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Observations from numerous clinical, epidemiological and serological studies

link periodontitis with severity and progression of rheumatoid arthritis. The

strong association is observed despite totally different aetiology of these two

diseases, periodontitis being driven by dysbiotic microbial flora on the tooth

surface below the gum line, while rheumatoid arthritis being the autoimmune

disease powered by anti-citrullinated protein antibodies (ACPAs). Here we

discuss genetic and environmental risk factors underlying development of

both diseases with special emphasis on bacteria implicated in pathogenicity of

periodontitis. Individual periodontal pathogens and their virulence factors are

argued as potentially contributing to putative causative link between periodontal

infection and initiation of a chain of events leading to breakdown of

immunotolerance and development of ACPAs. In this respect peptidylarginine

deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis,

is elaborated as a potential mechanistic link between this major periodontal

pathogen and initiation of rheumatoid arthritis development.

KEYWORDS

periodontitis, rheumatoid arthritis, oral microbiome, citrullination, ACPA, autoimmune
disease, infection
Introduction

Periodontal diseases affect the gingiva, the supporting connective tissue and the

alveolar bone. They are one of the most common inflammatory disorders, affecting

nearly 30% of the population worldwide (1). Specifically, two diseases can be

distinguished: the first is gingivitis, which is inflammation of the gingiva and is limited
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to the soft-tissue compartment of the gingival epithelium and

connective tissue; the second is periodontitis (PD), defined as

inflammation of the tooth-supportive tissues, which results in

attachment loss and bone destruction. Many years of research

have identified a number of microbial aetiologies for periodontal

diseases. Socransky and Haffajee (2) summarized the hypotheses

regarding possible causes and postulated that periodontal

diseases are triggered by infection. The oral cavity is colonized

by many different microorganisms. More than 700 species of

oral bacteria have been identified in biofilms (dental plaque) (3).

Extensive analysis of dental plaques has resulted in a detailed

description of polymicrobial communities associated with

general health or periodontal disease (2, 4–10). These studies

also re-classified PD as a microbial shift disease in which a

Gram-positive microbiota shifts to a mostly Gram-negative

microbiota (11). However, the exact mechanisms underlying

changes in microbial composition remain unclear. Recent

metagenomic and mechanistic studies suggest that PD is not

caused by the presence of a few specific periodontal pathogens;

rather, it results from polymicrobial synergy and dysbiosis (12–

16). Thus, the concept of polymicrobial synergy and dysbiosis

was proposed (17). Many studies report an association between

PD and three periodontal pathogens, namely, Porphyromonas

gingivalis (P. gingivalis), Tannerella forsythia (T. forsythia) and

Treponema denticola (T. denticola) (designated as “red complex”

bacteria). Recent whole genome DNA probe studies of the oral

microbiota identified new bacterial species that correlate with

PD, namely, Aggregatibacter actinomycetemcomitans (A.

actinomycetemcomitans), Filifactor alocis (F. alocis) and other

species belonging to the genera Peptostreptococcaceae,

Desulfobulbus and Synergistetes (12, 18–20). The presence of

oral polymicrobial communities cannot stay unnoticed by the

immune system. Innate defence mechanisms regulate the

composition of the microbiome and help to maintain

periodontal health. For example, healthy periodontal tissue is

characterized by a high number of neutrophils transiting

through the junctional epithelium and expression of numerous

host innate mediators, such as defensins (BD1, BD2 and BD3),

cytokines (IL-8) and lipopolysaccharide-binding protein (LBP)

