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Dendritic cells (DCs) play a key role to modulate anti-cancer immunity in the

tumor microenvironment (TME). They link innate to adaptive immunity by

processing and presenting tumor antigens to T cells thereby initiating an

anti-tumor response. However, subsets of DCs also induce immune-

tolerance, leading to tumor immune escape. In this regard, the TME plays a

major role in adversely affecting DC function. Better understanding of DC

impairment mechanisms in the TME will lead to more efficient DC-targeting

immunotherapy. Here, we review the different subtypes and functions of DCs in

the TME, including conventional DCs, plasmacytoid DC and the newly

proposed subset, mregDC. We further focus on how cancer cells modulate

DCs to escape from the host’s immune-surveillance. Immune checkpoint

expression, small molecule mediators, metabolites, deprivation of pro-

immunogenic and release of pro-tumorigenic cytokine secretion by tumors

and tumor-attracted immuno-suppressive cells inhibit DC differentiation and

function. Finally, we discuss the impact of established therapies on DCs, such as

immune checkpoint blockade. Creative DC-targeted therapeutic strategies will

be highlighted, including cancer vaccines and cell-based therapies.

KEYWORDS
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Introduction

Recent advances in immunotherapy, including the introduction of immune checkpoint

inhibitors (ICI) and adoptive cell therapy, have changed the landscape of cancer care.

Because of the limited response rate to ICI alone, combination therapies with other classes

of drugs, including chemotherapy or molecular targeting agents, are currently being

developed. ICI can elicit long-term survival, called “tail-plateau”. The combination with

chemotherapy has also improved response rates and survival, however, an increase in

synergistic long-term benefits compared with ICI alone was not shown (1) (Figure 1).
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New treatment strategies are needed to increase the number of

patients with long-term response. For this purpose, it is important

to efficiently induce tumor antigen-specific immunity.

Development of other classes of immunotherapies, such as cancer

vaccines targeting neoantigens derived from geneticmutations, are

making strides.These therapies enhance the tumor antigen-specific

T cell response and in combination with ICI can potentially

improve response rates with enhanced migration of T cells into

the tumor site andepitope spreading (2).A commonand important

component required for the success of each of these strategies is the

presentation of tumor antigens to T cells by professional antigen-

presenting cells (APCs).APCshave abilities tocapture, process, and

present non-self-antigens to T cells, and express major

histocompatibility complex (MHC) I and II as well as key

costimulatory molecules for T cell engagement. Dendritic cells

(DCs) are the most representative professional APCs. DCs have a

unique ability to migrate to the draining lymph nodes to initiate T

cell activation by presenting antigens and by providing

immunomodulatory signals through cell-to-cell contacts

and cytokines.
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A major issue in the development of these therapies is the

impairment of DC functions in the tumor microenvironment

(TME). DC function is determined by influences from

surrounding cells and the microenvironment, including the

TME which adversely impacts DC intratumoral entry and

function, and consequently an effective anti-tumor immune

response. A deeper understanding of how these DC functions

are modulated and regulated by the TME will lead to the

development of improved DC-targeted therapies. In this

review, we will discuss the DC subtypes, functional properties

and interaction with other immune cells in the TME and

highlight established and developing therapies that target DC.
Key DC functions in the TME

DC subsets in the TME

DCs play a key role in the TME to recruit T cells and initiate

the anti-tumor response in draining lymph nodes. Intratumoral
A

B

FIGURE 1

The survival curve of Immune-checkpoint inhibitors. The survival curve of Immune-checkpoint inhibitor (ICI) is characterized by patients with
long-term response, called tail-plateau. The benefit of adding chemotherapies on ICIs are additive not synergistic. The combination therapies
improved early-response, however, those did not lead to a sharp increase in survival after 3 years (1) (A). Other treatment strategies with
synergistic benefits are needed to increase the number of patients with a long-term response (B).
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DC may also play a critical role in maintaining the state of anti-

tumor T cells. This lineage comprises different sub cell types that

have recently been well described in the literature (3–6). The

main types are cDC1, cDC2, pDC and mregDC, although other

subsets such as DC3 have been alluded to. DCs are recruited into

the TME by chemokines produced by NK cells, and this cross-

talk along with the release of activating factors by tumor cells

(e.g. RNA, DNA, RNA-DNA hybrids) causes DC activation.

DCs recognize these damage-associated molecular patterns

(DAMPs), mature and migrate to draining lymph nodes.

There, DCs present tumor antigens to CD8+ T cells through

HLA-I, initiating the anti-tumor response. These tumor-

infiltrating DC (cDC1, cDC2, pDC, mregDC, MoDCs) states

are conserved across solid human cancer types (7).

cDC1
cDC1 are CD8a+ and/or CD103+ in mice and CD141+ in

humans (3). CLEC9A, CADM1 and XCR1 are additional though

not exclusive markers. cDC1s are able to present tumor antigens

to CD8+ T cells and to promote Th1 cell polarization of CD4+ T

cells (8–12). It has been shown that basic leucine zipper

transcription factor ATF-like 3 (BATF3) positive cDC1s are

key factors for tumor rejection (10, 13). This is also the case for

XCR1 positive DCs in mice models (14). cDC1s secrete CXCL9

and CXCL10 which facilitate the recruitment of CD8+ T cells

into the TME (15). cDC1s in tumor-draining lymph nodes also

maintain a reservoir of proliferative tumor-antigen specific TCF-

1+ CD8+ T cells. In mice, cDC1s use CLEC9A (or DNGR-1, F-

actin receptor), to recognize necrotic cell antigens (16, 17),

which facilitates their uptake and processing for presentation

on MHC molecules. Finally, the TME can induce the expression

on cDC1 of a number of checkpoint inhibitors and

inflammatory modulators such as PD-L1, ICOS, TIM3, CD39,

CD137 indicating that counter-regulatory mechanisms are

upregulated, potentially compromising cDC1 function (18).

