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Single-cell sequencing of PBMC
characterizes the altered
transcriptomic landscape of
classical monocytes in
BNT162b2-induced myocarditis
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been

the most dangerous threat to public health worldwide for the last few years,

which led to the development of the novelmRNA vaccine (BNT162b2). However,

BNT162b2 vaccination is known to be associated with myocarditis. Here, as an

attempt to determine the pathogenesis of the disease and to develop biomarkers

to determine whether subjects likely proceed to myocarditis after vaccination,

we conducted a time series analysis of peripheral blood mononuclear cells of a

patient with BNT162b2-induced myocarditis. Single-cell RNA sequence analysis

identified monocytes as the cell clusters with the most dynamic changes. To

identify distinct gene expression signatures, we compared monocytes of

BNT162b2-induced myocarditis with monocytes under various conditions,

including SARS-CoV-2 infection, BNT162b2 vaccination, and Kawasaki disease,

a disease similar to myocarditis. Representative changes in the transcriptomic

profile of classical monocytes include the upregulation of genes related to fatty

acid metabolism and downregulation of transcription factor AP-1 activity. This

study provides, for the first time, the importance of classical monocytes in the

pathogenesis of myocarditis following BNT162b2 vaccination and presents the

possibility that vaccination affects monocytes, further inducing their

differentiation and infiltration into the heart.

KEYWORDS

Coronavirus - COVID-19, single-cell RNA sequencing, monocyte - macrophage,
vaccination, BNT162b2, myocarditis, transcriptome (RNA-seq)
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Introduction

The severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) pandemic has been a global threat for more

than two years. However, as a result of scientific research, the

world has succeeded in the development of messenger RNA

(mRNA)-based vaccines based on novel technologies with

unprecedented speed. Fortunately, Pfizer-BioNTech BNT162b2

injection showed high protection (>95%) against SARS-CoV-2

infection (1, 2) which led to its widespread use with more than

55 million shots given in the United States. However, recent

studies have shown that BNT162b2 vaccination is associated

with an increased risk of myocarditis, although the mechanism

of action remains unknown (3, 4).

Peripheral immune activity is closely associated with the

inflammatory response. For example, SARS-CoV-2 infection

leads to reconfiguration of the peripheral immune cell

phenotype (2). Characteristic immune cell phenotypes in

patients hospitalized for the coronavirus disease 2019

(COVID-19) include HLA class II downregulation and type I

interferon-driven inflammatory gene activation in monocytes

(2). There have also been attempts to understand the changes in

systems immunology after BNT162b2 vaccination by analyzing

single-cell RNA sequencing data of the peripheral blood

mononuclear cells (PBMCs), which showed a correlation of

the monocyte-related signature with the neutralizing antibody

level in response to the SARS-Cov-2 B.1.351 variant (5). Thus, it

is noteworthy to investigate the changes in PBMCs, especially

monocytes, in patients with inflammation in the cardiac muscle

after COVID-19 vaccination.

An essential role of monocytes is to sense the environment

and differentiate into macrophages in tissues, which proliferate

upon inflammatory stimuli in the bone marrow (6) and their

phenotypic and functional profiles change upon inflammatory

signals and hence are important in disease progression (7). In

cardiovascular diseases, an increased number of circulating

monocytes is observed in patients with acute myocardial

infarction (8, 9). Considering the importance of monocytes in

acquired immunity after vaccination (10) including BNT162b2

vaccination (5), a thorough understanding of monocytes in

BNT162b2-induced myocarditis (BNT162b2-MyoC) cases

would give a new viewpoint regarding the pathogenesis of the

event and provide biomarkers to rule out people at high risk in

advance from vaccination.

In this study, we present a time series analysis of the

transcriptomic changes in the peripheral immune landscape,

focusing on monocytes, with single-cell RNA sequencing

analysis of PBMCs from patients with BNT162b2-MyoC.

Moreover, to evaluate the differences in transcriptomic profiles

with those in similar conditions, we compared the gene

signatures of monocytes in BNT162b2-MyoC with signatures

under various conditions, including SARS-CoV-2 infection,
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BNT162b2 vaccination, and Kawasaki disease, a hyper-

inflammatory disease similar to myocarditis (11). As a result,

we identified distinct gene signatures of monocytes in patients

with BNT162b2-MyoC, which include upregulation of the fatty

acid metabolism pathway, downregulation of JUN/FOS activity,

and dynamic changes in intercellular interactions with other

immune cell types.
Material and methods

Ethics statement

The study was conducted in accordance with the Declaration

of Helsinki and approved by the Institutional Review Board

(IRB) of Uijeongbu St. Mary’s Hospital (UC19TIDE0142).

Written informed consent was obtained from the participants.
PBMC isolation

PBMC isolation was carried out on the day of blood

collection from the patient. The blood in the EDTA tube was

mixed with PBS in a 1:1 ratio. The mixture of blood and PBS was

transferred to a Leucosept tube and centrifuged at a speed of

1000 g for 15 minutes at room temperature. Only the

supernatant was moved to a 50ml conical tube. In order to get

only the cells, centrifugation was performed at 400g for 10

minutes at room temperature. After aspirating supernatant,

the cells washed twice.

After counting, the cells were resuspended in a stock

solution (10% DMSO in fetal serum) and placed in a cell

container in a deep freezer at -80°C for 24 hours. Finally, the

stocks were stored in a liquid nitrogen tank.
Chromium next GEM single Cell 5′v2
(dual index)

To get information on cell preparation, we used the LUNA-

FL™ automated fluorescence cell counter (Logos Biosystems,

Korea) to consult ‘the 10x Genomics Single Cell Preparation

Guide’ and ‘the Cell Preparation Guide’ (documents CG00053

and CG000126, respectively).

Libraries were prepared using Chromium Single Cell 5’

Reagent Kits User Guide (v2 Chemistry Dual Index)

(documents CG000331). In short, target cell count of 10,000

was achieved by diluting the cell suspension in nuclease-free

water. After mixing with the master mix, the cell suspension

was loaded with Single Cell 5′ Gel Beads and Partitioning Oil into
a Next GEM Chip K. The single cells’ RNA transcripts were

uniquely barcoded and reverse-transcribed within droplets. The
frontiersin.org
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cDNA products were pooled, and concentrated by the polymerase

chain reaction (PCR) amplification.