(21–23). Moreover, even though cytokines associated with tissue

damage, i.e., interleukin 1b (IL-1b), tumour necrosis factor a
(TNFa) and prostaglandin E2 (PGE2) are present in gingival

crevicular fluid (GCF) from clinically healthy sites, these levels

are lower than those in fluid from diseased sites (24, 25). Innate

immune mechanisms make a marked contribution to bone

resorption in PD. This process is controlled by the ratio of

RANKL (receptor activator of nuclear factor-kB ligand), which

induces differentiation of osteoclast precursors, to osteoprotegerin

(OPG), which is a soluble receptor for RANKL (26, 27). RANKL

expression is regulated by proinflammatory cytokines, such as

TNFa and IL-1b, thus an increase in the concentration of these

cytokines in healthy tissue can lead to bone loss (28, 29). Both,

commensal and pathogenic bacteria activate innate immune
Frontiers in Immunology 02
responses via Toll-like receptors, which are responsible for

recognition of bacterial components. This suggests that a

microbiome of appropriate composition ensures precise

equilibrium between native immune responses within healthy

tissues. Dysbiosis or a microbiome shift may disturb the balance

between expression of inflammatory and anti-inflammatory

mediators and lead to destruction of bone and tooth-supporting

tissues. Hence, PD results from the combined influence of a

dysbiotic microbiome that forms dental plaques and host

inflammatory responses that destroy the periodontium. Many

studies demonstrate a central role for P. gingivalis in pathogenesis

of PD, particularly since this bacterium can cause bone loss after

implantation into the oral cavity of animals (30–32). However,

recent studies show that the pathogen itself does not cause PD in

mice lacking commensal bacteria (15). This suggests, that the actual

role of P. gingivalis is to manipulate host responses and convert a

symbiotic community into a dysbiotic one, resulting in destructive

inflammation. It should be noted, however, that species, such as T.

forsythia,T. denticola andA.actinomycetemcomitans canmodulate

host immune responses, suggesting that they also impact on PD

(33–35).

Rheumatoid arthritis (RA) is a systemic autoimmune disease

that affects 0.5–1% of the population worldwide (36). It is

characterized by chronic inflammation of synovial joints and

bone erosion, which together result in joint destruction,

disability, susceptibility to other pathological conditions and

shorter life expectancy. The aetiology of the disease remains

unknown, but many studies suggest involvement of both, genetic

and environmental factors; indeed, genetic influences contribute

to approximately 60% of RA cases (37). Importantly, an

infectious agent in a susceptible host may be a trigger factor

for this disease (38). Rheumatoid factor (RF), an antibody

specific for the Fc fragment of IgG, is an established diagnostic

marker for RA. Thus, IgG antibodies were considered major

autoantigens in RA. However, further studies identified RF in

other autoimmune and infectious diseases, as well as in 5% of the

healthy population; in these cases, it may be a response to

polyclonal B cell activation (39). More recent studies focused

on the role of citrullinated proteins and peptides as possible

autoantigens in RA. Citrullination, also known as deimination, is

a post-translational enzymatic modification that converts a

positively charged arginine residue into a neutral citrulline

residue (Figure 1). This reaction is catalyzed by calcium ion-

dependent enzymes called peptidylarginine deiminases (PADs)

(40). The human genome encodes five members of the PAD

family (PAD1, PAD2, PAD3, PAD4 and PAD6), which differ

with respect to tissue distribution, cellular sub-localisation and

substrate specificity (41). Many studies confirmed that

citrullination is required for physiological processes, such as

citrullination of keratin and filaggrin during keratinocyte

differentiation or for citrullination of myelin basic protein,

which ensures electrical insulation of myelin sheets (42–44).

There are also strong suggestions that citrullination plays a role
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in transcriptional regulation and chromatin decondensation

during neutrophil trap formation (45). However, extensive or

inadequate deimination can lead to pathological conditions.

Replacement of arginine, which often plays a central role in

the structural and functional integrity of proteins, may alter

protein folding, thereby exposing new epitopes to the immune

system. PAD2 and PAD4 seem to play a crucial role in RA due to

their presence in the rheumatoid synovial membrane, synovial

fluid cells and synovial fluid (46–49). To date, four well

established citrullinated autoantigens have been identified, i.e.,

collagen type II, fibrinogen, vimentin and a-enolase (50–53). All
of these proteins can be found in the joints and all can form

immune complexes with antibodies, which then mediate further

inflammatory reactions.
Epidemiologic correlation between
PD and RA

A scientific concept claiming that dental sepsis can cause

systemic inflammation, including arthritis, arose in the 19th

century and was developed further in the 20th century. Despite

the fact, that in 1952 the American Medical Association

pronounced that tooth extraction was not based on scientific

evidence, and that the practice should not be considered as a

treatment approach to reduce the severity or symptoms of RA,

the method was used continuously up until the 1970s, when the

first effective RA drugs, e.g., penicillamine appeared (54–56).

