2+ subtypes

showed a better prognosis in the low CRG_score group (Figures

S3C, E), while the survival of other subtypes was not statistically

significant. In addition, the AUC values for all of the PAM50

subtypes were high, which indicated that our CRG_score could

predict the long-term prognosis of BRCA patients with different

molecular subtypes.
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FIGURE 4

Characteristics of the TME in CuproptosisClusters of BRCA. (A) The GSVA of biological pathways between the two CuproptosisClusters
(Spearman test, blue: inhibited pathways; red: activated pathways). (B) The abundance of 23 infiltrating immune cell types in the two
CuproptosisClusters (Spearman test). (C) The expression levels of 32 immune checkpoints in the two CuproptosisClusters (Wilcoxon test).
(D) The TME score of the two CuproptosisClusters (Spearman test). GSVA, gene set variation analysis; TME, tumor microenvironment. **p <
0.01, ***p < 0.001.
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Relationship of clinical characteristics
and TME characteristics with CRG_score
in the BRCA training cohort

Further, we investigated the clinical characteristics of the

training cohort’s high- and low-CRG_score groups. For ages,

patients aged ≥65 had a higher CRG_score, and the high

CRG_score of patients of different ages was positively related

to poor prognosis (Figure 8A). Then a relatively higher

CRG_score was observed in patients with T1-2 and a lower

CRG_score in patients with T3-4. In addition, the low

CRG_scores of patients with different T stages suggested a

better overall survival than the high CRG_score group

(Figure 8B). Similarly, patients with N1-3 were correlated with
Frontiers in Immunology 09
a relatively high CRG_score, while the low CRG_score of

patients with different N stages both lived longer than those in

the high-CRG_score group (Figure 8C). Therefore, patients with

a high CRG_score of types ≥65 age, stage T1-2, and stage N1-3

had worse long-term survival.

To analyze the relationship between TME and CRG_score, we

calculated the TME score (ImmuneScore, StromalScore,

ESTIMATEScore, and TumorPurity) using the “estimate”

package (Figure 8D). We divided patients into low- and high-

TME score groups depending on the median values.We found that

low ImmuneScore and ESTIMATEScore were significantly

correlated with poor overall survival (p < 0.001, p = 0.025,

respectively), while high TumorPurity was significantly

correlated with worse overall survival (p=0.025). Moreover, there
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FIGURE 5

Identification of Gene Subtypes based on CuproptosisClusters of BRCA. (A, B) The GO and KEGG enrichment analyses of DEGs among the two
CuproptosisClusters. (C) The overall survival of the three gene subtypes (Log-rank test). (D) The heatmap for the connections between
clinicopathologic features and the three gene subtypes (blue: low expression; red: high expression). (E) The differences in the expression of 12
cuproptosis-related genes among the three gene subtypes (Wilcoxon test). DEGs, differentially expressed genes; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes. *p < 0.05, **p < 0.01, ***p < 0.001.
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was no significant correlation between the prognosis of BRCA

patients and StromalScore. Besides, a low CRG_score was also

significantly associated with ImmuneScore, StromalScore, and

ESTIMATEScore (Figure 8E). Furthermore, the relationship

between the cuproptosis-related gene signature and immune cell

abundance was further estimated in box plots and scatter diagrams

(Figure 8F). Here, the results above revealed a close relationship

between the cuproptosis-related gene prognostic model and TME,

which suggested the possibility of immunotherapy targeting

cuproptosis-related genes to block BRCA progression.
Frontiers in Immunology 10
Prediction of immunotherapy response
in high- and low-CRG_score groups in
BRCA

Since cuproptosis played an essential role in the TME, we

further investigated its influence on immunotherapy for

BRCA. First , the expression of 32 critical immune

checkpoints in high- and low-CRG_score groups was

examined (Figure 9A). We observed that most immune

checkpoints were significantly overexpressed in the low-
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FIGURE 6