In the case of the 5′ gene expression library, the cDNA pool

undergoes an end repair process, the addition of a single ‘A’ base,

and ligation of the adapters. The products were then purified and

enriched by PCR to create a 5′ gene expression library. The

purified libraries were quantified using qPCR according to the

qPCR Quantification Protocol Guide (Kapa Biosystems, USA)

and qualified using an Agilent Technologies 4200 TapeStation

(Agilent Technologies, USA). The libraries were then sequenced

using the HiSeq platform (Illumina, USA) according to the read

length provided in the user guide.
Single cell RNA-seq

The fastq files from single-cell 5′ profiling was further

analyzed with the 10X Genomics CellRanger software (v.6.1.1).

The 5′ transcriptome profiling was conducted with the

Cellranger multi command. As the gene expression reference,

the latest version of the human reference gene (GRCh38) was

used. The expected cell number was 10,000. The R package

Seurat (4.0.2) was used to create the object for further

analysis (12).

Single cell RNA seq analysis of PBMCs were assayed exactly

as previously described in the previous study (13).
Quality control, data integration,
and clustering

Along with our dataset, the dataset from our previous

study, which is available in the Sequence Read Archive (SRA)

under accession number (SRR18209602 and SRR18209603)

and public datasets (GEO: GSE150728, GSE171964, and

GSE167029) were used for bioinformatics analysis. The

R package Seurat (4.0.2) was used for quality control,

clustering, and differential gene expression analysis. The

same quality control methods were used for all datasets used

in this study Only cells with more than 100 features and less

than 20% mitochondrial genes were used for the analysis. The

filtered data were normalized using the NormalizeData

function. “LogNormalize” method was used with a scale

factor of 10,000. We then identified the variable genes on

which the data were scaled. Variable genes were computed

using the FindVairableFeature function. The “vst” selection

method was used with 2,000 features. The data were scaled

using the ScaleData function based on the computed variable

genes. The RunPCA function was used based on the identified

variable genes to identify the principal components (PCs). The

first 50 PCs of the dataset were used for further clustering

analysis. The RunUMAP function was used with the 50 most
Frontiers in Immunology 03
statistically significant PCs to infer the Uniform Manifold

Approximation and Projection (UMAP) coordinates.

The FindNeighbors function was used for a shared nearest-

neighbor graph (SNN) construction on the UMAP coordinates.

SNN modularity optimization on the constructed SNN graph

was performed using the FindClusters function to

determine clusters.
Datasets combination for meta-analysis

Individual Seurat objects were integrated with the filtered

data using the R package Seurat. The SelectIntegrationFeatures

and FindIntegrationAnchors functions were utilized to compute

the integration anchors. Integration features are those that are

consistently variable in all the datasets on which integration

anchors can be established. Then, the IntegrateData function

was used with the computed anchors to integrate the different

Seurat datasets. After successfully merging the datasets, R

Package Harmony (0.1.0) (14) was used on the integrated

object for batch-effect correction. The RunHarmony function

was used to integrate variances originating from different data

sources and to create harmony embeddings. Clustering was

conducted based on the updated harmony embeddings.

Consequently, an integrated Seurat object with 35390 cells and

22 clusters was created.

We used these functions to integrate a single-cell-

transcriptome, which analyzed PBMCs from patients with

BNT162b2-induced myocarditis in the late recovery stage (92

days after vaccination), and the previously profiled transcriptome

of PBMCs from the same patients in BNT162b2-induced

myocarditis stage and early recovery stage (Day 16 and 21).
Measuring differential gene expression
and cluster annotation

Seurat FindAllMarkers with the default Wilcoxon rank sum

test function was used to identify cluster markers. Genes whose

logFC value was higher than 0.25 compared to that of the rest of

the clusters were selected as cluster markers. The cell types for

each cluster were manually annotated by comparing the selected

cluster markers with reference genes. The reference genes used

to determine the clusters are listed in Supplemental Figure 1.

Visualizing Cell-to-Cell Communication Network

Intercellular communication was analyzed using the R

package CellChat (1.1.3) (15). Interactions between cell clusters

were computed based on the ligand−receptor pairs stored in the

reference database CellChatDB. The communication probability

of a specific signaling pathway level was computed based on the

upregulated and downregulated ligand−receptor genes per cell

group. The computeCommunProb function with default
frontiersin.org
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“trimean” truncated mean option was used for predicting

communication probability of each signaling pathway.

Significant computed signaling pathways were ranked with the

rankNet function by measuring differences in overall information

flow between the two conditions. The number and strength of

interactions between the cell groups were visualized using the

netVisual_aggregate function in circular plots.
Gene pathway analysis

To measure differential gene expression, the Seurat

FindMarkers function was used with the default Wilcoxon rank

sum test method. The integrated Seurat object was split into

multiple objects, each containing only one particular cell type.

Differentially expressed genes (DEGs) between the two conditions

from each Seurat object were used for further downstream

analyses. Only genes with logFC > 0.15 and p < 0.01 were used.

Pathway analysis of the selected genes was performed using

the R packages PROGENy (1.15.1) (16) and Enrichr (3.0.) (17)

and it was conducted based on perturbation−response genes

using the progeny function. Pathway activity scores for each

condition were computed based on the perturbed genes.

Phenotype-based permutation tests were conducted using the

Enrichr function based on selected pathway databases. The

databases used were as follows: 2021 Kyoto Encyclopedia of

Genes and Genomes (KEGG) human biological pathways, 2021

Gene Ontology (GO) molecular function, and 2021 GO

biological process. Only pathways with p < 0.05 were selected.