cDC2
cDC2 are CD11c low, CD11b+ in mice and CD11c+ and

CD1c+ in humans (3). They also express markers such as FcER1

and SIRP1 alpha. cDC2s stimulate CD4+ T cell responses (19,

20) including CD4+ T cell-mediated tumor immunogenicity

(20). They are also able to stimulate CD8+ T cells, although not

as efficiently as cDC1 in mice (21). The 2 main transcription

regulators of cDC2 are T-bet and RORgt (22). A study using

colon carcinoma, fibrosarcoma and melanoma cell lines injected

in mice showed that type 1 IFN activates cDC2 to enhance CD8+

T cells anti-tumor immunogenicity (23). In human head and

neck cancer, the presence of cDC2 may be a biomarker for

survival and response to immune checkpoint blockade (ICB)

(24). Moreover, the authors showed that Treg depletion relieves

cDC2 suppression driving antitumor CD4+ T differentiation.

However, there are some immune escape strategies developed by
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tumors to limit cDC2 anti-tumor activity. For example, it has

been shown that CD47 expression on tumors limits tumor DNA

detection by SIRPa on cDC2s (25).

pDCs
Plasmacytoid DCs (pDCs) are B220+ in mice and CD45RA+,

CD123+ in humans andCD11c low (3). Themain function of pDC

is to secrete large quantities of type 1 IFNs, traditionally triggered by

viral infection (5). However, the functions of pDC in the TME are

still controversial as towhether theyare tumor-promotingor tumor-

suppressive. The analysis of TCGA data of triple negative breast

cancer showed that a higher pDC gene signature is a favorable

prognostic factor and is associated with IFN-g signaling, CD8+ and

CD4+ memory T cell infiltration and cytolytic activity (26). pDCs

also enhance tumor antigen-specific T cell cross-priming in a NK

cell dependent manner (27). On the contrary, several

immunosuppressive roles of pDCs were also reported. Although

pDCs promote antitumor immunity through type I IFN secretion,

they can be inhibited by immunosuppressive factors such as TGFB,

IL-10 and PGE2 in the TME (28). They also favor the expansion of

Treg cells through ICOSL, which promotes tolerance and correlates

with a poor patient prognosis (29). pDCs are also able toup-regulate

the expression of indoleamine 2,3 dioxygenase (IDO), which is

essential for the induction of regulatory T cells (Tregs) (27). In the

TCGA data, recurrence following surgery in localized ccRCC was

also associated with higher pDC and Treg infiltration (30).

mregDCs
Recently, it has been shown that a conserved dendritic-cell

regulatory program limits antitumor immunity (31). Interrogation

of the TME by several investigators has shown that mature DCs

enriched in immunoregulatory molecules (referred to as mregDCs),

express immunoregulatory genes (CD274, Pdcd1lg2, IL-4R and

CD200) and maturation genes (CD40, CCR7). The mregDC

program is expressed by cDC1s and cDC2s upon uptake of tumor

antigens and suppresses anti-tumor activity in human and mouse

cancers. mregDCs upregulate PD-L1, the IL-4R and down regulate

IL-12. Following IL-4 blockade, the IL-12 production by tumor-

antigen-bearing mregDC1s increased, favoring the expansion of

tumor-infiltrating T cells and reduced tumor burden (31).

These DCs have also been referred to as DC3, although we

prefer the term mregDCs as others have indicated that DC3

should refer to another subset of DC-like cells. These DC3-like

cells are proinflammatory in nature and can express CD14 and

CD163, produce ROS and NOS, and may play a role in Th17

induction (32–34).
DC and T cell activation

Because CD8+ T cells are often the main effectors of anti-

tumor immunity, promoting cross-presentation of TAAs to
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these cells by DCs is considered one of their most important

functions. Cross-presentation of tumor associated antigens by

BATF3-dependent cDC1s resulted in stronger and more

effective CD8+ T cell immunity (11). WDFY4, a BEACH-

domain containing protein, is also required for cross-

presentation in response to tumor antigens (35). CD103+

cDC1s are recruited to the tumor site by chemokines such as

CCL4 and CCL5 secreted by tumor cells. Intra-tumoral NK cells

also recruit cDC1 by secreting CCL5 and XCL1, and by

production of FLT3L (36).

cDC1s takeupdying tumor cells andundergomaturationupon

the release of DAMPs through TLRs and STING-cGAS pathways.

While DCs can take up both apoptotic cells and necrotic cells, the

latter lead to fruitful cross presentation and stimulation of T cells.

Mature DCs expressed CCR7, which is necessary for themigration

of tumor-infiltratingDCs into TDLNswhere they process and load

cancer antigens ontoHLA-I and HLA-II for presentation to CD8+

T cells and CD4+ T cells, respectively (37). They also express co-

stimulatory molecules. DC-expressed CD80 and CD86 control the

activation or suppression of T cells through interaction with CD28

or CTLA4, respectively. Naive CD4 T cells are primed first and in

turn license cDC1s to prime CD8+ T cells through CD40–CD40L

signaling. In vitroDCstimulationwith IL-1, IL-6, TNFa, IFNa and

CD40 ligand can be used to license DC through increased

expression of maturation markers and IL-12 production (38).