Recently, links and associations between PD and RA have

been investigated intensively and many studies show a

correlation between these two diseases (57–60). The earliest

studies investigated the prevalence of RA in patients with PD.

Mercado et al. (61) showed that individuals with moderate to
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severe PD are more susceptible to RA. They examined 1412

individuals attending a dental clinic and divided them into two

groups, i.e., those with PD and a control group comprising

individuals attending the dental clinic for general treatment. The

prevalence of RA in the PD group was significantly higher than

that in the control group. Moreover, patients with RA were more

likely to have a moderate to severe form of PD than patients

without RA. However, it should be kept in mind that this study

relied on self-reported RA and used non-validated parameters to

classify PD.

Subsequent studies tried to dissect whether PD occurs more

often in patients with established RA. Most studies used criteria

for PD defined by the American Association of Periodontology

and criteria for RA defined by the American College of

Rheumatology (62). To evaluate the association between PD

and RA, several factors were analysed, namely, genetic factors,

proinflammatory factors and the presence of different oral

bacterial DNA species in periodontal pocket samples, serum

and synovial fluids from patients with RA (63). PD severity was

identified as the third most potent predictor of RA, immediately

after female gender and smoking (57). Occurrence of PD

correlated strongly with RA, hence it was proposed that both

diseases are driven by a common molecular mechanism.

PD and RA are characterized by chronic inflammation, and

TNFa is considered a major proinflammatory mediator. The

main source of TNFa in RA are joint macrophages (64). A study

by Nilsson et al. (65) shows that plasma levels of TNFa are

related to the degree of systemic inflammation and may affect

PD development in patients with RA. Patients suffering from RA

that have higher levels of circulating TNFa show worse clinical

parameters with respect to the periodontium, i.e., enhanced

bleeding on probing, lower clinical attachment level and

greater probing pocket depth. However, the association
A B

FIGURE 1

Conversion of arginine to citrulline. (A) Biochemical reaction resulting in loss of positive charge on a side chain; (B) The crystallised structure of
Porphyromonas gingivalis peptidylarginine deiminase comprises two domains; deiminase domain aa490-360 (yellow) and Ig-like fold aa361-461
(blue). The substrate in the active site was marked as red.
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between TNFa and PD is not exclusive to RA. Increased levels of

TNFa are also associated with severity of PD in patients with

diabetes type 2 (66). One problem with studies evaluating levels

of proinflammatory mediators in PD and RA is treatment of RA

symptoms during the study. In such cases, lack of higher levels of

proinflammatory mediators, such as TNFa and/or C-reactive

protein in patients suffering from both PD and RA is likely due

to pharmacologic treatment of RA (65).
“Risk factors” that link PD and RA

PD and RA are similar in several ways. Both diseases are

characterized by chronic inflammation, which leads to tissue

destruction. The aetiology of both diseases is multifactorial and

includes genetic and environmental components (Figure 2).

Although the hypothesis that bacteria are the main cause of PD

is well established, there is no direct proof that RA has a microbial

origin. By contrast, an evidence exists that autoimmunity plays a

role in PD (67). Some studies report detection of antibodies

specific for host components, such as collagen and DNA, as

well as aggregation of antibodies and increased lymphotoxicity

toward oral epithelial cells and fibroblasts (67).