Next, the software Gene Set Enrichment Analysis (GSEA)

(4.22) (18) was used to compute the normalized enrichment

scores of the selected pathways. DE gene sets were converted into

GCT file formats for software inputs. Biological pathways in

which genes appeared at a higher frequency than expected were

considered enriched. The results were visualized using default

enrichment plots. Enrichment scores with p < 0.05 were

considered significant.
Measuring transcription factor activity

TF activity was inferred using the R package SCENIC (1.2.4)

(19) based on the underlying gene regulatory network (GRN) in

each cell. First, candidate target genes co-expressed with TFs

were identified using GENIE3 as the standard SCENIC workflow

in R. Target genes were further narrowed down by validating

whether they were actually significantly enriched with the

binding motifs of the candidate TFs. Putative binding motifs

for each TF, stored in the RcisTarget database, were used for

validation. Only regulatory modules with statistically significant

motif enrichment were selected as significant regulons. The

AUCell algorithm was then used to create a binarized
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expression matrix based on the activity scores of the inferred

regulons. The algorithm produces an expression matrix with

reduced dimensionality that presents the most active regulon

activity score for each cell. The cells were further clustered based

on the most active GRN. The clustered cell coordinates were

then projected onto the existing UMAP.

The Curated human TF database, TRRUST (version 2) (20)

was used to validate the downstream target genes of specific TFs.

Briefly, TRRUST is a TF regulatory network database that stores

8,015 interactions between 748 TFs and their 1,975 target genes

were based on manual curation implemented using a text-

mining approach. Candidate regulatory target genes of

activation protein-1 (AP-1) TF were identified using the

TRRUST database. plots.
Patient information

Additional patient information is accessible in Supplementary

Table 1 and from the paper that provided each dataset (2, 5, 11, 13).
Results

Time series analysis of single-cell RNA
sequencing data of PBMCs of a patient
with BNT162b2-MyoC

We previously profiled the single-cell transcriptome of

PBMCs at two time points: the severe myocarditis stage (16

days after vaccination) and the early recovery stage (day 21)

from a patient with myocarditis induced by BNT162b2

vaccination (SRR18209602 and SRR18209603). And more

detailed clinical information of the patients is accessible in our

previous study (13). To explore the transcriptomic characteristics

of immune cells during BNT162b2-MyoC in more detail, we

performed additional blood collection for single-cell RNA

sequencing analysis from the same patient at the time point of

late recovery phase (day 93) (Supplementary Figure 1A).

First, we integrated the newly analyzed data (day 93) with

the previous dataset (SRR18209602 and SRR18209603) (13)

(Figure 1A). After all datasets were completely harmonized,

cells in the dataset were visualized in two-dimensional space

using UMAP analysis (Figure 1 and Supplementary Figure 2A).

Single-cell sequencing analysis showed 22 clusters, and the cell

types were initially identified with scCATCH and further

analyzed using the expression patterns of marker genes for

each immune cell type (Figure 1C and Supplementary

Figures 2B, C), respectively. The cell cluster of classical

monocytes was verified to have distinctively upregulated

expression of CD14 (Figure 1C).
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Overall transcriptomic profiles
of classical monocytes in
BNT162b2-MyoC stage

After annotating each cluster, we calculated the proportion

of cells originating at each time point for each cell cluster

(Figure 2A). The presence of each cluster at every time point

implies that the data are well-integrated and highly reproducible

(21). However, there were differences in terms of cell

proportions; the cell number across all clusters at the time of
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myocarditis was similar to that in the early recovery state but

different from that in the late recovery state. Among all clusters,

classical, intermediate, and non-classical monocytes showed the

greatest increase in terms of cell number at the time of

myocarditis compared to cell numbers in the late recovery

state (Figure 2A). When PBMC at the time of myocarditis is

compared with PBMC at early recovery state, there was minimal

change in terms of cell number (Figure 2A); however,

transcriptomic profiles were different judged by the number of

differentially expressed genes (DEGs) (Figure 2B and
B

C

A

FIGURE 1

Time Series Analysis of Single-Cell RNA Sequencing Data of PBMCs of a Patient with BNT162b2-MyoC. (A) Overview of single-cell RNA-seq analysis
of the PBMCs from patient in the stage of myocarditis(day16), early(day21), and late(day93) recovery stage after BNT162b2 administration,
respectively. The samples were performed single-cell RNA-seq and integrated to one dataset with Harmony. (B) The dimensional reduction is
performed with the uniform manifold approximation and projection (UMAP). Each dot represents a cell in each corresponding group, and is colored
according to cell type The cells are pooled across all patients and separated by conditions: Myocarditis after BNT62b2-administration (BNT162b2-
MyoC, left), early (middle), and late (left) recovery stages. Total number of cells per group: Myocarditis (n = 10,580cells), Early recovery (n =
11,745cells) and Late recovery(n = 13,065cells). (C) Normalized expression levels of marker genes for each immune cell type on UMAP plots. CD14
(Classical monocytes and Intermediated monocytes), MS4A7 and FCGR3A (Intermediated monocytes and Non-classical Monocytes), CD1C
(Dendritic cells (cDCs)), IL7R (T cells), NKG7(Natural killer cells (NK cells)), CD79A (B cells), and PPBP (Platelets).
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Supplementary Figure 3A). As in the comparison of cell

numbers, classical and intermediate monocytes showed the

greatest number of DEGs.

Classical monocytes account for a major proportion of immune

cells infiltrating the cardiac tissue in myocarditis (22). After

infiltration, they differentiate into inflammatory macrophages and

release pro-inflammatory cytokines, such as TNF-a and IL-6,

which contribute to T cell activation and damage to the tissues.

“Indeed, through endomyocardial biopsies of the patient of our

dataset, we confirmed extensive myocardial tissue infiltration of

macrophages during BNT162b2-induced myocarditis.