DCs can also produce chemokines in the TME that attract T

cells. CD103+ tumor-infiltrating cDC1s are the main producers

of CXCL9 and CXCL10 in the TME via the STING pathway,

which in turn promotes the recruitment of CD8+ T cells into the

TME (15). cDC1s also support T cell reactivation in the TME

and may maintain stem-like CD8+ T cells (39).

The effector activity of T cells depends on DC-derived

cytokines, including IL-12. In humans, both CD141+ cDC1s

and CD1c+ cDC2s can produce IL-12 upon sensing IFNg
released from T cells and TLR stimulation, but IL-12 levels

within human cancers are also associated with increased cDC1

infiltration (40, 41). pDC can also provide bystander activation

in a TNFa- and IFNa-dependent way (42). Indeed, HIV-1-

activated pDCs produced IFN-a and TNFa, migrated in

response to CCL19 and matured CD11c+ DCs, which are not

directly activated by HIV (42).

In summary, DCs play a central role in antitumor immunity

by conditioning the TME with soluble factors, as well as

attracting and mediating priming of antitumor T cells. DCs

are recruited into the TME by chemokines produced by NK cells,

and this cross-talk is important for DC activation.
Modulation of DC function in the
tumor microenvironment

Recently, a number of studies demonstrated that the lack of

spontaneous immune infiltration in solid melanoma tumors was
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associated with a lack of Batf3-lineage DCs using transcriptomic

approaches (8, 43–46). Furthermore, failure of DC infiltration

and DC impairment in the TME are key mechanisms leading to

tumor immune escape for different cancers (Figure 2).
DC regulatory programs suppressing
anti-cancer immunity

Immunosuppressive mediators
There are several pathways in the TME that adversely alter

DC functions (47). Many mediators released by tumor or

stromal cells have been implicated. For example, necrotic

tumor cells release PGE2 that suppresses the DAMP-mediated

stimulation of macrophages and DCs (48). Vascular Endothelial

Growth Factor (VEGF) can also inhibit the functional

maturation of DCs (49, 50). The TME production of

transforming growth factor-b (TGFb) and IL-10 block DC

maturation through upregulation of the Inhibitor of

Differentiation 1 (Id1) (51, 52). IL-6, a pro-inflammatory

cytokine also produced by cancer cells, can inhibit DC

differentiation through activation of the STAT3 pathway (53).

The tumor microenvironment’s metabolic composition is also

known to affect DC function. Lipid peroxide byproducts

promote endoplasmic reticulum stress (ER stress) in DCs,

leading to lipid accumulation in DCs (54). Lipid-accumulating

DCs have reduced T cell activation and cross-presentation (55).

In mouse models, oxidized lipids limit cross-presentation by

sequestering the HSP70 chaperone protein and reducing MHC

I–peptide translocation to the cell surface (56). Additionally, the

presence of reactive oxygen species (ROS) in the TME limits DC

tumor-antigen presentation (47). The ER stress sensor IRE1a
can also be engaged by antigen-derived hydrophobic peptides

without ER stress. IRE1a activation depletes MHC-I heavy-

chain mRNAs through regulated IRE1a-dependent decay

(RIDD), limiting cross-presentation. In a tumor mouse model,

IRE1a disruption increased MHC-I expression on tumor-

infiltrating DCs and enhanced recruitment of CD8+ T cells

(57). Tumor cells also produce lactate that inhibits DC

differentiation and activation (58). The transcription factors

regulating DC adaptation to hypoxia are the hypoxia-inducible

factors HIF1 and HIF2 (59). HIF1a enhanced DCmigration and

IL-22 production under hypoxic conditions (60) but limited

precursor differentiation into pDCs (61). Hypoxia also

downregulates the type I IFN pathway by repressing

transcription and lower chromatin accessibility of STAT1 and

IRF3 motifs in a HIF1/2a-independent manner (62).

Dead cells and TME constituents as DC
mediators

DCs phagocytose both necrotic and apoptotic dying tumor

cells (63). Necrotic tumor cells activate DC release of DAMPs,

whereas apoptotic tumor cells can promote DC immune
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tolerance through different mechanisms. In cancer-free

conditions, TAM family (TYRO3, AXL, MER) receptor

tyrosine kinases mediate uptake and clearance of apoptotic

cells and dampen inflammation, favoring homeostatic wound

healing. However, the expression of these molecules on cells in

the TME can lead to DC immune tolerance (64). For example,

apoptotic cell uptake by cDCs leads to mregDC induction

through AXL upregulation, accompanied by IL-4/13 signaling

that negatively regulates IL-12 production in cDC1s, leading to

immune suppression (31).

TME constituents also play a role. For example, Versican

proteolysis into Versikine, degradation of IFN receptor and

TLR2 activation by MMP-2 regulates DC differentiation and

modulates T cell helper profiles toward a TH2 phenotype (65–

67). Versikine also enhances the generation of CD103+CD11c

+MHCII+ cDCs from Flt3L-mobilized primary bone marrow-

derived progenitors, suggesting that Versican proteolysis may

promote differentiation of tumor-seeding DC precursors toward

IRF8- and BATF3-expressing cDCs in a mouse model (67).
Treg generation
A key point seems to be the ability of DC to contribute to the

expansion and differentiation of Treg cells which limits other

immune T cell activity (68). It has been shown that migratory

DCs can enhance Treg generation in vivo, which in turn

improves the outcome of experimental autoimmune

encephalomyelitis in mice (69). This can be potentially done

via several mechanisms, including PD-L1/PD-1, ICOS-L/ICOS,

CD80 and CD86/CTLA-4 interactions, production of anti-
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inflammatory cytokines (IL-10, TGFb, IL-27, IL-35), or

expression of ILT3 and ILT4 (70, 71).