The main genetic risk factor for autoimmune diseases is related

to major histocompatibility complex class II (MHC II) molecules,

certain alleles of which may strongly favour presentation of

citrullinated epitopes and promote generation of autoimmune

antibodies. The most significant alleles responsible for RA
Frontiers in Immunology 04
susceptibility are present on HLA-DR4, -DR1 and -DR10. These

genetic variants mainly affect six amino acids, namely, EQKRAA,

situated in the peptide-binding cleft of the MHC II molecule. These

alleles, collectively called “shared epitopes”, are important for RA

development (68, 69). Shared epitopes are associated mainly with

the presence of antibodies against citrullinated proteins rather than

with the disease itself (70). In particular, HLA-DR4 is associated

with rapidly progressive PD; in patients with PD, the frequency of

shared epitopes is higher than that in controls (71, 72).

In addition, genetic variants of tyrosine phosphatase

(PTPN22), which may be involved in regulating T cell and B

cell activation may contribute to a connection between PD and

RA (73, 74). Another study suggests, that PD and RA share

interferon regulatory factor 5 (IRF5) and PR domain zinc finger

protein 1 (PRDM1) as susceptibility factors (75). Also, epigenetic

alterations within the X chromosome may, at least partially,

explain the higher prevalence of RA in women with PD (76).

Smoking is considered an environmental risk factor for both

PD and RA. Epidemiological studies of large cohorts show

significant association between smoking and RA (77). Indeed,

smoking stimulates peptide citrullination by PAD2 and PAD4

(78). This finding strongly supports the concept of pathological

importance of anti-citrullinated protein antibodies (ACPAs) in

development of ACPA-positive RA, however, smoking-induced

citrullination fails to explain ACPA-negative RA. Smoking

worsens both PD and RA by promoting growth of bacteria. A

study of patients with PD where smokers were distinguished

from non-smokers showed, that smoking was associated with
FIGURE 2

Shared risk factors that contribute to development of periodontal disease (left circle, PD) and rheumatoid arthritis (right circle, RA). The top
left circle shows bacteria forming the “red complex”, namely, Porphyromonas gingivalis (red, PG), Tannerella forsythia (violet, TF) and
Treponema denticola (orange, TD) and the top right circle shows an environmental factor (smoking). Bottom three circles show the main
genetic risk factors, namely shared epitopes within the b-chain of human leukocyte antigen (HLA), tyrosine phosphatase (PTPN22) and
Interferon Regulatory Factor 5 (IRF5).
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increased load of T. forsythia, Peptostreptococcus micros (P.

micros), Fusobacterium nucleatum (F. nucleatum) and

Campylobacter rectus (C. rectus) in subgingival dental

plaque (79).

Another factor that may affect bacterial growth is infection

with Epstein-Barr virus (EBV-1) and cytomegalovirus. These

viruses promote colonization of the gingiva by P. gingivalis, A.

actinomycetemcomitans, T. forsythia, Prevotella intermedia (P.

intermedia), Prevotella nigrescens (P. nigrescens) or T. denticola

(80). PCR-based studies of gingival tissue detected EBV in 71–

89% and cytomegalovirus in 65–78% of patients with severe PD,

but in only 6% of healthy control subjects (81).
Impact of periodontal pathogens on
pathogenesis of PD and RA

Periodontal bacteria play a crucial role in progression of PD

and may be a factor linking this disease with RA. This thesis is

supported by several studies showing, that serum and synovial

fluid from RA patients contain higher levels of antibodies against

periodontal pathogens than serum from control subjects. The

detected antibodies were specific for P. gingivalis, P. intermedia,

Prevotella melaninogenica (P. melaninogenica) and T. forsythia

(82, 83). In addition to antibodies, DNA from periodontal

bacteria was detected in serum and synovial fluids from RA

patients. Martinez-Martinez et al. (84) detected periodontal

bacterial DNA in 100% of synovial fluid samples and in 83.5%

of serum samples from RA patients. The most common bacterial

DNAs in synovial fluid were derived from P. intermedia (73.6%)

and P. gingivalis (42.1%). However, synovial fluid samples from

RA patients plated on agar did not show bacterial growth, and

bacterial DNA was not detected in leukocytes. A similar result

was reported by Moen et al. (85), who reported that the most

common DNAs in synovial fluid and serum were derived from

P. intermedia, P. gingivalis and T. denticola. Interestingly, there

was no significant difference between the amount of bacterial

DNA in subgingival dental plaques, serum and synovial fluid in

cases with A. actinomycetemcomitans and P. gingivalis. By

contrast, P. intermedia, T. forsythia, P. nigrescens and T.