Supplementary Figures 1B, C) (13).” In this study, we explored

the transcriptomic features of classical monocytes over the course of
Frontiers in Immunology 06
time in patient with BNT162b2-MyoC. First, we figure out gene

signatures of monocytes at the time of myocarditis. Compared to

the other two time points, monocytes in myocarditis showed

upregulation of genes related to fatty acid metabolism, such as

PDK4, ACSL1, ACSL4, CPT1A, ACADVL, ECHS1, and ACAA1,

and downregulation of genes related to the AP-1 complex (JUN,

JUNB, JUND, FOS, and FOSB) (Figure 2C). Next, we conducted

pathway analysis with Enrichr (dataset: MSigDB Hallmark 2020)

for the pathway analysis. Consistently, the fatty acid metabolism-

related pathway was upregulated at the time of myocarditis

compared to the recovery states (Figure 2D). We also estimated

the activity of signaling pathways in classical monocytes using

PROGENy, which infers pathway activity based on the expression
B

C D

A

FIGURE 2

Overall Transcriptomic Profiles of Classical Monocytes in BNT162b2-MyoC Stage. (A) A Bar plot showing the proportion of each cell types derived from
the patient in BTN162B2-MyoC, early recovery and late recovery phase, respectively. (B) Numbers of differentially expressed genes (DEGs) within each
cell type in the patient in the stage of BTN162B2-MyoC compared to early recovery (p-value< 0.01, log2 fold-change (log2 FC) ≥ 0.15 or ≤ −0.15).
Down: down-regulated; Up; up-regulated. (C) Gene expression ratio (log2 FC) of classical monocytes in the patients in BTN162B2-MyoC state versus in
other groups (early and late recovery state) (horizontal axis) plotted against –Log adjusted p-value (vertical axis), showing DEGs: highly expressed (red)
and lowly expressed in BNT162b2-MyoC (blue). (p-value < 0.01, log2 FC ≥ 0.15 or ≤ −0.15). (D) Gene set enrichment analysis with ‘Enrichr’ for up-
regulated DEGs of classical monocytes in PBMCs from the patient in BNT162b2-MyoC state versus in early and late recovery stages, respectively.
MSigDB_Hallmark_2020_terms are classified. P-value (color) and gene count (vertical axis) of the 20 most significant GO terms are shown.
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level of responsive genes (16). The results show that the P53, TGF-

b, and MAPK pathways were activated in classical monocytes

treated at the time of myocarditis. In contrast, the TNF-a, JAK-
STAT, NF-kB, EGFR, and PI3K pathways were downregulated

(Supplementary Figure 3B).
JUN, FOS are significantly down-
regulated in classical monocytes in
BNT162b2-MyoC stage

To elucidate the characteristics of classical monocytes in

patients with BNT162b2-MyoC in more detail, we performed

comparative analysis with various datasets: single-cell RNA

sequencing data of PBMCs from seven patients with COVID-19

and six healthy individuals (GSE150728) (2), CITE-sequencing

data of PBMCs from six vaccinated individuals without side effects

(GSE171964) (5), and single-cell RNA sequencing data of PBMCs

from young patients with Kawasaki disease or COVID-19-

induced myocarditis (CoV2-MyoC) (GSE167029) (11)

(Figure 3A and Supplementary Figures 4A−C). The GSE167029

dataset contains single-cell transcriptomic profile of nine healthy

individuals as a control group, six patients with CoV2-MyoC, and

two patients with Kawasaki disease. Details of each sample can be

found in the paper that provides each dataset. Also, to reduce the

gap between time points of the blood collection from patients with

BNT162b2 induced myocarditis (16, 21, and 93 days after 1st

vaccination, respectively) and BNT162b2- vaccinated-individuals

(GSE171964) as much as possible, we selected group of 7 days and

21days after the 1st vaccination (among 0,1,2,7 and 21 days after

1st and 2nd vaccination).

AP-1 is a TF complex consisting of JUN, JUNB, JUND, FOS,

and FOSB. The AP-1 complex is known to affect various cellular

processes, such as proliferation, differentiation, apoptosis, and

immune cell activation, and macrophage differentiation (23–25).

Therefore, AP-1 is thought to be associated with the immune

activity of classical monocytes in patients with inflammation. In

addition, mRNA levels of AP-1 especially FOS and FOSB, were high

in monocytes from our dataset (Supplementary Figure 5A). The

expression level of AP-1 in classical monocytes was lower in

BNT162b2-MyoC state than that in the early and late recovery

states (Figures 2C, 3B and Supplementary Figure 5B). Although all

of the patients were with myocarditis, the classical monocytes in

patients in each dataset showed different AP-1 activities.

For other disease conditions, AP-1 expression increased in

vaccinated individuals and patients with Kawasaki disease but

decreased in patients with COVID-19 and CoV2-MyoC

(Figure 3B and Supplementary Figure 5B). To examine the

regulatory activity of AP-1 in classical monocytes in our dataset,

we analyzed gene regulatory network via SCENIC function. As

expected, AP-1 regulon activity was downregulated in classical
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monocytes in BNT162b2-MyoC state and increased gradually at

the patient recovered (Figure 3C and Supplementary Figure 5C).

In addition, genes involved in the regulatory network of JUN and

FOS were mostly downregulated during myocarditis in classical

monocytes (Figure 3D). Ultimately JUN/JUND was one of the

regulons that showed the greatest up-regulation at the time of

early recovery (Figure 3E).
Fatty acid metabolism is highly
up-regulated in classical monocytes in
BNT162b2-MyoC stage

According to other studies, the metabolism of classical

monocytes is closely related to their activation state during

inflammation (26–28). By performing pathway analysis via

Enrichr with MSigDB Hallmark 2020 gene sets (29), we

revealed that the activity of pathways related to oxidative

phosphorylation, fatty acid metabolism, and glycolysis was

significantly increased during BNT162b2-MyoC (Figures 2D

and 4A). Thus, in contrast to JUN and FOS down-regulated at

the time of myocarditis, metabolism-related genes were

significantly up-regulated. In addition, classical monocytes of

patients with COVID-19 and Kawasaki disease showed

enrichment of fatty acid metabolism and glycolysis pathways

compared to those of healthy individuals (Figure 4A) Since the

metabolic profile of classical monocytes varied depending on the

diseases, we explored fatty acid metabolism pathway in more

depth. Next, we evaluated the expression of marker genes

involved in fatty acid metabolism in classical monocytes. The

expression of these genes gradually decreased over time. The

pattern of changes in the expression levels of fatty acid

metabolism-related genes was not identical in the analyzed

disease conditions (Figure 4B and Supplementary Figure 6A).