IDO expression
DC can express the metabolic enzyme iIDO1, especially

after IFNa,b,g exposure. This expression limits the activity of

CD8+ T, NK and plasma cells and contributes to the

differentiation of Treg cells through conversion of l-

Tryptophan, which is an essential amino acid for T cell

responses, to l-kynurenine (72). IDO1 can be stimulated by

TLR signaling (71). Type 1,2 IFN, tumor necrosis factor (TNF)

and TGF-b-signaling also enhance IDO1 expression (73–75).

Both cDC and pDC may display this property. IDO1 is

expressed in mature cDC1 but not in cDC2, but IDO1

competent cDC1 can induce regulatory cDC2 through

tryptophan metabolism (76).

b-catenin signaling
Up-regulation of b-catenin signaling leads to a reduction of

CCL4 secretion from tumor and this prevents DC recruitment

into the murine melanoma TME (44). b-catenin expression was

negatively associated with DC and cytotoxic T cell infiltration

into the TME and associated with a poor prognosis. This was

also validated in melanoma patients (77).

PGE2 production
In melanoma, another mechanism involves the production

of PGE2 by tumor cells. PGE2 inhibits NK and DC recruitment

into the TME (78, 79). Tumor production of PGE2 leads to
FIGURE 2

DC pathway impairment in the TME. Tumor cells inhibit DC activation and maturation through b-catenin and ROS production, soluble factor
secretion (VEGF, TGFb, IL-10, PGE2), and induction of immune checkpoint expression (PD-L1). Tumors with low neoantigen expression do not
efficiently prime DCs, avoiding T cell activation. Activation of the mregDC program and additional immune checkpoint expression on DCs (e.g.
TIM3) in tumors also limits T cell activation. Finally, immunomodulatory molecules secreted by tumors or expressed by DCs stimulate Treg cells,
leading to tumor immune escape.
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evasion of the NK-cDC1 axis by 2 mechanisms. First, by

impairing NK viability and chemokine production, and

secondly by causing downregulation of chemokine receptor

expression in cDC1 (79). Also, PGE2-EP2/EP4 signaling

promotes inflammation by inducing expression of the NF-kB
genes in myeloid cells and elicits immunosuppression by driving

the mregDC-Treg axis for Treg recruitment and activation in the

tumor (80).

Checkpoint molecule expression
Immune checkpoints are expressed on DC are also involved

in DC impairment mechanisms (14). For example, tumor-

infiltrating DCs suppress nucleic acid-mediated innate

immune responses through interactions between T cell

immunoglobulin mucin receptor 3 (TIM3) and the alarmin

HMGB1 (81). The alarmin, which is released by dying tumor

cells complexed to DNA, can bind to TLRs to otherwise activate

DCs, an activity that is inhibited by TIM3. Moreover,

programmed cell death ligand 1 (PD-L1) on DCs and TME

cells inhibits proliferation and cytokine production by

programmed cell death 1 (PD-1) positive T cells (82, 83).

Hematopoietic progenitor kinase 1 (HPK1) is a negative

regulator of dendritic cell activation (84), and is considered to

be a drug target (85). HPK-1 first came to attention as a negative

regulator of T cell function, namely the signaling downstream of

the TCR through the AP-1, NFAT, and NFkB pathways, and

reduces the expression of costimulatory molecules CD80, CD86,

I-Ab and proinflammatory cytokines IL-12, IL-1b, TNF-a, and
IL-6 on DCs required for effective anti-tumor immunity (84–

86). cDC1s also express other checkpoint molecules and T cell

agonists including LAG3, CD200A and GITR, ICOS(L), LAG3,

OX40L, respectively, in addition to the immunomodulatory

molecules BTLA, TLR10 and CD39 (18).
Inhibition of DC function in the TME:
Effects on tumor immunogenicity

Tumor cells modulate DC function in several ways as

discussed above. It is also important to understand how the

mechanisms of DC suppression differ according to the immune

profile of the TME in order to develop more targeted therapies.

Immunogenic tumors are often characterized by high mutation

burden and this can be associated with enhanced infiltration by

T cells, DC, M1 macrophage polarization and increased

expression of other immune-associated genes (87).

Although an immunogenic TME is elicited by DC and in

turn positively impacts DC function, DC function can be

potentially affected through adaptive resistance mechanisms.

For example, microsatellite instability-high (MSI-H) tumors

which include colorectal, gastric and endometrial cancers, are

characterized by loss-of-function mutations in one allele of the
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genes for MLH1, MSH2, PMS2, MLH6, and EPCAM (88). In

sporadic and inherited cancers (e.g. Lynch syndrome, LS) there

are loss of function mutations or hypermethylation of genes

expressing MLH1, MSH2, MSH6, PMS2 and EPCA (84, 85).

This leads to a higher frequency of insertion and deletion events

that take place in microsatellite regions of the genome, which

accompany oncogenic driver mutations (89). Unstable DNA

intermediates lead to STING activation and the production of

type I IFNs that promote immunity (90). It has been shown that

DC infiltration in colorectal cancer (CRC) correlated with other

tumor-infiltrating CD4+ and CD8+ T cells (91) and that LS

patients had elevated mucosal T-cell infiltration even in the

absence of cancer (92). However, advanced CRC can become

resistant to ICI, and can be characterized by lower levels of CD83

+ DC infiltration in the colon tumor stroma (93). Moreover, the

frequency of distant metastases was higher in patients who had

lower DC numbers. These patients also had a shorter overall

survival. Thus, DC infiltration may be essential for T cell

priming and infiltration and consequential for MSI-H

tumor regression.