denticola were significantly more abundant in subgingival

dental plaques than in serum and synovial fluid. It should be

noted, that species detected in synovial fluid and serum were also

present in subgingival dental plaques. Detection of bacterial

DNA in synovial fluid suggests transport of DNA from

periodontal tissue to the joints of RA patients. The mechanism

underlying such transport is unclear, however, several

hypotheses have been proposed: (i) transport of free DNA via

the bloodstream, (ii) transport via viable non-immune cells and

(iii) intracellular capture and transport by phagocytes and other

immune cells (86). Many studies were conducted to elucidate the

mechanism(s) underlying transport of bacterial DNA. These

studies included testing lymphocytes isolated from blood for the
Frontiers in Immunology 05
presence of bacterial DNA and inoculation of synovial fluid onto

different growth media under both, aerobic and anaerobic

conditions, however, neither approach showed a positive

result, suggesting, that bacterial DNA is transported in the

blood as free DNA (84).

Another interesting study in patients with RA showed that oral

and gut microbiota are different from those in healthy control

subjects (87). The results revealed, that P. gingivalis was more

common in control saliva and in control dental plaques, and that

there was no association between this species, peptidylarginine

deiminase levels and RA. These results are in agreement with those

of other studies confirming a lack of correlation between P.

gingivalis and RA (88, 89). By contrast, anaerobic species, such

as Lactobacillus salivarius, Atopobium spp. and Cryptobacterium

curtum (C. curtum) were enriched in both salivary and dental

samples from subjects with RA, whereas aerobes, such as Neisseria

spp. and Rothia aeria were enriched in control samples.

Appropriate treatment of RA patients resulted in partial

resolution of these alterations (87). A study conducted on

periodontally healthy subjects with and without RA showed, that

Gram-negative anaerobes were significantly more abundant in RA

(90). Such a dysbiotic state could be an indication for further

development of PD. P. gingivalis and A. actinomycetemcomitans

were not dominant components of the microbiome, and there was

no significant difference in their abundance between the groups.

Therefore, it is likely, that other bacteria play a role in initiating RA,

but P. gingivalis and A. actinomycetemcomitans contribute at later

stages to maintain the disease. Interestingly, this study identified C.

curtum in the periodontal microbiome of RA patients (100-fold

greater abundance in RA, with 39-fold greater odds of detection)

(90). The fact, that C. curtum is more abundant in the oral and gut

microbiota of those with early RA does not imply an

aetiopathogenic role for C. curtum, however, this species may be

an interesting candidate for future studies. Moreover, PD is

significantly more common in RA patients compared to healthy

controls: the incidence is higher in people in the earliest stages of

the disease, which is probably related to the role of P. gingivalis in

inducing citrullination and the development of new antigens.
P. gingivalis

P. gingivalis is an obligate, anaerobic, non-motile,

asaccharolytic Gram-negative bacterium, that forms black-

pigmented colonies on blood agar plates. It is found in 85.75% of

subgingival plaque samples from patients with chronic PD (91). As

an obligate anaerobe, P. gingivalis occupies dental pockets and is

considered a secondary colonizer of dental plaques; secondary

colonizers adhere to primary colonizers, such as Streptococcus

gordonii and P. intermedia. There are invasive and non-invasive

strains of P. gingivalis. This classification is based on their ability to

form abscesses in a mouse model (91). In vitro and in vivo studies

show that invasive strains are more pathogenic than non-invasive
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strains (92, 93). P. gingivalis harbours a wide variety of virulence

factors, including fimbriae, capsules, lipopolysaccharide (LPS),

lipoteichoic acids, haemagglutinins, gingipains, outer membrane

proteins, outer membrane vesicles and peptidylarginine deiminase

(PPAD) (94, 95). Expression of virulence factors is often regulated

by changes in the external environment (96–98). Active virulence

factors are responsible formanipulationof host immune responses,

induction of host responses via cytokine production and inhibition

of host protective mechanisms via citrullination and protease

degradation, all of which lead to rapid destruction of periodontal

tissues and bone resorption (95).