The expression of glycolysis-related genes was significantly

reduced only in the late recovery group in our data, and the

differences between BNT162b2-MyoC and the early recovery

state were statistically insignificant. In other conditions, the

expression levels of glycolysis-related genes were markedly

increased in the monocytes of Kawasaki and patients with

CoV2-MyoC (Supplementary Figures 6A, B). To clarify the

transcriptomic characteristics of classical monocytes in the

acute BNT162b2-MyoC state, we focused on the differences

between BNT162b2-MyoC and the early recovery state rather

than BNT162b2-MyoC and the late recovery stage. Therefore,

we investigated fatty acid metabolism as a major metabolic

characteristic of classical monocytes in acute BNT162b2-MyoC

infection. We confirmed through Gene Set Enrichment Analysis

(GSEA) that gene sets related to fatty acid metabolism were

more enriched, with statistical significance, in BNT162b2-MyoC

state (Figure 4C).
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FIGURE 3

JUN, FOS are the Most Down-regulated in Classical Monocytes in BNT162b2-MyoC Stage. (A) A schematic of the experimental pipeline. PBMCs were
obtained from the BNT162b2 vaccinated patient in the stage of myocarditis (day16), early recovery(day21), and late recovery(day93), respectively. The
samples were performed single-cell RNA-seq and integrated to one dataset with Harmony. Publicly available datasets of PBMCs from BNT162b2-
vaccinated individuals day7 and day21 after primary vaccination (GSE171964), PBMCs from healthy individuals and patients with COVID-19(GSE158055),
and PBMCs from control group, patients with Kawasaki, and patients with COVID-19-induced myocarditis (CoV2-MyoC) were explored to understand
the transcriptomic features of classical monocytes in more depth. (B) Log adjusted p-value (vertical axis) of DEGs of Classical monocytes in BNT162b2-
MyoC plotted against the rank of average expression levels (vertical axis). The expression of AP-1(composed with JUN, JUNB, JUND, FOS, and FOSB.
(C) UMAP showing expression levels of regulons of JUN and FOS in classical monocytes in BNT162b2-MyoC and in early recovery stage. (D) Volcano
plots showing genes involved in regulatory network of JUN (left) and FOS (right) in M1 in DEGs of BTN162B2-MyoC group (horizontal axis) (E) Regulons
with top 5 cell-type activity in classical monocytes in early recovery stage compared to BNT162b2-MyoC.
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FIGURE 4

Fatty Acid Metabolism is Highly Up-regulated in Classical Monocytes in BNT162b2-MyoC Stage. (A) Enrichment analysis with cellular metabolism-related
Hallmark gene sets for DEGs of classical monocytes in each dataset. (B) A diagram of fatty-acid metabolism-pathway and violin plots showing the
expression levels of the pathway-related genes in classical monocytes. *** p < 0.001; two-tailed t test. (C) GSEA analysis for the dataset of DEGs of classical
monocytes in BNT162b2-MyoC group was conduct against GOBP_LIPID_METABOLIC_PROCESS, GOBP_OXIDATIVE_PHOSPHORYLATION, and
GOBP_FATTY_ACID_BETA_OXIDATION gene sets, respectively. A positive enrichment score on the y axis indicates positive correlation with BNT162b2-
MyoC group.
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CEBPB is the major transcription
factor to mediate fatty acid
metabolism in classical monocytes in
BNT162b2-MyoC stage

To predict the transcription factors associated with the

changes in fatty acid metabolism-related genes, we explored the

changes in regulon activities in classical monocytes at BNT162b2-

MyoC stage. As a result of analysis using SCENIC, the regulons

with the increase in the activity at BNT162b2-MyoC stage are as

follows: CCAAT Enhancer Binding Protein Beta (CEBPB),

Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB),

CCAAT Enhancer Binding Protein Delta (CEBPD), and Sin3A

Associated Protein 30 (SAP30) (Figure 5A). To explore regulon

activity of the acute myocarditis phase, the regulon activity of

BNT162b2-MyoC stage was compared only with early recovery

stage. The regulon activity of CEBPB and CEBPD was the

highest. (Figure 5B).

Also, we conducted iRegulon which is a gene-based tool to

compute motif activity, predicting regulons, target genes and

motifs from a set of co-expressed genes and maps gene-

regulatory-network directly based on motif enrichment. As a

result of an analysis with iRegulon with up-regulated DEGs of

classical monocytes, it was confirmed that 11 CEBPB-binding

motifs were enriched in classical monocytes at BNT162b2-MyoC

stage. Especially, we found that homer-M00296, to which CEBPB

binds, was the most enriched motif among 93 motifs enriched in

classical monocytes at BNT162b2-MyoC stage (Figure 5C and

Supplementary Table 2). For the patients with COVID-19, 7

CEBPB-binding motifs were enriched in classical monocytes.

For the other datasets, the activity of CEBPB regulon was not

high enough to be detected via iRegulon (Supplementary Table 2).

CEBPB is a well-known transcription factor for mediating fatty

acid metabolism (30–32). For example, in the case of

nasopharyngeal carcinoma cells, CEBPB binds to PPAR

coactivator-1a and promotes the transcription of CPT1A, which

ultimately increased the level of fatty acid oxidation (30). Also,

CEBPB controlled transcriptional regulatory networks important

for inflammation and lipid metabolism in macrophages in mice

during diet-induced inflammation (33). Interestingly, the

predicted target genes of CEBPB by iRegulon included CPT1A,

ACSL1, PDK4which were up-regulated at BNT162b2-MyoC stage

in terms of expression level (Figure 5D). Finally, we investigated

the transcriptional levels of CEBPB and CEBPD showing the

highest level of regulon activity in BNT162b2-MyoC stage. For

BNT162b2-MyoC dataset, the expression levels of both CEBPB

and CEBPD gradually decreased with recovery. In the other

datasets, CEBPB increased in the patients with Kawasaki and

CoV2-MyoC, and CEBPD increased in the patients with COVID-

19 and Kawasaki (Figure 5E).

