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Interaction between glycolysis‒
cholesterol synthesis axis and
tumor microenvironment reveal
that gamma-glutamyl hydrolase
suppresses glycolysis in
colon cancer
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Yue-Hong Cui2, Xi-Zhong Shen1*, Tian-Shu Liu2,3,4*

and Li Liang2,3,4*

1Department of Gastroenterology, Zhongshan Hospital Fudan University, Shanghai, China,
2Department of Medical Oncology, Zhongshan Hospital Fudan University, Shanghai, China,
3Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China, 4Center of Evidence-based
Medicine, Zhongshan Hospital Fudan University, Shanghai, China
Background:Metabolic reprogramming is a feature of cancer. However, colon

cancer subtypes based on the glycolysis‒cholesterol synthesis axis have not

been identified, and little is known about connections between metabolic

features and the tumor microenvironment.

Methods: Data for 430 colon cancer cases were extracted from The Cancer

Genome Atlas, including transcriptome data, clinical information, and survival

outcomes. Glycolysis and cholesterol synthesis-related gene sets were

obtained from the Molecular Signatures Database for a gene set variation

analysis. The relationship between the genomic landscape and immune

landscape were investigated among four metabolic subtypes. Hub genes

were determined. The clinical significance of candidate hub gene was

evaluated in 264 clinical samples and potential functions were validated in

vitro and in vivo.

Results: Colon cancer cases were clustered into four metabolic subtypes:

quiescent, glycolytic, cholesterogenic, and mixed. The metabolic subtypes

differed with respect to the immune score, stromal score, and estimate score

using the ESTIMATE algorithm, cancer-immunity cycle, immunomodulator

signatures, and signatures of immunotherapy responses. Patients in the

cholesterogenic group had better survival outcomes than those for other

subtypes, especially glycolytic. The glycolytic subtype was related to

unfavorable clinical characteristics, including high mutation rates in TTN,

APC, and TP53, high mutation burden, vascular invasion, right colon cancer,

and low-frequency microsatellite instability. GGH, CACNG4, MME, SLC30A2,

CKMT2, SYN3, and SLC22A31 were identified as differentially expressed both in
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glycolytic-cholesterogenic subgroups as well as between colon cancers and

healthy samples, and were involved in glycolysis‒cholesterol synthesis. GGH
was upregulated in colon cancer; its high expression was correlated with CD4+

T cell infiltration and longer overall survival and it was identified as a favorable

independent prognostic factor. The overexpression of GGH in colon cancer-

derived cell lines (SW48 and SW480) inhibited PKM, GLUT1, and LDHA

expression and decreased the extracellular lactate content and intracellular

ATP level. The opposite effects were obtained by GGH silencing. The

phenotype associated with GGH was also validated in a xenograft nude

mouse model.

Conclusions: Our results provide insight into the connection between

metabolism and the tumor microenvironment in colon cancer and provides

preliminary evidence for the role of GGH, providing a basis for subsequent

studies.
KEYWORDS

glycolysis‒cholesterol synthesis axis, metabolic subtypes, prognosis, tumor
microenvironment, gamma-glutamyl hydrolase (GGH), colon cancer (CC)
Background

According to GLOBOCAN, there were 1.14 million new

cases and 0.56 million deaths from colon cancer worldwide in

2020, ranking fifth and sixth among common malignant tumors

in incidence and mortality, respectively (1). The disease-free

survival rate is approximately 75% after radical surgery followed

by chemotherapy for stage III colon cancer (2), while the median

progression-free survival and median overall survival are

approximately 10 months and 25–28 months, respectively, for

patients with stage IV disease receiving systemic treatment (3).

Biomarker signatures and clinical characteristics, such as RAS

mutations, microsatellite status, tumor mutational burden

(TMB), consensus molecular subtype (CMS), location, and

physical activity, contribute to the stratification of patients

expected to benefit from anticancer therapy (4–7)

The reprogramming of energy metabolism is a distinct

hallmark of cancer (8), and proteins or enzymes involved in

glycolysis and cholesterol synthesis play an important role in

tumorigenesis (9, 10) (Figure S1A). Hence, metabolite-driven

genes may be used as predictive biomarkers for clinical

applications. For example, Karasinska stratified pancreatic

cancer into four subgroups (quiescent , g lycolyt ic ,

cholesterogenic, and mixed) based on genomic and

transcriptomic alterations and determined their prognostic

value (11). Wang reported that the glycolysis–cholesterol

synthesis axis is associated with survival outcomes in pan-

gynecological cancer (12). Metabolic profiles and subtypes

have also been surveyed in triple-negative breast cancer,
02
cutaneous melanoma, and gastric cancer, and the glycolytic

subgroup always exhibits an inferior survival rate compared to

that of the cholesterogenic subgroup (13–15).

Cancer cells reprogram their microenvironment to survive

and thrive in a way that influences their metabolic composition

in the extracellular context. High levels of glucose and glutamine

intake followed by lactate and CO2 output result in extracellular

lactate accumulation and acidification, thereby weakening

dendritic or T cell activation and monocyte migration (16–18),

inducing macrophage M2-like conversion (19), promoting

VEGF secretion from endothelial cells (20), and generating

fibroblast-derived hyaluronic acid to facilitate tumor invasion

(21). Reciprocally, the microenvironment influences tumor

metabolism, tumor growth, and treatment responses. Restoring

the glucose supply in tumor-infiltrating lymphocytes can

increase the efficacy of checkpoint inhibitors in cancer

immunotherapy. Chang et al. reported that glucose

consumption by sarcoma cells metabolically represses T cell

function and glycolysis, whereas checkpoint inhibitors restore

glucose metabolism and promote glycolysis along with IFN-g
production in T cells (22). Ho et al. found a decrease in glucose

uptake and the upregulation of immunosuppressive molecules

(IFN-g and CD40L) in CD4+ T cells in melanoma and identified

the glycolytic enzyme hexokinase 2 (HK-2) in tumors and

glycolytic metabolite phosphoenolpyruvate carboxy kinase 1

(PET-1) in T cells as key regulators in the interaction (23).