P. gingivalis has a unique ability to express a special PPAD,

which is considered to be one of the virulence factors harboured

by this periodontal pathogen (99). Biochemical studies show, that

PPAD deiminates preferentially the C-terminal arginine of

peptides and proteins, and in contrast to human PADs, it is

able to citrullinate L-arginine in a calcium-independent manner

(100). P. gingivalis strains lacking PPAD or harbouring an inactive

form of this enzyme are less adherent and invade human gingival

fibroblasts less efficiently than the wild-type strain (101).

Moreover, mutant strains show an impaired ability to stimulate

PGE2-dependent signalling pathways, and these properties are

restored by addition of purified enzyme to the cell cultures. Also,

PPAD is an important factor that alters host immune responses.

For example, citrullination of LL-37 and components of the

complement system, e.g., the C5a anaphylatoxin results in loss

of function (102, 103). Moreover, in both, RA and PD, local

inflammation of the gingival mucosa or the synovial membrane of

the joint is exacerbated by the influx of inflammatory cells from

the circulation. The conditions in the gingival pockets in

combination with the biofilm, which includes P. gingivalis,

increase the production of ACPA antibodies due to the high

activity of PPAD. The above factors contribute to the stimulation

of subsequent inflammatory processes.

PPAD is not the only virulence factor of P. gingivalis that has

a possible role in initiating RA onset. Some of the most

important virulence factors harboured by P. gingivalis are

lysine/arginine-specific cysteine proteases, called gingipains.

They play a major role in both, bacterial development and

infection. They are responsible for maturation of fimbriae,

which enable bacteria to attach to and invade host cells, such

as human gingival fibroblasts and epithelial cells (104, 105). The

major component of long fimbriae is the FimA protein. A recent

study showed, that both, collagen-induced arthritis and PD in

mice infected with P. gingivalis pre-incubated with an anti-FimA

antibody were markedly less severe, suggesting that disrupting

functional fimbriae with an anti-FimA antibody may ameliorate

RA (106). As proteolytic enzymes, gingipains degrade host

extracellular matrix proteins, such as laminin, fibronectin and

collagen, as well as complement system components. Arginine-

specific gingipain cooperates with PPAD, and the cleavage of the

substrate leaves arginine as a C-terminal residue, which can then

be modified by PPAD (107). Similar to P. gingivalis, other oral
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bacteria express extracellular proteases, which may reveal new

antigens via proteolytic cleavage. The blood of individuals with

pre-RA and established RA contains higher levels of anti-RgpB

than that of healthy controls. Unlike ACPA, the level of which

increases over time, the level of anti-RgpB decreases over time

(108). In contrast, a study of a Southern European cohort

revealed no association between pre-RA and anti-RgpB (109).

However, the study did not evaluate periodontal status and anti-

P. gingivalis antibody levels.

Moreover, some reports indicate that in RA patients DNA of

P. gingivalis can be detected in the synovial fluid, and antibodies

in serum against this bacterium. Additionally, the immunologic

response against P. gingivalis is also present in people genetically

predisposed to RA development in whom serum antibodies

against citrullinated proteins and RF are detected. Importantly,

there was no evidence of an immune response in these patients

against other associated periopathogens with the infectious

etiology of chronic periodontitis. P. gingivalis, as the only

finely system, produces PPAD and the citrullination of

proteins, which may be important in the development of an

immune response against citrullinated proteins in RA patients,

thus constituting a significant risk factor for the development

of RA.