Given that recent studies have highlighted the importance of

fatty acid oxidation in immune activity of monocytes (34),

especially during differentiation into macrophages (35–37), our
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study is meaningful in that it addressed the increased fatty acid

metabolism in classical monocytes during BNT162b2-MyoC

stage. Also, we suggest the possibility that CEBPB may play a

critical role in this metabolic shift.
Classical monocytes-mediated IL-16 and
CXCL signals were enhanced during
BNT162B2-MyoC stage

Metabolic changes in immune cells play an important role in

immune responses via regulating inter/intra-cellular

communication, such as cytokine secretion (38, 39). In the case

of macrophages, it has been revealed that fatty acid oxidation

activated their cytokine secretion, such as IL1b, IL4, IL18 and

chemokine (C-X-C motif) ligand-1 (40). In this study, we

examined the interaction of classical monocytes, which

increased fatty acid metabolism in BNT162b2-MyoC stage, with

analysis on the expression patterns of cytokine gene. CellChat was

performed to analyze cell-to-cell communication. First, based on

the differences in overall information flow within the network, we

ranked the relative strength of the outgoing signals of classical

monocytes at the time of myocarditis compared with signals in the

early and late recovery states, respectively. In the BNT162b2-

MyoC stage, IL-16, CXCL, and APRIL signals from classical

monocytes increased compared to those in the early and late

recovery stages. In contrast, a decreased level of TNF signal was

shown at BNT162b2-MyoC stage (Figure 6A). Compared with

other datasets, it was confirmed that IL-16 increased uniquely in

the patient with BNT162b2-MyoC, and CXCL also increased in

both patients with Kawasaki disease and CoV2-MyoC. APRIL

signal increased the most in vaccinated individuals. On the other

hand, the MIF signal, which decreased in our data, also decreased

in patients with Kawasaki disease and CoV2-MyoC (Figures 6B

and Supplementary Figure 7A). We confirmed that IL-16 signals

flowed into intermediate monocytes, non-classical monocytes,

dendritic cells (cDCs), and CD4+ TCM/TEM cells, while CXCL

signals flowed into CD56dim natural killer cells (CD56dim NK

cells) and proliferative T/NK cells. Both signals from classical

monocytes were observed only in the BNT162b2-MyoC stage

(Figure 6C). The APRIL signal is supplied to memory B and

plasma cells (Supplementary Figure 7B). We explored the ligand–

receptor pairs of outgoing signals of classical monocytes that

increased in BNT162b2-MyoC. For the IL-16 signal, the ligand

gene was IL16 and the receptor gene was CD4. For the CXCL

signal, the ligand gene was CXCL8 and the receptor gene was

CXCR2. For the APRIL signal, the ligand genes wereTNFSF13 and

TNFSF13B and the receptor genes were TNFRSF13B,

TNFRSF13C, and TNFRSF17 (Figure 6D and Supplementary

Figure 7C). It is worth noting the signal increase of IL-16 by

classical monocytes, since this molecule is well-known for its

chemoattractant activity on CD4+ immune cells. In addition, IL-
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FIGURE 5

CEBPB is the Major Transcription Factor to Mediate Fatty Acid Metabolism in Classical Monocytes in BNT162b2-MyoC Stage. (A) A clustered
heat map showing the area under the curve (AUC) scores of expression regulation by transcription factors (TFs), as estimated using SCENIC.
(B) Regulons with top 5 cell-type-specific activity in classical monocytes in early recovery stage compared to BNT162b2-MyoC stage. (C) The
CEBPB-bound motif, which is the most enriched in classical monocytes in BNT162b2-MyoC (NES score of 5.716 and 23 direct targets genes)
predicted by iRegulon. (D) A Network plot showing target genes of CEBPB in up-regulated DEGs of classical monocytes in BNT162b2-MyoC. all
target genes as squares. squares fille with yellow color are fatty acid metabolism related genes. CEBPB is drawn as a green ellipse. The
interactions are shown with directed edges from the CEBPB to the target genes. (E) Normalized expression levels of CEBPB and CEBPD in
classical monocytes in each group of datasets. ** p < 0.01; *** p < 0.001; two-tailed t test.
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FIGURE 6

Classical monocytes-mediated IL-16 and CXCL signals were enhanced during BNT162B2-MyoC Stage. (A) Bar graphs showing the ranking of
major outgoing signals of classical monocytes in the patients in BNT162B2-MyoC compared to early(left) and late(right) recovery stages,
respectively. The rank of signals was based on differences in overall information flow of each group. (B) A dot plot showing signaling enrichment
of classical monocytes in other datasets for the classical monocytes-specific outgoing signals specific in BNT162b2-MyoC stage. Grey dots
indicate insignificant interactions. (C) Circle plots showing cell-to-cell network for increased outgoing signals of classical monocyte in
BNT162b2-MyoC stage. Arrows and edge color indicate direction (source: target). Edge thickness indicates the sum of weight key signals
between populations. (D) A dot plot showing the relative significance of each cell type for each signaling pathway based on the average
expression of the ligand-receptor pair.
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16 induces the production of pro-inflammatory cytokines, such as

IL-6, IL-15, and TNF-a (41, 42).
Classical Monocytes receives Cytotoxic T
cell-mediated incoming signals in
BNT162b2-myocarditis stage

Next, we studied signals incoming signal from classical

monocytes. In the BNT162b2-MyoC state, the most enriched

signals included LIGHT, CD40, and BTLA. Conversely, the

signal enriched in both the early and late recovery states was

TNF. (Figure 7A). Compared to other data, LIGHT and BTLA

signals were enriched only in classical monocytes at the

BNT162b2-MyoC stage. In the case of CD40, signaling

enrichment was increased in vaccinated individuals but

significantly decreased in patients with Kawasaki disease and

CoV2-MyoC (Figure 7B and Supplementary Figure 8A). Next,

we examined the contribution of each cell type to the incoming

signals of classical monocytes in BNT162b2-MyoC (Figure 7C).