Alterations in metabolite-driven gene regulation and metabolic

competition between tumors and their microenvironment are

emerging traits related to malignant tumor growth (24).
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Glutamine and glucose are critical substrates in cancer cell

metabolism. Glutamine supplies carbon and nitrogen for the

synthesis of nucleotides, glutathione, and other metabolic

substrates required for cancer cell development. A novel

glutamine antagonist, JHU083, reduces tumor growth by

inhibiting glutamine uptake for anabolism in cancer cells and

enhancing the cell killing ability of CD8+ T cells in the

microenvironment, providing a new therapeutic strategy based

on glutamine metabolism (25). Venneti et al. evaluated the

application of glutamine-based positron emission tomography

imaging for the diagnosis of malignant tumors, revealing

promising results (26).

In this study, we clustered colon cancer cases based on

glycolysis- and cholesterol synthesis-related genes. We

investigated genetic variation and transcriptional alterations in

the metabolic subtypes and analyzed their relationships with the

tumor microenvironment as well as survival outcomes. We also

identified key genes involved in glycolysis‒cholesterol synthesis

and validated the gamma-glutamyl hydrolase (GGH) phenotype

for future mechanistic studies. A flowchart of our study is shown

in Figure S1B.
Materials and methods

Data source

The raw transcriptome data and clinical information for

colon cancer were retrieved from the GDC Data Portal of The

Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD,

https://portal.gdc.cancer.gov/). Fragments per kilobase of

transcript per million reads sequenced were translated into

reads per kilobase million. Data for survival outcomes,

methylation status, and copy number variation (CNV) were

obtained from UCSC XENA (https://xena.ucsc.edu/). Somatic

point mutation data, as single-nucleotide variants (SNVs), were

obtained from cBioPortal (http://www.cbioportal.org/).

Transcriptomic data for colon cancer cell lines and single-cell

RNA sequencing data were downloaded from the Caner Cell

Line Encyclopedia database (https://sites.broadinstitute.org/

ccle) and GSE178341 of the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/). Other clinical cases were

derived from the GSE39582 dataset.
Genes involved in the glycolysis‒
cholesterol synthesis axis

The gene se t s REACTOME_GLYCOLYSIS and

REACTOME_CHOLESTEROL_BIOSYNTHESIS were obtained

from the Molecular Signatures Database (MsigDB) database

(http://www.gsea-msigdb.org/gsea/index.jsp). A gene set variation

analysis (GSVA) and differential expression analysis were executed
Frontiers in Immunology 03
using the GSVA package and limma package in R. For SNVs,

mutect2 files were downloaded and mutation landscapes were

visualized using the R MafTools package. Protein–protein

interactions were studied using the STRING database and

network clustering was performed using a Markov clustering

algorithm. A principal component analysis (PCA) of subtypes

was performed using the R PCAtools package and clinical survival

outcomes were analyzed using the R survival package.
Metabolism in the tumor immune
microenvironment

The tumor immune microenvironment was evaluated by the

immune score, stromal score, and ESTIMATE score using the

ESTIMATE algorithm. A single-sample gene set enrichment

analysis (ssGSEA) was employed to inspect the cancer-

immunity cycle. Data for immunomodulators were derived

from Charoentong et al. (27).
Functional enrichment analysis and
molecular typing

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses as well as a

gene set enrichment analysis (GSEA) were performed using the

R clusterProfi l er package . A pre-defined gene set

(h.all.v7.symbols.gmt) was retrieved from the MSigDB (http://

software.broadinstitute.org/gsea/msigdb). The thresholds for

significant enrichment were a false discovery rate (FDR) of less

than 0.25 and adjusted p-value of less than 0.05. Molecular

subtypes for colon cancer were based on Kabbarah (6), Laird

(28), and Shmulevich (29).
Identification of hub genes involved in
glucose and lipid metabolism

Thresholds for differentially expressed genes (DEGs) were

an FDR-adjusted p-value of less than 0.05 and |Log2 Fold change

(FC) | > 1, as evaluated using the R DEseq2 package. A weighted

gene co-expression network analysis (WGCNA) was performed

using the R WGCNA package.
Patients and immunohistochemical
analyses of tissue microarrays

Human colon cancer tissue microarrays were evaluated for 264

cases using paraffin-embedded human colon cancer samples from

patients who received surgery or systemic chemotherapy at

Zhongshan Hospital, Fudan University from January 2007 to
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March 2017. There were 259 and 154 cases of successful

immunohistochemical staining in cancerous tissues and

corresponding para-cancerous tissues, respectively. Clinical

characteristics were recorded and are listed in Table 1. The

follow-up period lasted until September 2020. Patients agreed to

participate in the study and signed an informed consent document.

The study was approved by the ethics committee of the Zhongshan

Hospital. Tissue microarrays were prepared by the Department of

Pathology at Zhongshan Hospital under standard operating

conditions. Colon cancer and normal tissues were fixed using

paraformaldehyde, embedded in paraffin, sliced into sections, and

placed on glass slides. Then, the sections were subjected to
Frontiers in Immunology 04
deparaffinization, hydrophilization, and unmasking and were

blocked with bovine serum albumin, stained with primary

antibodies against GGH (bs-20360, 1:100, Bioss Biological

Technology Co., Ltd., Beijing, China), CD4 (GB13064, 1:100,

Servicebio Technology Co., Ltd., Wuhan, China), CD8

(GB13068, 1:100; Servicebio Technology Co., Ltd.), CD19

(GB11061, 1:500; Servicebio Technology Co., Ltd.), CD21

(GB13031, 1:300; Servicebio Technology Co., Ltd.), CD68

(GB13067, 1:100; Servicebio Technology Co., Ltd.), and MPO

(GB11224, 1:500; Servicebio Technology Co., Ltd.). The samples

were kept overnight at 4°C and subsequently incubated with a goat

anti-rabbit secondary antibody (GB23303, 1:200; Servicebio

Technology) for 30 min at 20°C. Stains were identified using a

panoramic slice scanner (3DHISTECH, Budapest, Hungary),

recorded, and imaged using CaseViewer 2.2 (3DHISTECH). The

expression levels of GGH and other markers were evaluated by the

H-score using Quant Center 2.1 (3DHISTECH). The H-score was

calculated as follows: H-SCORE = ∑ (PI × I) = (percentage of cells

with moderate intensity × 2) + percentage of cells with strong

intensity × 3). “PI” indicates the proportion of the positive signal

pixel area, whiles “I” indicates the color intensity.
Cell culture conditions and lentivirus
transduction