Most recently it was shown, that repeated oral infections

with P. gingivalis directly caused development of seropositive

arthritis accompanied by systemic inflammation and bone

destruction in Lewis rats. Conversely, infection with P.

intermedia resulted only in mild gingivitis but no bone erosion

(110). The observed bone erosion strongly resembled

pathological manifestation of RA in an adjuvant-induced

arthritis model in rats (111). Moreover, the bone destruction

pattern was consistent with results from human RA, which also

showed an increase of IgM, anti-IgG and anti-CCP2 levels and

their correlation with anti-P. gingivalis antibodies (83, 110).
T. denticola

T. denticola is a common oral bacterium closely associated

with both, PD and aetiology of implant-related periarthritis

(112). This Gram-negative, obligatory anaerobic bacterium

inhabits subgingival plaques. Numerous studies allowed

identification of T. denticola virulence factors, which include

leucine-rich repeat proteins, metabolic end-products, biofilm

creation, toxin-antitoxin systems, dentilisin, lipoproteins,

trypsin-like protease activity and sheath proteins (113–118).

Unlike P. gingivalis and T. forsythia, T. denticola is motile and

able to respond chemotactically to environmental changes (33).

Several studies suggest, that the presence of P. gingivalis is

required for colonization by T. denticola, however, interactions

between “red complex” bacteria are unclear (119, 120). Mouse

subcutaneous abscess models of disease have been used to

investigate T. denticola virulence factors, as well as those of
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other species from that genus (121, 122). These studies showed

that mono-infection with Treponemes may cause localised

lesions, but only co-infection with P. gingivalis and T.

denticola leads to increased tissue damage as compared with

that after mono-infection by P. gingivalis (123). Although the

relevance of these abscess models has been questioned, and more

adequate models have been developed, more recent studies

confirm these results. For instance, inoculation with the “red

bacterial complex” at a 1:1:1 ratio resulted in greater bone

resorption than mono-inoculations with the same total

number of bacterial cells (124). At the same time, co-infection

with P. gingivalis and T. denticola causes the same level of

damage as a 40-fold higher number of P. gingivalis alone

(125). These studies underline the importance of synergistic

interactions of periodontal pathogens in development and

severity of periodontal disease and probably with PD-

associated diseases, such as RA.
T. forsythia

T. forsythia is a Gram-negative, anaerobic bacterium and a

member of the “red complex”. A growing body of evidence

implicates T. forsythia in the pathogenesis of PD, however, the

species is relatively understudied due to its demanding growth

requirements and difficulties with genetic manipulations (126,

127). A number of studies demonstrated, that T. forsythia is the

first colonizer of a dental plaque, and that it may be a necessary

precursor species for P. gingivalis and T. denticola colonization.

Moreover, T. forsythia is more likely to cause PD in overweight

women than in women of normal weight (128). Recent studies

show overgrowth of T. forsythia in overweight and obese

individuals when compared with those of a normal weight

(129). A study conducted on patients with RA showed that T.

forsythia was associated with highly active RA and high salivary

ammonium levels, which may be a result of PPAD activity (130).

There are several putative virulence factors expressed by T.

forsythia, i.e., KLIKK proteases and PrtH protease, sialidases, a

leucine-rich repeat cell surface-associated and secreted protein

(BspA), a hemagglutinin, components of the bacterial S-layer

and methylglyoxal production (131). To fully understand the T.

forsythia virulence mechanisms that contribute to pathogenesis

of PD and RA, future studies should be mostly focused on

interaction between its virulence factors, other bacteria and

host responses.
A. actinomycetemcomitans

A. actinomycetemcomitans is a Gram-negative bacterium

associated with aggressive PD, chronic PD and several non-oral

infections (132). It is found in the oral cavity of more than one-

third of the population (133, 134). This species harbours a wide
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exotoxins and endotoxins, all of which vary among individual

strains (serotypes). Certain serotypes are more prevalent in

individuals suffering from aggressive PD (132). Its ability to

produce leukotoxin-A (LtxA) is considered to be the most

important virulence factor. This toxin kills white blood cells,

which results in untamed bacterial growth and potent

stimulation of the host immune response (135). LtxA from A.

actinomycetemcomitans belongs to the RTX (Repeats-in-Toxin)

family of bacterial proteins and is a pore-forming toxin. Its

expression is regulated by both, environmental and genetic

factors, however, the exact expression trigger is unknown.