For the LIGHT signal, cytotoxic T cells (CTLs) contributed the

most in the increase in signaling enrichment in BNT162b2-

MyoC. For the CD40 signal, CTLs, CD4+ central/effector

memory T cells (CD4+ TCM/TEM), CD4+ naïve T cells, and

gamma delta T cells contributed to classical monocyte signaling.

Moreover, signals from CTL were only observed in the

BNT162b2-MyoC group, and signals from both CD4+ TCM/

TEM and CD4+ naïve T cells gradually decreased with the stage

of BNT162b2-MyoC. Although the signals from gamma delta T

cells in the treated stage increased, the overall CD40 inflow

signal of classical monocytes was the strongest in the BNT162b2-

MyoC stage (Figures 7A, B). In terms of BTLA signals, B cells

and plasma cells were the dominant contributors to this

interaction (Supplementary Figure 8B). Lastly, we confirmed

that the ligand–receptor pairs correlated with the major

incoming signals of classical monocytes in BNT162b2-MyoC

state. For the LIGHT signal, the ligand was TNFSF14 and the

receptors were TNFRSF14 and LTBR. For the CD40 signal, the

ligand was CD40LG and the receptors were ITGAM and ITGB2.

For the BTLA signal, the ligand was BTLA and the receptor was

TNFRSF14. (Figure 7D and Supplementary Figure 8C).

Interestingly, TNFRSF14, a receptor of LIGHT signaling, is

known to be involved in monocyte activity by inducing the

secretion of pro-inflammatory cytokines, such as IL-8 and TNF-

a. In addition, the interaction of CD40 ligand (CD40L; CD154)

with Mac-1 (aMb2, CD11b/CD18) on monocytes is known to

induce adhesion and migration of classical monocytes and is

related to pro-inflammatory functions (43). In summary, we

inferred that interaction with CTL via LIGHT and CD40 signals

is critical for the activity of classical monocytes during

BNT162b2-MyoC.

Overall, our results showed significant changes in the

expression of fatty acid metabolism-related genes and AP-1
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activity over time in BNT162b2-MyoC patient. It is important

to note that the expression patterns of metabolism-related genes

vary depending on the cause of myocarditis. In addition, we

established a framework for determining which types of cell-to-

cell signals are critical for the activity of circulating monocytes in

patients with BNT162b2-MyoC. Therefore, our study provides

critical clues regarding the transcriptional profile of classical

monocytes at the time of BNT162b2-MyoC.
Discussion

Although vaccination is one of the most promising tools to

fight COVID-19, it is associated with the risk of myocarditis.

Among multiple side effects of BNT162b2 vaccination,

myocarditis in particular has been extensively investigated, yet

its exact pathogenesis still remains unknown (44). Although

several case studies have reported clinical changes in BNT162b2-

MyoC patients, our understanding of BNT162b2-MyoC is still

limited mainly due to scarcity of tissue sampling and lack of

empirical evidence (45). Moreover, based on published literature

reviews (46, 47), among few empirical studies that were

conducted with tissue samples from patients, there hasn’t been

research that featured detailed transcriptomic profile of the

harvested tissues. Myocarditis is a local inflammation of the

myocardium. However, systemic immune modulation, such as

cancer immunotherapy, has been reported to significantly

increase myocarditis (48). Also, in the case of ST elevation

myocardial infarction (STEMI), which is known to be major

contributors of heart failures, transcriptional features of

monocytes in PBMCs are in the spotlight as a biomarker for

early prediction of heart failure (49). Therefore, understanding

roles of monocyte is important in developing a systemic

approach to understand the pathogenesis of myocarditis

following BNT162b2 vaccination.

Therefore, it is important to develop a systemic approach

to understand the pathogenesis of myocarditis following

BNT162b2 vaccination. Here, we tracked transcriptomic

profiles of the peripheral immune landscape of a patient

recovered from a rare case of BNT162b2-MyoC and revealed

that monocytes, which can be differentiated into macrophages

in tissues, are the cell type showing one of the most

dynamic changes.

Several studies on the metabolism of macrophages have

proven the importance of metabolic pathways in monocyte-to-

macrophage differentiation, macrophage activation, and

polarization. Polarization of inflammatory macrophages

increases the level of cellular glycolysis and fatty acid

biosynthesis. However, polarization to anti-inflammatory

macrophages upregulates the rates of oxidative phosphorylation

and fatty acid oxidation (40). In addition, genes related to fatty

acid and lipid metabolic processes, along with monocarboxylic

acid and cellular ketone metabolic processes, are upregulated
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FIGURE 7

Classical Monocytes receives Cytotoxic T cell-mediated Incoming Signals in BNT162b2-myocarditis Stage. (A) Bar graphs showing the ranking of
major incoming signals of classical monocytes in the patients in BNT162B2-MyoC stage compared to early(left) and late(right) recovery stages,
respectively. The rank of signals was based on differences in overall information flow, which is calculated by the total weights in the cellular
network, of each group. (B) A dot plot showing signaling enrichment of classical monocytes in other datasets for the classical monocyte-
specific incoming signals in BNT162B2-MyoC stage. Grey dots indicate insignificant interactions. (C) Circle plots showing the intercellular
network of increased incoming signals of classical monocytes in BNT162B2-MyoC stage. Arrows and edge color indicate direction (source:
target). Edge thickness indicates the sum of weight key signals between populations. (D) A dot plot showing the relative significance of each cell
type for each signaling pathway based on the average expression of the ligand-receptor pair.
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during monocyte-to-macrophage differentiation, highlighting the

interconnection between immune cell function and metabolism

(50–52). Here, investigation of the peripheral immune landscape

of the patient in chronological order revealed that most

differentially expressed genes are metabolic enzymes, including

PDK4, the most upregulated gene in myocarditis, and genes

involved in fatty acid metabolism. PDK4 is a mitochondrial

enzyme that controls glycolytic flux into mitochondria. In

addition, as the site of fatty acid oxidation, mitochondria govern

the activation state of macrophages (53, 54) by modulating the

metabolic profile of the cells. Thus, our study highlights the

possibility of transcriptomic alteration in mitochondrial

metabolism-related genes as a biomarker of the vaccination-

induced myocarditis, which is diagnosed with the findings that

show the infiltration of CD68+ cells in cardiac tissues.