Development of the Cuproptosis-Related Gene Signature and CRG_score in the BRCA Training cohort. (A)The alluvial diagram showing the
connection between CuproptosisClusters, gene subtypes, and CRG_score. (B) The level of CRG_score in the three gene subtypes (Wilcoxon
test). (C) The level of CRG_score in the two CuproptosisClusters (Wilcoxon test). (D) The ranked dot and scatter plots of CRG_score distribution
and patient survival status in BRCA training cohort. (E) The overall survival of the high and low CRG_score groups in BRCA training cohort (Log-
rank test). (F) The ROC curves for the predictive efficiency of the CRG_score in BRCA training cohort (green: 3 year; blue: 5 year; red: 10 year).
(G) The Nomogram to predict 3-, 5- and 10-year OS in the BRCA training cohort. (H) The Calibration plots of the nomogram to predict OS at 3-
, 5- and 10-year (green: 3 year; blue: 5 year; red: 10 year). CRG_score, Cuproptosis-Related Gene Score; ROC, receiver operating characteristic.
*p < 0.05, **p < 0.01, ***p < 0.001.
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CRG_score group. Next, we investigated the application of

CRG_score in the therapy o f BRCA. The BRCA

immunotherapy profile of patients from the TCIA database

revealed that the low-CRG_score group had higher ICI scores

than the high-CRG_score group and was more responsive to

the immunotherapy than the high-CRG_score group

(Figure 9B). In addition, we assessed the responses of the

high- and low-CRG_score groups to conventional and novel

chemotherapeutic agents. The high-CRG_score group was

more sensitive to lapatinib, nilotinib, pazopanib, metformin,

lenalidomide, camptothecin, cytarabine, bexarotene,

midostaurin, shikonin, temsirolimus, and vorinostat. In

contrast, the low-CRG_score group was more responsive to

paclitaxel, imatinib, sorafenib, and rapamycin (Figure 9C).

Therefore, BRCA patients with high-CRG_score were

characterized by abundant immune infiltration, high

expression of immune checkpoints, and better response to

immunotherapy and chemotherapy.
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Expressions pattern of cuproptosis-
related gene signature in BRCA

To further explore the important role of the cuproptosis-

related gene signature in breast cancer, we analyzed their protein

expression patterns in the normal and tumor samples in the

Human Protein Atlas (HPA) database (Figure 10A). RAD23B

protein was strongly expressed in breast cancer tumor tissues,

SLC52A2 was moderately expressed, and SEC14L2 was weakly

expressed. Additionally, PGK1 was not expressed in most breast

cancers, some were weakly expressed, and few were moderately

expressed. As for SLC16A6, CCL5, and MAL2, their protein

expression was almost negative in breast cancer tissues based on

the results of the HPA database. According to the previous study

(8), we also examined the transcriptional expression of our

cuproptosis-related gene signature in the cuproptosis cell

model. As shown in Figure 10B, RAD23B was significantly

down-regulated in SUM159 and MCF7 cells after cuproptosis
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FIGURE 7

Validation of the Cuproptosis-Related Gene Signature in BRCA Testing Cohorts. BRCA Testing Cohorts: GSE7390 (n = 198), GSE58812 (n = 107),
and GSE42568 (n = 104). (A–C) The ranked dot and scatter plots of CRG_score distribution and patient survival status in BRCA testing cohorts
(GSE7390, GSE58812, and GSE42568 sets, respectively). (D–F) The overall survival of the high and low CRG_score groups in BRCA testing
cohorts (GSE7390, GSE58812, and GSE42568 sets, respectively). (G–I) The ROC curves for the predictive efficiency of the CRG_score in BRCA
training cohort (red: 3 year; blue: 5 year; yellow: 8 year; green: 10 year).
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induction; SLC16A6 was significantly down-regulated in MCF7

cells, while other genes showed no significant change.