High numbers of tumor-infiltrating Foxp3-positive Treg

cells were also detected in MSI_H tumors that also showed a

low proportion of mature DC (94). The correlation of Foxp3-

positive Treg cell density with low levels of mature DC suggested

that impaired DC maturation may contribute to immune escape

in CRC. Another study in CRC patients showed that polyclonal

Treg expansion limited DC function and anti-tumor immunity

(95). Immune-checkpoint molecules may also be involved in DC

regulation. The number of PD-L1 positive DCs in the TME

correlated with CD8 infiltration in CRC (96). Indeed, PD-L1

expression on DC is upregulated by inflammatory cytokines

which are rich in immunogenic TMEs (97). PD-L1 may also

participate in the suppression of DC-mediated T cell activation.

Interestingly, oncogenic signaling also impairs DCs in the TME

with high neoantigen loads. In non-small cell lung cancers

(NSCLC) with high neoantigen load, b-catenin expression was

associated with low levels of CCL4 in the TME, resulting in

reduced DC infiltration into the tumor (98, 99). Moreover, in

melanoma animal models, this reduction in CCL4 impairs DC

recruitment and resulting anti-tumor immunity (44). In MSS

CRC, which has a much less inflammatory TME than MSI-H

CRC, it was reported that the tumors can express neoantigens

with high predicted HLA-I affinity, but these were broadly

expressed at lower levels compared to those from MSI-H CRC.

MSS primary CRC have a paucity of dendritic cells which

potentially limits cross-presentation and thus may contribute

to the T cell dysfunction observed (100). Additionally, in

mismatch repair-proficient colorectal cancer liver metastases, a

paucity of DC (and of activated T cells) limited immune

checkpoint blockade efficacy (101). Dendritic cell mobilization

and recruitment and stimulation by Flt3L, IFNa and/or local

radiation therapy improved ICB efficacy in a mouse model (101).
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Overcoming strategies to tackle DC
impairments in the TME

DC recruitment/impairment of function in the TME seem to

be key issues favoring the tumor immune escape. Thus, it is of

interest to develop therapeutic strategies to tackle tumor-

induced DC dysfunction or a paucity of tumor infiltrating DCs

(102) (Figure 3, Table 1).
Targeting immune tolerance pathways in
DCs

CD40 ligation
Leveraging approaches to overcome DC dysfunction,

ineffective maturation and failure of recruitment are designed

to reverse “tolerance” in tumor associated DC. For example,

single-cell analysis in a CRC study highlighted that treatment

with anti-CD40 activated DCs and increased CD8+ memory T

cells (103). Anti-CD40 agonistic antibody has also been used in

pancreatic cancer with or without chemotherapy and anti-PD-1

antibody or in neoadjuvant settings (104, 105). These agents

were tolerable and led to DC maturation and T cell infiltration in

the tumor microenvironment.

PD-1/PD-L1 blockade
Systemic PD-1/PD-L1 blockade improves the interactions

between not only T cells and tumors.
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The efficacy of anti-PD-1/PD-L1 antibodies has been

demonstrated in many types of cancer, including MSI-H cancer

(83, 106, 107). These treatments also positively affect DC-mediated

anti-tumor immunity. It has been shown that PD-1 and PD-L1

expression onDCs suppresses CD8+T cell function and antitumor

immunity, indicating that these checkpoint molecules impact DC

function (83, 108, 109). cDC1 upregulate PD-L1 upon antigen

uptake following IFN-g stimulation (83).Deletion of PD-L1 inDCs

limited tumor growth and increased antitumor CD8+ T-cell

responses, emphasizing the importance of DCs in the regulation

of T cell immunity in cancer (108). PD-1 is also expressed on DC

subsets. PD-1-deficient DCs secretemore IL-2 and IFN-g and have
a superior ability to stimulate antigen-specific CD8+ T cells (109).

In 2022, FDA approved anti-PD-1/PD-L1 antibody treatments in

22 cancers with or without other checkpoint inhibitors, small

molecule-targeted therapies, chemotherapy and so on. Recently,

the FDA approved the first combination therapy targeting LAG-3

and PD-1 for melanoma (110). LAG-3 is also involved in DC

immune suppression. LAG-3 deficiency has led to increased TNFa
secretion and upregulation of glycolysis in murine bone marrow

derived DC (111).

TIM3 blockade
T cell immunoglobulin and mucin-containing molecule 3

(TIM3) is an immune checkpoint expressed on IFNg producing
T cells (112). Using single-cell RNA sequencing, it was shown

that loss of TIM3 on DCs promotes anti-tumor immunity

through increasing the accumulation of ROS, leading to
FIGURE 3

DC targeting strategies for cancer immunotherapy. Strategies to overcome DC impairment and recruitment in the TME include
immunotherapeutic agents (DC checkpoint inhibitors, DC recruiting cytokines and mobilizing agents), conventional therapies (radiotherapy,
chemotherapy, TKIs, Wnt, B-catenin and inflammasome inhibitors), and cancer vaccines (mRNA, DNA, peptide and DC vaccines).
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inflammasome activation (113). These results were confirmed by

other studies in mouse models showing that TIM3 on DCs

downregulates the cGAS-STING pathway by suppressing

extracellular DNA uptake (114). Finally, TIM3 regulated cDC1

function and response to chemotherapy in breast cancer in a

mouse model (115). Several Phase I studies using a combination

of TIM3 and PD-1/PD-L1 antibodies have been conducted with

promising results but these will require confirmation in larger

studies (116–118).