Cell lines, including NCM460, LOVO, CACO-2, SW48, and

SW480, were purchased from the Cell Bank of the Chinese

Academy of Sciences (Shanghai, China). Cells were cultured in

Dulbecco’s modified Eagle medium (HyClone, Logan, UT, USA)

containing 10% fetal bovine serum (Gibco, Paisley, UK) and were

maintained in an incubator with 5% CO2 at 37°C. The cell lines

were validated using short tandem repeat profiling (Genetic

Testing Biotechnology Corporation, Suzhou, China) and

routinely checked for Mycoplasma using the MycoAlert

Mycoplasma Detection Kit (Lonza; LT07-218, Rockland, ME,

USA). For GGH knockdown, three human siRNA sequences,

including RNAi-1 (AAGAAGCCCATCATCGGAATATTAA),

RNAi-2 (AAGATACTATATTGCTGCGTCCTAT), RNAi-3

(TACTATATTGCTGCGTCCTATCTAA) and a normal control,

RNAi-nc (TTCTCCGAACGTGTCACGT), were synthesized by

Genewiz Company (Shanghai, China) and cloned into the

pLenti6.3 to generate pLenti6.3-GGH-RNAi. To overexpress

GGH, the cDNAs of GGH (NM_003878) were synthesized and

cloned into the pLenti6.3/V5-DEST vectors (Invitrogen, Carlsbad,

CA, USA) to construct the overexpression plasmid. The integrity of

the core plasmids was confirmed by DNA sequencing (Majorbio,

Shanghai, China). The constructed plasmids and viral packaging

plasmids were co-transfected into 293T cells to generate relevant

lentiviruses, and supernatants were collected after 48 h of infection.

SW48 and SW480 cells were inoculated in 6-well plates overnight

before transduction, transfected with the lentivirus, and assigned to

Control, OE-NC, OE-GGH, shNC, shGGH-1, and shGGH-2
TABLE 1 Basic data for 264 patients whose tissue samples were
examined by immunohistochemical staining.

Characteristics Number of cases Percentage

Gender

Male 147 55.7%

Female 117 44.3%

Age

< 60 104 39.4%

≥ 60 160 60.6%

Primary colon cancer site

Right 103 39.0%

Left 161 61.0%

Radical surgery treatment

Yes 177 67.0%

No 87 33.0%

T stage

T1 21 8.0%

T2 78 29.5%

T3 77 29.2%

T4 88 33.3%

N stage

N0 68 25.8%

N1 92 34.8%

N2 104

M stage

M0 177 67.0%

M 87 33.0%

KRAS mutation

Yes 135 51.1%

No 129 48.9%

Survival status

Alive 173 65.5%

Death 80 30.3%

Censored 11 4.2%

Successfully immunohistochemical staining

GGH in cancer 259 98.1%

GGH in para-cancer tissue 154 58.3%

Total Number 264 100.0%
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groups at a multiplicity of infection of 5. Next, GGH mRNA and

protein expression levels were determined by RT-PCR and western

blotting. The transfected cells were continuously cultured and

screened for 14 days for the insertion of target fragments and

stable expression.
Subcutaneous xenograft in nude mice

Male BALB/c nude mice (6 to 8 weeks of age, weighing

approximately 20 g) were acquired from Suzhou Cavens Biogle

Model Animal Research Co., Ltd. (Suzhou, China). Mice were

housed in a specific pathogen-free facility and separated into

four groups with five mice each. Xenograft experiments were

performed with the approval of the Animal Experiments Ethics

Committee of Zhongshan Hospital, Fudan University. The right

backs of the mice were subcutaneously injected with 2 × 106

SW480 cells transduced with OE-NC, OE-GGH, shNC, and

shGGH. The length (L) and width (W) of the subcutaneous

tumors were monitored and measured every 3 days using a

Vernier caliper. The mice were sacrificed 4 weeks later and

photographed, and the tumor tissues were dissected, weighed,

and recorded. The tumor volume was calculated as follows:

volume = (length × width2) × 0.5. The tumor lysates were

analyzed to evaluate the expression levels of GGH, PKM,

GLUD1, and LDHA by RT-qPCR and western blotting.
RNA extraction, complementary DNA
synthesis, and real-time quantitative
polymerase chain reaction

Total RNA was extracted from cultured cell lines or

xenograft models using TRIzol reagent (Invitrogen) and

recombinant DNase I (Takara Bio Inc., Shiga, Japan),

according to the manufacturers’ protocols. First-strand cDNA

synthesis was achieved using the PrimeScript RT Master Mix Kit

(Takara Bio Inc.). RT-qPCRs were performed on an ABI-7300

(ABI, Waltham, MA, USA) using the TB Green Premix Ex Taq

Kit (Takara Bio Inc.). The cycling conditions were set as follows:

pre-denaturation at 95°C for 10 min, followed by 40 cycles of

denaturation at 95°C for 3 s, annealing at 60°C for 40 s, and

elongation at 60°C for 50 s. The experiments were repeated three

times in triplicate. Primers used for RT-qPCR are listed in

Supplementary Table S8. All quantifications were normalized

to b-actin as the internal reference, and the relative threshold

cycle (Ct) was calculated as 2−DDCt.
Protein extraction and western blotting

Western blotting was performed on cultured cells or tissue

samples after the indicated treatments. Cell lysates were
Frontiers in Immunology 05
collected using a sodium dodecyl sulfate lysis buffer