We also analyzed the mRNA expression of the cuproptosis-

related gene signature in breast cancer tissues, suggesting a

higher transcriptional expression of all 7 cuproptosis-related
Frontiers in Immunology 12
genes in BRCA tissues than in adjacent normal tissues (Figure

S4A). Furthermore, overall survival analysis showed a worse

prognosis for patients with high expression of PGK1, SLC52A2,

RAD23B, andMAL2; while patients with up-regulated SEC14L2,

SLC16A6, and CCL5 could live longer (Figure S4B).
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FIGURE 8

Relationship of Clinical Characteristics and TME Characteristics with CRG_score in the BRCA Training Cohort. The relationship between age (A),
T (B), N (C) and CRG_score. The TNM system of cancer staging reflects the extent of tumor growth, where primary tumor (T), and nodal status
for metastasis (N) (Wilcoxon test for boxplot; Log-rank test for survival analysis). (D) Survival analysis of ImmuneScore, StromalScore,
ESTIMATEScore, and TumorPurity in BRCA patients (Log-rank test). (E) The TME score of the two CuproptosisClusters in the high and low
CRG_score groups (Spearman test). (F) The abundance of 23 infiltrating immune cell types in the high and low CRG_score groups (Spearman
test). *p < 0.05, **p < 0.01, ***p < 0.001.
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The role of RAD23B in the regulation of
breast cancer progression,
chemotherapy and immunotherapy
in vitro

The protein and mRNA expression levels of RAD23B were

significantly higher in breast cancer tissues than in paraneoplastic

tissues, and its expression was positively correlated with poor

prognosis in BRCA patients. Moreover, the expression of

RAD23B was decreased in the cuproptosis cell model, which

indicated that it acted as a “risk” factor and antagonized

cuproptosis in BRCA progression. Therefore, RAD23B was

selected as a promising target for in-depth experimental
Frontiers in Immunology 13
validation. As shown in Figure 11A, the transcriptional

expression of RAD23B was examined in breast epithelial cell lines

(MCF10A), luminal breast cancer cells (MCF7), and triple-negative

breast cancer cells (MDA-MB-231, SUM-159, and BT549). Due to

the high expression of RAD23B in SUM-159 and MCF7 cells, two

RAD23B siRNA (small interfering RNA) constructs were used to

knockdown its expression in these two cell lines (Figure 11B). After

the reduction of RAD23B, cell viability was significantly inhibited

(Figure 11C). The MTT assay reduced the IC50 of Paclitaxel in the

RAD23B down-regulated groups compared with that of the control

group (Figure 11D). To further explore the expression pattern of

RAD23B in breast cancer, we examined the mRNA expression level

of RAD23B in 34 pairs of breast cancer tissues and adjacent normal
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FIGURE 9

Prediction of Immunotherapy Response in High- and Low-CRG_score groups in BRCA. (A) The expression levels of 32 immune checkpoints in
the high and low CRG_score groups (Wilcoxon test). (B) The immunotherapy response between the high and low CRG_score groups (Wilcoxon
test). (C) The relationships between CRG_score and chemotherapeutic sensitivity (Wilcoxon test). *p < 0.05, **p < 0.01, ***p < 0.001.
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breast tissues. It suggested that RAD23B was significantly

overexpressed in breast cancer tissues than in adjacent normal

breast tissues, and its expression was positively correlated with

pathological grade (Figure 11E, F). Finally, we also tested themRNA

expression of PD1 and PDL1 in breast cancer tissues by performing

real-time RT-PCR. Then the correlation between RAD23B and

PD1/PDL1 was evaluated (Figure 11F; r = 0.774, p < 0.001; r =

0.577, p < 0.001, respectively).
Discussion

Because of breast cancer’s high incidence and recurrence

rates, its treatment has been an ongoing challenge for decades
Frontiers in Immunology 14
(4). Numerous studies have attempted to determine the

significance of the immune microenvironment in breast cancer

progression, and immunotherapy may be a viable treatment

option for breast cancer patients (42–44). However,

immunotherapy for breast cancer patients is still in its infancy,

and more investigation is needed to benefit more people.