Targeting apoptotic and mregDC tolerance
programs

The recent discovery of the mregDC program revealed cDC1

and cDC2potential impairmentmechanisms in human andmouse

cancers (31). Blocking IL-4 enhanced IL-12 production by tumor

mregDC1s and expanded the pool of tumor-infiltrating T cells.
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Importantly, it also reduced the tumor burden. IL-4, but also the IL-

13 pathways, were previously shown to promote tumor growth

(119). Thus, targeting these pathways is of interest to overcomeDC

impairment in cancer. An anti-IL-4/IL-13 antibody is approved for

severe asthma (120). This antibody is being tested in combination

with an anti-PD-1 antibody in lung cancer (NCT05013450).

Apoptotic cell uptake by cDCs may also lead to mregDC

induction through AXL upregulation. Small molecule kinase

inhibitors of apoptotic cell capturing molecules of the TAM

family are being evaluated in the clinic, with evidence of

efficacy (121).

Targeting soluble factors (VEGF, PGE2 and
other cytokines/mediators)

DC can be targeted via inhibitors of soluble factors that

down-modulate DC function. It has been shown that the VEGF
TABLE 1 Overcoming strategies to tackle DC impairments in the TME.

Targets of therapy Mechanisms Examples of treatment modalities

Targeting DC immune
Tolerance mechanisms in the
TME

Upregulation of
immune-checkpoint molecules

PD-1/PD-L1 blockade

TIM-3 blockade (activates inflammasome on DC)

LAG-3 blockade

Dead cell mediated immune
tolerance program

Anti-IL4/13 antibody (mreg DC)
TAM (TYRO3, AXL, MER) family inhibitors

IDO1 expression IDO1 inhibitor

IDO1/PD-L1 Immunomodulatory vaccine

Inhibiting
immunomodulatory
small molecules

VEGF/VEGFR Anti-VEGF/VEGFR antibody
Multi-kinase inhibitor (cabozantinib etc.)

PGE2 PGE2 inhibitor

Other cytokines Anti-IL-1b antibody or anti-IL-6 antibody etc.

Overcoming DC suppression
by cancer cells

Accumulation of Treg cells Anti-CTLA-4 antibody, anti-VEGFR2 antibody

Treg targeting drugs:
- chemokine receptors (CCR4 or CCR8)
- immune-checkpoint and T cell agonists (OX40, GITR, ICOS)
- immunosuppressive molecules (CD39, PI3Kd etc.)

Upregulation of Wnt/b-catenin signaling in
cancer cells

m-TOR inihibitor/multi-kinase inhibitor

Selective Wnt/b-catenin inhibitor

Inactivation of dendritic cells in low
immunogenic tumor

Immunogenic cell death inducers
(chemotherapy or radiotherapy etc.)

Adjuvants (TLR agonist etc.)
DC-mobilizing agents (FLT3L etc.)
DC-specific antibodies inducing maturation or antigen uptake (CD40 agonistic
antibody, Clec9A etc.)

Expected novel DC-targeted strategies

Cancer vaccine DC targeting vaccines Personalized neoantigen peptide with adjuvant

Delivery with DC-specific antibody (DEC-205, CLEC9A)

Delivery with DC mobilizing agents (Flt3L etc.)

Delivery route
(e.g. in situ vaccination, intravenous nanoparticle vaccine)

mRNA, DNA, viral based vaccines

DC vaccine moDC or natural DC subset (e.g. cDC1)

TAA, neoantigen or whole tumor lysate loading

Delivery route e.g. IV or intratumoral DC vaccination

Gene-modified DC
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inhibits the functional maturation of DCs (49) including VEGF

produced by human breast and colon adenocarcinoma cell lines

(50). Anti-VEGFR antibodies reduce Treg activation in the

TME, which may further promote DC activation (122). Even if

these approaches are not novel, they have been clinically tested

in cancers such as lung cancer (123). However, the overall

complementary effect of angiogenesis inhibitors with immune

checkpoint inhibitors is not seemingly significant, and further

biomarker exploration is expected to identify candidates that

may be more responsive. In RCC, ICI showed promising results

(124), and Cabozantinib, a potent inhibitor of VEGF, AXL and

MET receptors, has also been approved for first line use with

Nivolumab in patients with advanced RCC (125). There is also

an ongoing clinical trial involving the inhibition of PD-1 and

VEGF in microsatellite-stable endometrial cancer (126). PGE2

inhibitors, such as celecoxib, are currently under development in

pre-clinical models (127–129). Inhibition of several tumor

immunosuppressive cytokines blocking the inflammasome

pathway are also in the clinic or under development, such as

anti-IL-1bR, anti-IL-1, IRAK4 (130, 131) and IL-6

inhibitors (132).

IDO1 inhibition
IDO1 (Indoleamine-pyrrole 2,3-dioxygenase) is one of the

enzymes that catalyzes L-tryptophan to N-formylkynurenine. It

is also expressed by DCs and regulated by IFNs(a,b,g) (72).