In this study, we figured out CEBPB as a major transcription

factor and the key regulator of fatty acid metabolism in classical

monocytes during BNT162b2-myocarditis. Classical monocytes

featured increased CEBPB activity in terms of both regulon

activity and mRNA expression level. Also, we confirmed not

only PDK4, but also CPT1A and ACSL1, which are known to be

key regulators of fatty acid metabolism, are the target transcripts of

CEBPB in classical monocytes in BNT162b2-myocarditis. In

addition, the characteristics of classical monocytes during

BNT162b2-myocarditis were further standardized by comparing

with those of monocytes in similar conditions. Classical

monocytes in the patient with acute stage of BNT162b2-

myocarditis were similar to those in the patients with COVID-

19 in terms of decreased level of JUN/FOS expression and

increased regulon activity of CEBPB. Also, we confirmed that

classical monocytes tended to rely more on glycolysis during

BNT162b2-myocarditis compared to late recovery stage, in

Kawasaki disease, and in COVID-19-induced myocarditis.

Glycolysis as well as fatty acid metabolism is known to pro-

inflammatory activation and differentiation of classical monocytes

in diverse diseases (27, 55, 56). We tested if the changes in

expression of metabolism-related genes are driven by

extracellular stimuli such as cytokines from other immune cells.

For example, transforming growth factor-b (TGF-b) signal is

known to induce glycolysis via regulating the expression of the

related genes in various cells; TGF-b induces expression of glucose
transporter type 1 in Swiss 3T3 cells and glomerular mesangial

cells, hexokinase 2 in articular chondrocytes and lung fibroblasts,

and phosphofructokinase 2 in diverse cancer cells (57). In our

study, the upregulation of glycolysis-related genes was confirmed

in monocytes along with increased TGF-b-incoming signal.

Moreover, the metabolic enzymes involved in monocyte-to-

macrophage differentiation are known to be closely related to

several signaling pathways. For instance, human monocyte-

derived macrophages are reported to upregulate metabolic-

inflammatory transcriptional programs, including lipid

metabolism and glycolytic pathways, upon activation by
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monosodium urate crystals, which induce inflammation

without prior priming (58). The activation of these metabolic

gene programs is attributed to the increased binding of JUN to

the target promoters (58). Considering that monocytes in acute

myocarditis show altered JUN/FOS activity, along with changes

in the metabolism-related gene pathway, further investigation is

required to determine whether monocytes in acute myocarditis

resemble monocyte-derived macrophages activated without

prior priming.

Also, other studies emphasized the importance of

mobilization of proinflammatory monocytes to cardiac tissue

for inflammatory cardiomyopathy disease. For example, CCR2–

CCL2 and CX3CR1-CX3CL1 axis were associated with the

recruitment of monocyte to cardiac tissue during myocarditis.

Therefore, intercellular interactions of monocytes before

penetrating cardiac tissue can be important biomarkers of

myocarditis (22). In intercellular communication in this study,

the increase in IL-16 signal outflow and LIGHT signal inflow

were unique features of classical monocytes in BNT162b2-

myocarditis stage. On the other hand, the increase in APRIL

signal outflow and CD40 signal inflow from classical monocytes

was similar to that of vaccinated individuals. And the increase in

CXCL signal outflow was similar to that of patients with

Kawasaki and COVID-19-induced myocarditis. It has been

discovered that spike mRNA read of BNT162b2 vaccine is

taken up by monocytes and macrophages, leading to the

expression of spike proteins and subsequent inflammatory

responses. Moreover, it has been found that spike proteins and

their interactions with immunological receptors (59) cause the

monocytes and macrophages to undergo pro-inflammatory shift

(60), which is likely to be involved in pathogenesis of

BNT162b2-MyoC. In our study, however, it was difficult to

quantify spike mRNA reads or protein expression in individual

cells (16 days after 1st vaccination) since they drastically

decreased in terms of amount and hard to detect 7 days after

vaccination (61). However, the other study revealed that it may

persist for 60 days or longer (62). Therefore, further study is

required on the effect of spike proteins on immune cells in

BNT162b2-MyoC.

Overall, we analyzed classical monocytes in similar disease

entities to explore the pathogenesis of vaccination-induced

myocarditis. Although the analyzed data are from patients

with COVID-19, myocarditis, or both, their molecular

signatures differed in terms of AP-1 activity, and fatty acid

metabolism, implying that the response of monocytes differs

according to the stimulus. Moreover, molecular changes upon

vaccination are different from the simple activation of

monocytes. Here, we shed light on the most serious threat to

public health worldwide by introducing classical monocytes as

the key to understanding BNT162b2-MyoC.

Yet this study has a few limitations. Due to the scarcity of the

case, the number of samples was limited. Further evaluation of
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PBMCs of other patients regarding the role of monocytes is

necessary to confirm the characteristics of peripheral immune

landscape specific for myocarditis after vaccination. Also, the

patients with COVID-19-induced myocarditis and Kawasaki

were treated with IVIG, which may have affected the signals

observed in this study. Furthermore, in order to predict the

presence or absence of vaccine side effects in individuals, an in-

depth comparative analysis of datasets of vaccinees with and

without side effects should be conducted. Lastly, datasets we used

for our comparative research were mainly focused on COVID-

19 inflammation and its impact on heart tissues, although

pathogenesis of BNT162b2-MyoC may be involved with

complications in lung or circulatory system as well. Future

investigations into side effects of BNT162b2 of other vaccines

for COVID-19 in general should also feature other major organ

systems such as respiratory and endocrine system, where

COVID-19 symptoms or side effects of BNT162b2 were

reported. However, this study may take a meaningful first step

towards understanding one of the serious side effects

of BNT162b2.
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