As an essential cofactor of key enzymes, copper must

maintain a dynamic low concentration to maintain normal

physiological activity. A few studies have noted the role of

cooper in regulating cancer progression. It has been reported

that the serum level of copper was significantly increased in the

BRCA group compared to the control group, indicating its

function in the early detection and monitoring of breast

cancer (13, 24, 25). In triple-negative breast cancer (TNBC),
A

B

FIGURE 10

Expressions of Cuproptosis-Related Gene Signature in BRCA. (A) Representative IHC images of PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6,
CCL5, and MAL2 across clinical specimens of normal and tumor samples in the Human Protein Atlas (HPA) database. Bar charts represent IHC
staining intensities of PGK1 (11 patients), SLC52A2 (10 patients), SEC14L2 (10 patients), RAD23B (12 patients), SLC16A6 (10 patients), CCL5 (11
patients), and MAL2 (11 patients). (B) The relative mRNA expression of PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6, CCL5, and MAL2 in the
cuproptosis cell model (RT-PCR). *p < 0.05, **p < 0.01.
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inhibition of mitochondrial copper shifted tumor cells from

respiration to glycolysis to reduce energy production, ultimately

inhibiting tumor growth and improving prognosis (26–28).

Recently reported, an excess load of intracellular copper could

induce cell death termed cuproptosis (8). Independent of known

cell death pathways, cuproptosis does not activate caspase-3 and

cannot be blocked by apoptotic inhibitors (8). This study mainly

discussed 12 cuproptosis-related genes, including FDX1, LIPT1,

LIAS, DLD, DBT, GCSH, DLST, DLAT, and PDHA1, PDHB,

SLC31A1, ATP7A, and ATP7B. These genes are primarily

involved in processes such as glycolysis and the tricarboxylic

acid (TCA) cycle (45, 46), steroids (47, 48), and vitamin D

metabolism (49). SCL31A1 as a copper importer and ATP7A

and ATP7B as copper exporters are essential for maintaining

intracellular copper concentration (50, 51). As Peter et al.

suggested, overexpression of SCL31A1 and deletion of ATP7B

may increase susceptibility to cuproptosis (8). In addition, the

knockout of nine genes (FDX1, LIAS, LIPT1, DLD, DLAT,

PDHA1, PDHB, GCSH, and DBT) conferred resistance to

cuproptosis (8). Although various studies have highlighted the

significance of copper in breast cancer, there is a dearth of
Frontiers in Immunology 15
studies on the association between cuproptosis and breast

cancer, mainly its function in the immune microenvironment

and immunotherapy of breast cancer.

Our study first summarized the expression and mutation

patterns of CRGs based on TCGA-BRCA and GSE20685.

Although the frequency of global alterations was only 2.94%,

all CRGs showed significant differences in expression and

prognosis in BRCA samples compared to normal samples.

Performing the unsupervised clustering algorithm, we

classified breast cancer patients into two cuproptosis patterns

(CuproptosisCluster A and CuproptosisCluster B). Compared to

patients with Cluster A, those with Cluster B showed more

advanced clinicopathological characteristics and a worse OS. A

global examination of the TME for both clusters revealed that

Cluster B presented enrichment in most immune cells and

important immune checkpoints. In addition, Cluster A showed

a higher stromal score with significance, while Cluster B had a

higher immune score. Thus, the results above indicated that

these two clusters were closely associated with TME in BRCA,

implying a crucial role of CRGs in the immune regulation of

breast cancer. Next, three cuproptosis-related gene subtypes
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FIGURE 11

The Role of RAD23B in the Regulation of the Breast Cancer Progression, Chemotherapy and Immunotherapy in Vitro. (A) The mRNA expression
levels of RAD23B in different breast cancer cell lines (RT-PCR). (B) The relative mRNA expression of RAD23B in SUM-159 and MCF7 breast
cancer cells (RT-PCR; One-way ANOVA). (C) The cell viability assay after RAD23B reduction in SUM-159 and MCF7 breast cancer cells (MTT;
Two-way ANOVA). (D) The IC50 of Paclitaxel after RAD23B reduction in SUM-159 and MCF7 breast cancer cells (MTT). (E) The relative mRNA
expression of RAD23B in 34 pairs of breast cancer tissues and adjacent normal breast tissues (RT-PCR; Student’s t-test). (F) The relative mRNA
expression of RAD23B in different pathologic stages of breast cancer tissues (RT-PCR; Student’s t-test). (G) Correlation between RAD23B mRNA
expression and PD1/PDL1 mRNA expression (RT-PCR; Spearman test). *p < 0.05, **p < 0.01, ***p < 0.001.
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were identified according to the DEGs of the two