Importantly, kynurenine production is toxic for CD8+ T, NK

and plasma cells but favors Treg cell differentiation. IDO1

inhibitors were tested in several clinical trials for cancer

immunotherapy (133, 134). However, they did not improve

progression-free survival or overall survival. Recently, the

results of a combination study using an immunomodulatory

vaccine against IDO1/PD-L1 with an anti-PD-1 antibody

(nivolumab) showed promising results with an 80% response

rate including 43% complete responses in patients with

metastatic melanoma (135). After a follow-up of 23 months,

the median progression-free survival was 26 months, even if the

median overall survival was not reached. CD4+ and CD8+ T

cells with activity against IDO1+ and PD-L1+ cancer and

immune ce l l s were detec ted in the blood of the

vaccinated patients.
Increasing DC activation to counter
tumor immunomodulation

Tregs have DC inhibition properties and accumulate in

highly immunogenic tumors, through chemokines such as

CCL17/22 (136). In a mouse model, it was shown that Treg

depletion relieves cDC2 suppression thereby driving antitumor

CD4+ T differentiation (18). Anti-CTLA4 antibodies cause Treg

depletion effects in mouse models (137, 138), but not in humans.

Other therapies targeting chemokine receptors on Tregs, such as
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CC Chemokine Receptor 4 (CCR4), which is expressed on Tregs

(and Th2 cells) are under evaluation e.g. mogamulizumab (139).

Several other Treg-targeted therapies are in development,

including metabolic adaptation targeted therapies (136).

Another strategy has been to inhibit the b-catenin pathway to

increase DC migration to the TME through upregulation of

CCL4 secretion, directly (140) or with mTOR inhibitors and

tyrosine kinase inhibitors (TKIs) (sorafenib, sunitinib) (3).

Temsirolimus is a mTOR inhibitor that enhances the efficacy

of DC vaccination (141).

Induction of activated mature DCs is important in “COLD”

or poorly immunogenic tumors with low mutational or neo-

antigen expression. To engage DCs, tumor cell death induced by

chemotherapy and radiotherapy have been deployed (142). DCs

are activated through DAMPs, such as HMGB1 or ATP, released

as a result and by other immunogenic cell death inducers such as

oncolytic virotherapy and photodynamic therapy. In several

cancers, combination therapy using ICB and chemotherapy

have had good responses even for cancers with low PD-L1

expression (143). Many studies have been conducted in lung

cancer in this regard, showing that the addition of local radiation

to ICI therapy improved response (144). Maintenance therapy

with anti-PD-L1 antibody after chemoradiation therapy has also

been successful (145).

Adjuvants that stimulate DCs, such as TLR agonists, is

another approach to activate tumor associated DC. TLR3

agonis t s target ing CD141+ cDC1 are par t icu lar ly

representative (146). CD40 agonists that promote DC

maturation are also in clinical development (147) (see

Figure 3). Recently, a phase II trial (NCT02129075) showed

that fms-like tyrosine kinase 3 (Flt3) ligand pre-treatment

enhanced responses to dendritic cell (DC)-targeting vaccines

in melanoma patients (148). Tumors are also known to create

an immunosuppressive environment by controlling the

metabolic conditions. Metabolomics modulation may be

combined with other strategies to better tackle DC

impairment in cancer (149).
Novel DC-targeted strategies

Cancer vaccine and cell therapy
Recently, technological advances have led to the

development of vaccines targeting personalized neoantigens

(150). In addition to simple antigen based vaccine injections,

therapies that aim to increase the efficiency of antigen-specific

immune induction and reduce adverse reactions are also being

developed (151). Targeting delivery of antigens and adjuvants to

DCs using DC-specific antibodies can increase the efficacy of

vaccination. Anti-DEC-205 antibodies or anti-CLEC9A

antibodies display enhanced cross-priming activity when

conjugated with antigen (39, 152), and the former has been

successfully tested in the clinic showing induction of anti-TAA
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immunity (148, 153). It is also possible to target XCR1 at the

surface of human cDC1 to specifically induce CD8+ T cell

responses (154). The addition of DC-mobilizing agents, such

as Flt3 to these treatments enhance vaccine efficacy in humans

(155). Combination adjuvants including poly-ICLC that target

DC in vivo also improve vaccine efficacy (148). The route of

vaccination may further enhance vaccine efficacy. In situ

vaccination in non-Hodgkin lymphoma patients combining

FLt3L, polyICLC in addition to radiation, enhanced the

efficacy of checkpoint blockade (156). Intravenous-self

assembling nanoparticle cancer vaccines that contain a TLR7

agonist induce a higher proportion of TCF-1+ PD-1+ stem-like

T cells as compared to subcutaneous immunization. However,

subcutaneous vaccines generate more T cells enriched in effector

genes (151). mRNA-based vaccines and methods to deliver

mRNA into DCs are also under development and have been

used in neoantigen vaccine trials and are being evaluated in

phase II and III trials (NCT03815058, NCT03897881 and so on)

(157). mRNA-based vaccines have several advantages, such as

the high potential for rapid development, low-cost manufacture,

DC activating potential and safe administration (2). These

vaccines which have incorporated personalized neoantigens,

may potentially prolong time to recurrence. Incorporating

shared neoantigens into such types of platforms e.g. tumor-

specific antigens derived from shared frameshift mutations in

MSI-H cancer and Lynch syndrome patients, may be sounds

approaches to develop common “off-the-shelf” cancer

preventable vaccines for patients with MSI-H cancers or Lynch

syndrome (158).