(Beyotime Biotechnology, Shanghai, China). Equal amounts

of total protein (approximately 15 mg for cell samples and 60

mg for tissue samples) were separated by 10% sodium dodecyl

sulfate polyacrylamide gel electrophoresis and transferred

onto nitrocellulose membranes (Millipore, Billerica, MA,

USA). Membranes were blocked using 5% nonfat powdered

milk (Sangon, Shanghai, China) in TBS with Tween-20

(TBST) at about 20°C for 1.5 h, incubated with primary

antibodies overnight at 4°C, washed three times with TBST,

and then incubated with secondary antibodies for 1 h. The

signal intensity of protein bands was visualized using an

Enhanced Chemiluminescence Detection Kit (Tanon,

Shanghai, China). A semi-quantitative evaluation of protein

density was performed using ImageJ (Version 1.5.3). The

following antibodies were used at a 1:1000 dilution: anti-

GGH (Cat. #138495; Abcam, Cambridge, UK), anti-PKM

(Cat. #150377; Abcam), anti-GLUT1 (Cat. #115730; Abcam),

anti-LDHA (Cat. #52488; Abcam), anti-b-actin (Cat. #4970,

Abcam), and anti-GAPDH (Cat. #2118; Cell Signaling,

Danvers, MA, USA).
Cellular lactate and ATP content
detection

The concentrations of lactic acid and ATP were detected

using the Lactate Colorimetric Assay Kit (E-BC-F002-M;

Elabscience Biotechnology Co., Ltd., Wuhan, China) and ATP

Colorimetric Assay Kit (E-BC-K157-M; Elabscience

Biotechnology Co., Ltd.). According to the manufacturer’s

protocol, cells were seeded on 96-well plates and the optical

density was measured at 530 nm and 636 nm. The lactate

production and ATP levels in cells were calculated using as

follows: Lactate (mmol/L) = [(ODtest - ODzero)/(ODstandard -

ODzero)] × standard sample concentration (3 mmol/L) ×

sample dilution multiplier; ATP (mmol/L) = [(ODtest -

ODcontrol)/(ODstandard - ODzero)] × standard sample

concentration (1 mmol/L)/(1/volume of reagent) × dilution

factor of sample before added to the system.
Statistical methods

Data are presented as the mean ± standard deviation

(SD). The Wilcoxon rank-sum test or Student’s t-test was

used to compare two groups of data. Clinical data were

analyzed using the chi-squared test. Correlations were

evaluated by Spearman’s coefficient coefficients. A survival

analysis was executed using Kaplan–Meier and log-rank

tests. Cox regression analysis was used for univariate and

mu l t i v a r i a t e ana l y s e s . Va lu e s o f p < 0 . 05 we r e

considered significant.
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Results

Genomic variation, transcriptomic
alterations, protein interactions for genes
related to glycolysis–cholesterol
synthesis, and patient clustering

REACTOME_GLYCOLYS IS and REACTOME_

CHOLESTEROL_BIOSYNTHESIS were enriched in colon cancer,

and GSVA scores were higher in colon cancer tissues than in paired

normal tissues (Figures 1A, S2). Sixty-nine glycolysis-related genes

(labeled in blue) and twenty-four cholesterol synthesis-related genes

(labeled in yellow) were identified from the REACTOME gene sets

(Table S1). The co-expression relations for pairwise combinations of

these genes were investigated (Figure 1B). CNV frequencies,

represented by gain- and loss-of-function mutations, were

inspected (Figure 1C). SNVs were visualized by waterfall plots

(Figure 1D). A protein–protein interaction network was

constructed (Figure 1E) and proteins were stratified into four

clusters. Glycolysis-related genes were distributed in three clusters

(Clusters I, II, and IV), whereas cholesterol synthesis-related genes

were only assigned to Cluster III (Table S2). Based on the GSVA

scores for the glycolysis–cholesterol synthesis axis, a hierarchical

cluster analysis was used to determine four metabolic subtypes of

colon cancer: glycolytic, cholesterogenic, quiescent, and mixed

(Figure 1F). These novel subtypes could be used to distinguish

among cases, as determined by a PCA (Figure 1G).
Relations between metabolic subtypes,
clinical prognosis, and the tumor
immune microenvironment

Although neither overall survival nor progression-free

survival differed significantly among subtypes (Figure S3),

Kaplan–Meier survival analyses indicated that patients with

different metabolic subtypes had different clinical prognoses

evaluated by the progression-free interval (p = 0.017) and

disease-specific survival (p = 0.027) (Figure 2A and Table

S3). The immune scores obtained by the ESTIMATE

algorithm for glycolytic and quiescent cells were higher than

those for cholesterol and mixed cells. The stromal score was

higher in the quiescent group than in the other four subtypes,

while the mixed subtype had a relatively low stromal score.

There was no significant difference in stromal scores between

the glycolytic and cholesterogenic groups. The results for

ESTIMATE scores were consistent with those for stromal

scores in comparisons among the four subtypes (Figure 2B).