CuproptosisClusters. To further explore the role of cuproptosis

in BRCA progression and TME, a cuproptosis-related gene

signature (PGK1, SLC52A2, SEC14L2, RAD23B, SLC16A6,

CCL5, and MAL2) and the CRG_score were constructed based

on the training cohort and validated in the testing cohorts, as

well as PAM50 subtyped testing cohorts. Furthermore, patients

in high-CRG_score groups showed a worse prognosis under

different clinicopathological features. And patients with a low-

CRG_score exhibited enrichment in most immune cells and

important immune checkpoints, and are more sensitive to

immunotherapy. Also, a quantitative nomogram depending on

CRG_score and tumor stage facilitated the prognostic

stratification of breast cancer patients, further promoting the

clinical application of CRG_score. In summary, the

characteristics of TME differed significantly in the high- and

low-CRG_score groups, suggesting CRGs could provide

reasonable recommendations for personalized immunotherapy

for breast cancer patients.

Regarding the cuproptosis-related gene signature, previous

studies have identified the crucial roles of these seven genes in

cell metabolism. PGK1, an ATP-generating enzyme, mediates

mitochondrial metabolism and promotes tumorigenesis (52).

SLC family genes such as SLC52A2 and SLC16A6 are important

transporters in metabolic processes, and their dysregulation is

associated with various diseases (53–56). SEC14L2 encodes

lipid binding proteins and facilitates the uptake of Vitamin E

(57). RAD23B is involved in nucleotide excision repair (NER)

and is associated with cell apoptosis (58). CCL5, expressed and

secreted by activated and normal T cells, could regulate the

migration and chemotaxis of inflammatory cells (59–61). MAL2

has been reported to work as an essential component of the

machinery for transcytosis in hepatoma HepG2 cells (62).

However, there is still no research focus on the relationship

between these seven genes and breast cancer cuproptosis. We

then analyzed the protein expression of these seven genes in

breast cancer tissues from the HPA database and their mRNA

expression in the cuproptosis cell model. In particular, RAD23B

was screened out for in vitro experimental validation. The

results of RT-PCR, cell viability, and the IC50 assay illustrated

that RAD23B expression was positively correlated with breast

cancer progression, drug resistance, and poor prognosis in

BRCA patients. More importantly, both PD1 and PDL1 were

positively correlated with RAD23B, suggesting that patients

with up-regulated RAD23B were more sensitive to immune

checkpoint-blocking therapy targeting the PD-1/PD-L1 axis.

Thus, our results confirmed the important role of cuproptosis in

TME and immunotherapy for breast cancer, providing new

ideas for immunotherapy with blocked immune checkpoints.

Similarly, our cuproptosis-related scoring system was of great

utility for clinical patient stratification, predicting the efficacy of

adjuvant chemotherapy and patient prognosis. Also, our study
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laid an important research foundation for the role of

cuproptosis in controlling the progression of breast cancer

and made it easier to study its molecular mechanisms in more

depth in the future.

Although we have performed a comprehensive analysis of

cuproptosis in breast cancer and screened out potential targets to

lay the foundation for future exploration of breast cancer

progression, this study still has some limitations. Since our

breast cancer samples are only obtained from retrospective

studies from the TCGA and GEO databases, more cases from

prospective research are required. In addition, experimental

studies in vivo and in vitro are needed to validate our findings.

Furthermore, additional research is necessary to identify the

specific molecular mechanisms of cuproptosis regulating breast

cancer progression.
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