DC vaccines to treat cancer have been evaluated in hundreds

of trials (88, 159, 160). Only one DC-based vaccine has been

approved for castrate-resistant prostate cancer, although modest

in its effect in castrate resistant prostate cancer (161). DC

vaccines have so far mainly used moDC differentiated from

CD14+ monocytes and CD34+ progenitors in vitro, and a

variety of antigens. Neoantigen-loaded moDCs have proven to

be immunogenic in melanoma patients inducing CD8+ T cells

(161). Whole tumor lysate-loaded DC vaccines also enhance

antigen-specific immune responses and induce anti-cancer

effects in several cancers including renal cell carcinoma,

melanoma and glioblastoma (162). Gene-modified or

metabolically labeled DC vaccines can increase chemokines or

cytokines in the TME and increase the efficiency of antigen-

specific T cell induction (163, 164). DC vaccines could also be

used in combination with other modalities, such as

chemotherapeutic agents. Indeed, these agents stimulate and

activate DCs to promote immunity against human CRC cells

through upregulation of the transporter associated with antigen

processing (165). Intratumoral DC vaccination has also been

evaluated (166). Naturally occurring DCs in vivo, such as cDC1,

are more capable of inducing antigen-specific immunity than

moDCs (4, 167). Indeed, the loss of cDC1 prevents effective anti-
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tumor immunity which can be restored upon cDC1 intratumoral

injection (168).

As there are only 0.02% cDC1s in the blood, there is a need

to generate these DCs in vitro to test their functionality in vivo.

Recently, protocols to do so have been designed and we await the

application of this approach to the clinic (169). Clinical

application of CAR-T cells is progressing, especially in

hematologic malignancies. However, tumor antigen

heterogeneity remains a challenge limiting their efficacy

against solid cancers. To address this, T cells were engineered

to secrete the DC growth factor Flt3L. Flt3L-secreting T cells

expanded intratumoral cDC1s and increased host DC and T cell

activation when combined with immune agonists poly (I:C) and

agonistic anti-4-1BB, leading to enhanced tumor growth

inhibition (170).
Conclusion and perspectives

Immunotherapies have changed the treatment and clinical

outcomes of cancer patients but immune resistance affects success

rates. It has become evident that even DCs are subject to immune

dysregulation and factor as one of the etiologies of immune

resistance. The efficacy of immune checkpoint inhibitors has

been established for “Hot” tumors, but dissecting the immune

escape mechanisms targeting DCs may make themmore effective.

There is also potential in this area to extend vaccine therapy to a

prevention approach. For “Cold” tumors, it is necessary to develop

a more comprehensive strategy, including improving DC

infiltration into the tumor site, vaccines and ACTs in addition

to conventional chemotherapy and radiotherapy. Recognizing the

immunological characteristics of individual patients and

developing a well-defined therapeutic strategy will further

personalized precision medicine. For this purpose, it will be

necessary to establish a more accurate and simple evaluation

system for enumerating DC in the TME and determining how and

when they are specifically modulated within the TME.
Author contributions

GM and KS wrote the first draft of the manuscript. NB

revised the manuscript and acknowledged the final version. All

authors contributed to manuscript revision, read, and approved

the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.980709
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mestrallet et al. 10.3389/fimmu.2022.980709
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Immunology 11
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Palmer AC, Izar B, Hwangbo H, Sorger PK. Predictable clinical benefits
without evidence of synergy in trials of combination therapies with immune-
checkpoint inhibitors. Clin Cancer Res (2022) 28:368–77. doi: 10.1158/1078-
0432.CCR-21-2275

2. Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M,
et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma.
Nature (2020) 585:107–12. doi: 10.1038/s41586-020-2537-9

3. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D.
Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol
(2020) 20:7–24. doi: 10.1038/s41577-019-0210-z

4. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage:
ontogeny and function of dendritic cells and their subsets in the steady state and
the inflamed setting. Annu Rev Immunol (2013) 31:563–604. doi: 10.1146/annurev-
immunol-020711-074950

5. Mildner A, Jung S. Development and function of dendritic cell subsets.
Immunity (2014) 40:642–56. doi: 10.1016/j.immuni.2014.04.016

6. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell
transcriptional atlas of tumor infiltrating myeloid cells. Cell (2021) 184:792–
809.e23. doi: 10.1016/j.cell.2021.01.010

7. Gerhard GM, Bill R, Messemaker M, Klein AM, Pittet MJ. Tumor-infiltrating
dendritic cell states are conserved across solid human cancers. J Exp Med (2021)
218:e20200264. doi: 10.1084/jem.20200264

8. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, et al.
Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site
enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity
(2016) 44:924–38. doi: 10.1016/j.immuni.2016.03.012

9. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al.
Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC
subset that cross-presents necrotic cell antigens. J Exp Med (2010) 207:1247–60.
doi: 10.1084/jem.20092140

10. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama
M, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in
cytotoxic T cell immunity. Science (2008) 322:1097–100. doi: 10.1126/
science.1164206

11. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al.
Dissecting the tumor myeloid compartment reveals rare activating antigen-
presenting cells critical for T cell immunity. Cancer Cell (2014) 26:638–52.
doi: 10.1016/j.ccell.2014.09.007

12. Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, et al. cDC1 prime
and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature (2020)
584:624–9. doi: 10.1038/s41586-020-2611-3

13. Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol
Immunol (2022) 19:3–13. doi: 10.1038/s41423-021-00741-5

14. Balan S, Finnigan J, Bhardwaj N. DC Strategies for eliciting mutation-
derived tumor antigen responses in patients. Cancer J Sudbury Mass (2017) 23:131–
7. doi: 10.1097/PPO.0000000000000251

15. Spranger S, Dai D, Horton B, Gajewski T. Tumor-residing Batf3 dendritic
cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer
Cell (2017) 31:711–723.e4. doi: 10.1016/j.ccell.2017.04.003

16. Sancho D, Joffre OP, Keller AM, Rogers NC, Martıńez D, Hernanz-Falcón P,
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