A heatmap detailed the activity of the cancer–immunity cycle

and suggested that most steps in this cycle were upregulated in

glycolytic and quiescent cells and downregulated in cholesterol

and mixed cells (Figure 2C). A box plot illustrates that
Frontiers in Immunology 06
enrichment for functions related to the cancer immunity

cycle differed among the metabolic subgroups (Figure 2D

and Table S4). Immunomodulators were upregulated in

glycolytic and quiescent cells but downregulated in

cholesterogenic and mixed cells (Figure 2E). For instance,

most immunomodulators, especially immune checkpoint

targets (e.g., PDCD1, CD274, TIGIT, CTLA4, and IDO1),

were upregulated in glycolysis. With respect to the signatures

of chemokines, immune inhibitors, immune stimulators,

MHC, and receptors, glycolytic and cholesterogenic subtypes

were further compared (Figure S4). The relationship between

metabolic subtypes and other recognized molecular subgroups

of colon cancer was also investigated. The cholesterogenic

subtype contained an inflammatory subtype (immune C3),

while the glycolytic subtype did not. The proportion of IFN-

g-dominant (Immune C2) cells in the glycolytic group was

higher than that in the cholesterogenic group. The CMS

subtype showed no clear relationship with the other three

subtypes. Most cholesterogenic subtypes contained the CIN

subtype, whereas most HM-indel subtypes were glycolytic and

mixed. The GS subtype was mostly quiescent (Figure 2F).
Comparison of immunogenetic,
genomic, and clinical parameters
between glycolytic and cholesterogenic
subgroups

The specific enrichment scores for the glycolytic and

cholesterogenic subgroups evaluated by ssGSEA are shown in

Figure 3A (Table S5). We employed 12 immunotherapy-related

gene sets and found that most were more highly activated in

glycolysis than in cholesterol synthesis (Figure 3B). To explore

the biological functions of metabolic patterns in colon cancer, we

performed a series of enrichment analyses of glycolytic and

cholesterogenic pathways. A GO analysis showed significant

differences between glycolytic and cholesterogenic factors with

respect to neutrophil chemotaxis, neutrophil migration,

chemokine activity, chemokine receptor binding, cytokine

receptor binding, and cytokine activity, indicating that

chemokines and cytokines were involved in this process

(Figure S5A). A KEGG analysis identified enrichment for

various pathways, including cytokine–cytokine receiver

interaction, toll-like receiver signaling pathway, natural killer

cell-mediated cytotoxicity, IL-17 signaling pathway, and

chemokine signaling pathway (Figure S5B). The GSEA results

showed that specific metabolism-related pathways were enriched

(Figure 3C). The mutational landscape in glycolytic and

cholesterogenic pathways is shown in waterfall plots

(Figure 3D). TTN, APC, MUC16, TP53, and KRAS were the

top five genes with the highest mutation frequencies. The

mutation frequencies of TTN, APC, and MUC16 in the
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glycolytic group were higher than those in the cholesterogenic

group, whereas the mutation frequencies of TP53 and KRAS

were higher in patients in the cholesterogenic group. We

compared genes with a mutation frequency of more than 30%
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and identified higher FAT4, SYNE1, and TTN mutation rates in

glycolytic cells than in cholesterogenic cells, while a high TP53

mutation frequency was detected in the latter group (Figure 3E).

The co-occurrence of three pairs mutations (SYNE1-FAT4,
A

B
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C

FIGURE 1

Signatures of the glycolysis–cholesterol synthesis axis and metabolic subtypes in colon cancer. (A) Enrichment for REACTOME_GLYCOLYSIS
and REACTOME_CHOLESTEROL_ BIOSYNTHESIS differed between colon cancer and adjacent normal tissues. (B) Co-expression relations
between signatures mediating glycolysis (labeled in blue) and cholesterol synthesis (labeled in yellow). (C) Lollipop plot showing copy number
variation (CNV) represented by gains and losses. (D) Water plot showing single nucleotide variants (SNVs). (E) Interaction of signatures visualized
by a protein–protein interaction network and stratified into four clusters. Glycolysis-related genes were distributed into three clusters (Cluster I,
II, and IV), while cholesterol–synthesis-related genes were distributed into one cluster (Cluster III). (F) A hierarchical cluster analysis revealed
four metabolic subtypes in colon cancer. (G) A principal component analysis suggested that colon cancer cases could be distinguished by
metabolic subtypes.
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TTN-FAT4, and SYNE1-TTN) was observed the two metabolic

subtypes. The co-occurrence of SYNE1-FAT4 showed the most

significant difference between groups (OR = 2.85, p < 0.01)

(Table S6). Glycolytic colon cancer exhibited a higher all

mutational burden, synonymous mutational burden, and non-
Frontiers in Immunology 08
synonymous mutational burden (Figure 3F). Patients stratified

into the glycolytic subgroup exhibited distinct clinical

characteristics, including vascular invasion, right and

transverse colon cancer, and microsatellite instability (MSI)-

high molecular features (Figure 3G).
A B
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FIGURE 2

Correlations between metabolic subtypes and prognosis and the immune microenvironment in colon cancer. (A) Kaplan–Meier plots indicated that
patients stratified into four metabolic subtypes differed with respect to the progression-free interval and disease-specific survival. (B) The tumor immune
microenvironment was evaluated by the immune score, stromal score, and ESTIMATE score in different metabolic subtypes. (C) Heatmap detailing the
activity of cancer–immunity cycle represented by seven steps. (D) Box plot showing the differences in cancer-immunity cycle steps among metabolic
subgroups. (E) Heatmap detailing the associations between expression of immunomodulator signatures and metabolic subtypes. (F) Circus plot showing
the relationship between the known molecular subtypes of colon cancer and metabolic subtypes. Statistical analysis: Wilcoxon rank-sum test. ns,
nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Identifying hub genes involved in
glycolysis and cholesterol synthesis

We used the RNA-seq count data from TCGA-COAD to

identify DEGs in metabolic subtypes and colon cancer. We

detected 362 DEGs (241 upregulated and 121 downregulated;

Figures 4A, S6A) in glycolytic and cholesterogenic pathways and

4513 DEGs between colon cancers and normal samples,
Frontiers in Immunology 09
including 2443 upregulated and 2070 downregulated

(Figures 4B, S6B). We implemented WGCNA to identify co-

expressed gene modules in metabolic subtypes. We determined

six as the optimal soft threshold value (Figure S7A) and seven

co-expression modules, excluding the MEgrey module with no

co-expressed genes (Figures S7B–D) and identified MEblue as

the key module (Figure S7E). We then took the intersection of

the three sets and determined seven hub genes: GGH, CACNG4,
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FIGURE 3

Comparison of immunogenetic, genomic, and clinical properties between glycolytic and cholesterogenic subgroups. Box plots showing
differences in (A) cancer–immunity cycle and (B) immunotherapy signatures between the glycolytic and cholesterogenic subgroups. (C)
Metabolism- and cancer-related pathways were enriched in a gene set enrichment analysis. (D) Waterfall plots displaying mutational landscapes.
(E) Higher mutation frequencies of FAT4, SYNE1, and TTN were detected in glycolysis, whereas a high mutation frequency of TP53 was detected
in cholesterol. (F) Tumor mutational burden and (G) clinical characteristics, including vascular invasion, tumor site, and MSI status, in the two
subgroups. Wilcoxon rank-sum test. ns, nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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MME, SLC30A2, CKMT2, SYN3, and SLC22A31 (Figure 4C).

Evaluating scRNA-seq data, we found that the seven hub genes

were closely related to the functions of immune cells

(Figure 4D), immune cell subsets (Figure 4E), stromal cell

subsets (Figure 4F), and epithelial cell subsets (Figure 4G). We

employed methylation data from TCAG-COAD to analyze the

relationship between the methylation status and transcript levels
Frontiers in Immunology 10
of seven hub genes. Five of the seven genes were within 200 bp

upstream of the transcriptional start site, and their expression

levels were significantly negatively correlated with methylation

levels (Figures S8A–E). The expression of SLC30A2 had the

strongest correlation with its methylation level (r = −0.54, p <

0.001). We investigated the expression levels of the seven hub

genes in colon cancer-derived cell lines (Figure S9).
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FIGURE 4

Hub genes identified in glycolytic and cholesterogenic pathways and the relationship between expression and the immune microenvironment.
Volcano plots showing differentially expressed genes (DEGs) between (A) glycolytic and cholesterogenic groups and (B) colon cancer and
normal tissues. (C) Venn diagram indicating the intersection of DEGs among metabolic subtype, colon cancer, and co-expressed gene modules.
Seven hub genes were closely related to the functions of (D) immune cells, (E) immune cell subsets, (F) stromal cell subsets, and (G) epithelial
cell subpopulations.
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Clinical value of hub genes based on
public colon cancer datasets

To explore the clinical value of seven metabolism-related hub

genes, we utilized data from the single-cell dataset GSE178341, the

microarray dataset GSE39582, and TCGA-COAD. The diagnostic

efficacy of these hub genes was evaluated using receiver operating

characteristic (ROC) curves. The areas under the curve (AUC) for

GGH (0.793) and MME (0.816) were relatively high (Figure 5A
Frontiers in Immunology 11
and Table S7). The relationships between hub genes and

clinicopathological characteristics were investigated (Figures 5B,

C, S10), indicating that high GGH expression was related to

clinicopathological characteristics, including MSI_L/MSS, left

colon, negative CIMP status, wild-type BRAF and KRAS, TP53

mutation, and proficient mismatch repair (pMMR) status. We

also performed a series of bivariate survival analyses combining

hub genes with the clinical stage (Figure S11) and KRAS mutation

status (Figures S12, S13).
A
B

C

FIGURE 5

Clinical value of seven metabolism-related hub genes in colon cancer. (A) Diagnostic efficacy evaluated by receiver operator characteristic
(ROC) curves. The relationships between hub genes and clinicopathological characteristics from (B) the single-cell dataset and (C) RNA-seq
dataset. Statistical analysis: Wilcoxon rank-sum test. ns, nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Validating GGH expression and clinical
implications in colon cancer tissue samples

Representative immunohistochemical staining results for

GGH are displayed in Figure 6A. A quantitative analysis
Frontiers in Immunology 12
indicated that GGH was more highly expressed in colon

cancer tissues than in normal tissues (p < 0.001) and paired

para-cancerous tissues (p < 0.001, Figure 6B). GGH expression

was significantly correlated with age (p = 0.006), T stage (p =

0.047), N stage (p = 0.014), KRAS mutation (p = 0.001), and
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FIGURE 6

Gamma-Glutamyl Hydrolase (GGH) was differently expressed in colon cancer, and its high expression was related to tumor immune infiltration and
clinical outcomes. (A) Representative images of GGH immunohistochemical staining in colon cancer and corresponding para-cancerous tissues. (B)
GGH was more highly expressed in colon cancer tissues than in normal tissues (p < 0.001) or paired para-cancerous tissues (p < 0.001). (C) Forest plot
showing that GGH expression is related to clinical characteristics. (D) ROC curve indicating the diagnostic efficacy of GGH in colon cancer. (E) Kaplan–
Meier curves showed that patients with high GGH expression experienced favorable survival outcomes after surgery. (F) A nomogram based on the
expression level of GGH was established to evaluate overall survival for each case. (G) Spearman’s correlation analyses were performed to evaluate the
association between GGH expression and markers of tumor-infiltrating immune cells. (H) Immunohistochemical staining of consecutive sections
indicated that GGH expression was positively correlated with CD4 expression. Scale bar = 20 or 200 mm. Statistical analysis: Mann–Whitney test and
Wilcoxon rank-sum test. ****p < 0.0001.
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survival status (p = 0.004) (Table 2). Univariate and multivariate

Cox regression analyses confirmed that high GGH expression

(HR = 0.989, 95% CI 0.979–1.000, p = 0.041) was an

independent prognostic factor (Table 3, Figure 6C). The AUC

of the ROC curve was 0.66 (CI: 0.61–0.72), supporting the

diagnostic efficacy of GGH for colon cancer (Figure 6D).

Kaplan–Meier curves combined with the log-rank test revealed

that patients (n = 168) with high GGH expression had a

relatively longer overall survival (OS) after surgery (median 66

vs. 55 months, p < 0.05, Figure 6E). A nomogram, including

clinical parameters and the H-score of GGH, was also

established to evaluate the survival outcome for each case

(Figure 6F). Immunohistochemical staining results in

consecutive sections indicated that the expression of GGH was

correlated with markers of most infiltrating immune cells by
Frontiers in Immunology 13
Spearman correlation analyses, especially for CD4 (r = 0.230, p <

0.05, Figure 6G). Representative images are shown in Figure 6H.
Confirming the inhibitory effects of GGH
on glycolysis in colon cancer by cell and
animal experiments

The basal expression levels of GGH in a colonic epithelial cell

line (NCM460) and colon cancer-derived cell lines (LOVO,

CACO-2, SW48, and SW480) were detected using RT-qPCR and

western blotting. As shown in Figure 7A, GGH was highly

expressed in the colon cancer cell lines. GGH overexpression

and interference efficiencies were also determined in the cDNA

and RNAi groups (Figure 7B). Based on previous bioinformatic
TABLE 2 Correlation between GGH expression and clinical characteristics in 259 cases with successful IHC staining, analyzed by the chi-squared test.

Characteristics GGH expression (Number) p value

Low Percentage High Percentage

Gender

Male 66 51.2% 80 61.5% 0.092

Female 63 48.8% 50 38.5%

Age

< 60 42 32.6% 64 49.2% 0.006

≥ 60 87 67.4% 66 50.8%

Primary colon cancer site

Right 56 43.4% 45 34.6% 0.147

Left 73 56.6% 85 65.4%

Radical surgery treatment

Yes 94 72.9% 83 63.8% 0.119

No 35 27.1% 47 36.2%

T stage

T1 10 7.8% 9 6.9% 0.047

T2 29 22.5% 49 37.7%

T3 40 31.0% 37 28.5%

T4 50 38.8% 35 26.9%

N stage

N0 25 19.4% 42 32.3% 0.014

N1 44 34.1% 48 36.9%

N2 60 46.5% 40 30.8%

M stage

M0 94 72.9% 80 61.5% 0.052

M1 35 27.1% 50 38.5%

KRAS mutation

Yes 95 73.6% 39 30.0% 0.001

No 34 26.4% 91 70.0%

Survival status

Alive 56 43.4% 83 63.8% 0.004

Death 68 52.7% 41 31.5%
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results, we inspected the cardinal regulators of glycolysis, including

PKM, GLUT1, and LDHA. These loci were downregulated in

GGH-overexpressing cell lines and upregulated in RNAi-GGH

cells, as determined by western blotting (Figure 7C). Additionally,

GGH overexpression decreased the extracellular lactate content

and intracellular ATP levels in cells, while the opposite results were

obtained in siRNA-GGH cells using ELISA (Figure 7D). To

validate the effect of GGH in colon cancer, SW480-GGH and

SW480-sh-GGH cells were subcutaneously injected into nudemice

to establish xenograft models. Compared to tumors in the control

group, smaller and larger tumors were visible on mice from the

GGH overexpression and downregulation groups, respectively.

GGH upregulation decreased the tumor volume and weight,

while its downregulation had the opposite effect (Figure 7E).

Furthermore, the RNA (Figure 7F) and protein (Figure 7G)

levels of GGH, PKM, GLUT1, and LDHA in each group were

negatively regulated by GGH in vivo.
Discussion

As metabolic reactions represented by glycolysis and

cholesterol synthesis differ distinctly between colon cancer and

healthy tissues at the transcriptional and protein levels according

to enrichment analyses, we stratified cases into four subtypes:

glycolytic, cholesterogenic, mixed, and quiescent. We

determined that patients with different subtypes had different

survival outcomes. Cui suggested that glycolysis-related genes

are associated with a poor clinical prognosis in patients with

colon cancer (30). In contrast, Jun demonstrated a reduction in a

cholesterol synthesis rate-limiting enzyme, which facilitates the

stemness and migration of colon cancer (31). We have

previously demonstrated the prognostic value of several

metabolic genes (32). Survival times in the glycolytic and

cholesterogenic subgroups were relatively short and long,

respectively, and these trends were particularly notable for

progression-free interval and disease-specific survival.
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Because metabol ic interact ions in the immune

microenvironment trigger cancer progression (22), we

evaluated the relationship between metabolic features and

tumor immune cell infiltration. It is a paradox that certain

metabolic subtypes with a high immune score (quiescent and

glycolytic) exhibited worse survival outcomes than those of

others with a high immune score (mixed and cholesterogenic).

We also investigated correlations between the cancer–immunity

cycle and the immunotherapy response (33) and revealed that

steps, such as cancer cell antigen release, T cell recruitment, CD8

T cell recruitment, Th1 cell recruitment, dendritic cell

recruitment, macrophage recruitment, neutrophil recruitment,

and NK cell recruitment, were upregulated in glycolysis, while

recognition of cancer cells by T cells was upregulated in the

cholesterogenic group. That is, immune cells with high levels of

infiltration did not function in glycolysis, while immune cells

with low levels of infiltration functioned in cholesterol synthesis.

We hypothesized that the glycolysis‒cholesterol synthesis axis

primarily functions in the process of remodeling the immune

microenvironment in colon cancer in tumor recognition by T

cells, instead of immune cell recruitment. Cholesterol synthesis

contributes to immune recognition and tumor death, whereas

glycolysis plays an opposing role in recognition, resulting in

recruitment failure (34, 35).

In contrast, chemokines and immunomodulators account for

the activity of the cancer–immunity cycle, and immunological

hallmarks of the tumor microenvironment include the expression

of immunomodulators as well as inhibitory immune checkpoints,

activity of the tumor immune cycle, and degree of infiltration of

tumor-infiltrating immune cells (27). Renner reported that

attenuating glycolysis in melanoma could augment checkpoint

inhibitor responses (36). Ganapathy summarized the dysfunction

of glycolysis in tumor-sensitized tumors in response to anticancer

immunity (37). Kumagai found that lactate upregulates PD-1

expression in CD8+ T cells and regulatory T cells in a highly

glycolytic tumor environment (38). Our analyses suggested

that a high level of immune infiltration leads to the

upregulation of immunomodulators in glycolysis, suggesting
TABLE 3 Relationships between GGH expression and clinical characteristics with overall survival were evaluated by univariate and multivariate
Cox regression analyses.

Characteristics Univariate Cox Multivariate Cox

Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Gender 0.928 0.633 - 1.362 0.704

Age 1.012 0.994 - 1.029 0.187

Primary colon cancer site 0.809 0.553 - 1.184 0.276

T stage 0.686 0.566 - 0.831 <0.001 0.917 0.599 - 1.404 0.690

N stage 0.632 0.498 - 0.802 <0.001 0.788 0.477 - 1.302 0.353

M stage 1.247 0.836 - 1.861 0.279

KRAS mutation 1.815 1.220 - 2.700 0.003 1.374 0.881 - 2.143 0.162

Expression of GGH2 0.981 0.972 - 0.990 <0.001 0.989 0.979 - 1.000 0.041
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that immunotherapeutics promoting tumor cell recognition by T

cells are promising.

As a crucial driver of colon cancer development, KRAS-

related signaling is enriched in glycolysis. Ying demonstrated

that KRAS regulates anabolic glucose metabolism in vivo (39).
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Wong et al. reported that mutant KRAS-expressing colon-derived

cell lines are dependent on glutamate-based glycolysis (40). In this

study, we evaluated the prognostic value of KRAS mutations and

identified key genes involved in glycolysis. Liu reported that colon

cancer features DNA hypermethylation and mutations in KRAS
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FIGURE 7

In vitro and in vivo experiments suggest that GGH inhibits glycolysis in colon cancer. (A) RT-qPCR and western blotting revealed that GGH at the mRNA
and protein levels was more highly expressed in colon cancer-derived cell lines (LOVO, CACO-2, SW48, and SW480) than in normal colonic epithelial
cells (NCM460). (B) GGH was stably overexpressed or silenced in SW48 and SW480 cells after transfection and selection. (C) The expression levels of
PKM, GLUT1, and LDHA were assessed by western blotting. (D) The extracellular lactate content and intracellular ATP levels were detected by ELISA. (E)
Subcutaneous tumor models were established to confirm the effect of GGH on colon cancer growth in vivo. Tumor volumes and weights were
measured. (F) The mRNA levels of GGH, PKM, GLUT1, and LDHA in xenograft tumors were detected by RT-qPCR. (G) The protein levels of these
biomarkers in xenograft tumors were detected by western blotting. b-Actin was used as an internal control. n = 3 biological replicates. Statistical
analysis: Wilcoxon rank-sum test or Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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and can be stratified into genome stable (GS) subgroups (28). We

compared the novel metabolic subtypes with these previously

established subgroups (6, 28, 29) and found that GS was more

closely related to the glycolytic than the cholesterogenic subtype.

We surveyed the mutational landscapes of metabolic subtypes

and identified differences in the co-occurrence of SYNE1-FAT4

mutations among metabolic subtypes. SYNE1 encodes a multi-

isomeric modular protein that forms a linking network and

maintains subcellular localization. SYNE1 mutations are

associated with cerebellar recessive ataxia and bipolar disorder

(41, 42). FAT4 encodes calcium-dependent cell adhesion proteins,

and its genetic variants are involved in recessive syndromes and

periventricular neuronal heterotopia (43). We investigated the

clinicopathological characteristics of the glycolytic and

cholesterogenic subtypes. Because patients with a high level of

TMB or MSI-high colon cancer achieve a favorable checkpoint

inhibitor response (5, 44), we speculate that patients in the

glycolytic group are more sensitive to immunotherapy than are

those in the cholesterogenic group, consistent with previous

analyses of the immune microenvironment. The glycolytic

subtype displayed more adverse pathological prognostic features,

such as vascular invasion, right and transverse colon cancer, than

those in the cholesterogenic subtype, and such features are

correlated with poor survival outcomes (4).

Seven hub genes were closely correlated with immune cells with

different characteristics. GGH showed a closer association with a

variety of immune cells, immune cell subsets, and stromal cell subsets

than with others, including EpiT,macrophages, PLZF+ T, endothelial

cells, pericytes, and epithelial subpopulations. Furthermore, GGH

expression was positively related to the infiltration of CD4+ T cells in

colon cancer in clinical samples. Schmee found that Helicobacter

pylori produced gamma-glutamyl transpeptidase, which could

inhibit CD4+ T cell proliferation and infiltration in the gastric

mucosa, resulting in the development of peptic ulcer disease,

gastric adenocarcinoma, and even mucosa-associated lymphoid

tissue lymphoma (45). Instead, g-glutamyl hydrolase catalyzes the

hydrolysis of folyl-poly-g-glutamates and anti-folyl-poly-g-
glutamates to produce folic acid and glutamate. g-Glutamyl

hydrolase has been identified as a prognostic biomarker for

malignant tumors (46, 47) and a predictive biomarker of

fluorouracil-based chemotherapy regimens for gastrointestinal

cancer, as it regulates folate metabolism (48–50). Although

our study preliminarily demonstrated that GGH repressed

glycolysis, which has been considered to be driven by KRAS

mutations in malignant tumors (51, 52), the mechanism by which

GGH exerts its impact on tumor immune cell infiltration or the anti-

tumor immune response vie the regulation of metabolic reactions or

other crucial gene expression requires further exploration.

Our study had some limitations. Our bioinformatic analyses

provide a preliminary overview of connections between metabolic

reprogramming in tumor cells and the tumor microenvironment,

and further studies are needed to determine the mechanisms by

which the metabolic reprogramming of specific cells, such as
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immune cells, fibroblasts, and adipocytes, impact the tumor

microenvironment. Bioinformatic analyses provide insights into

the differences in the immune microenvironment of colon cancer

based on metabolic subgroups, and the connections should be

verified experimentally. The prognostic or predictive value of

glycolysis‒cholesterol synthesis subtypes in colon cancer should

be validated in large clinical trials with retrospective and

prospective cohorts. The specific molecular mechanisms by

which GGH functions in metabolism and CD4+ T cell immune

infiltration also require verification by laboratory experiments.
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