Macrophages are the cells that are most sensitive to LtxA-

induced cell lysis, which leads to the release of high amounts of

IL-1b, a strong proinflammatory mediator (136, 137). It was

shown, that LtxA induces hypercitrullination in neutrophils, and

leukotoxic A. actinomycetemcomitans strains were found

associated with both, PD and RA. Despite association between

exposure to A. actinomycetemcomitans and ACPA in RA, the

presence of A. actinomycetemcomitans cannot be attributed solely

to RA (138). In a recent case study reported by Mukherjee et al.

(139), a 59-year-old man with ACPA-positive RA was diagnosed

with highly leukotoxic strain of A. actinomycetemcomitans

endocarditis. After treatment with a ceftriaxone, an antibiotic

from the beta-lactam group, previously elevated levels of ACPA

and CRP normalized, joint symptoms resolved and did not

reappear for one year after the treatment.
C. curtum

There are many other bacteria in the oral microbiota, and

these have been suggested as possible factors that contribute to

development of RA. Recently, C. curtum was identified as a

predominant component of the oral microbiota of patients with

RA (90). This species is an oral pathogen, however, its

translocation can cause several infections, including pelvic

abscesses, gynaecologic infections and wounds (140). It is a

Gram-positive, anaerobic, asaccharolytic rod, which has an

ability to produce citrulline along with ornithine and ammonia

due to arginine degradation (141). C. curtum can be found in the

oral and gut microbiota of patients with early RA (87).
F. nucleatum

F. nucleatum is a periodontal bacterium that facilitates and

promotes growth of other periodontal pathogens, thus it contributes

indirectly to RA development. This early colonizing anaerobic

bacterium belonging to the Bacteroidaceae family is a dominant

species in the periodontium (142). F. nucleatum interacts with both,

Gram-positive and Gram-negative bacteria present in dental

biofilms (143, 144). An increased number of F. nucleatum are
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found at sites of PD, however, it is not responsible directly for

periodontal tissue destruction associated with PD (145). Several

studies show that co-infection with F. nucleatum increases

attachment and invasion of human gingival epithelial cells by P.

gingivalis and A. actinomycetemcomitans (146, 147). These

phenomena are inhibited by galactose. Another example of a

synergistic interaction between F. nucleatum and P. gingivalis is

that co-infection with these two bacterial species increases alveolar

bone loss to a greater extent than infection by either bacterium

alone (14). However, interactions between bacteria are not always

synergistic. Recent study has demonstrated, that collagen-induced

arthritis in mice inoculated with a mix of P. gingivalis, F. nucleatum

and A. actinomycetemcomitans showed less alveolar bone loss

compared to mice inoculated with P. gingivalis alone. At the

same time, F. nucleatum and A. actinomycetemcomitans alone

accelerated the onset and progression of RA (148). Moreover, F.

nucleatum reacts to host immune responses in PD. Unlike other

Gram-negative bacteria, F. nucleatum is susceptible to host b-
defensins, particularly b-defensin 3 (hbD-3) and LL-37 (145).

Therefore, F. nucleatum is thought to downregulate expression of

hbD-1 and LL-37, nevertheless, hbD-2 and hbD-3 are upregulated
after epithelial exposure to this bacterium (145). Genes upregulated

by F. nucleatum include those encoding host antimicrobial peptides

and proteins, as well as chemokines (IL-8, CXCL1, 3, 5 and 10),

which attract neutrophils, monocytes, lymphocytes and

macrophages, and CSF2 and -3, which stimulate neutrophil

development (145). Additionally, F. nucleatum secretes serine

proteases, which enhance its pathogenicity. Like proteases from

other periodontal pathogens, such as P. gingivalis and T. denticola,

they are capable of degrading extracellular matrix proteins, such as

fibrinogen, fibronectin and collagen type I and IV (145, 149, 150).

Moreover, the 65 kDa protease cleaves the a-chains of

immunoglobulin A, but not immunoglobulin G, which makes it

particularly suited to the oral environment. However, it should be

noted that, in contrast to the high proteolytic activity of other

periodontal bacteria, the activity of this protease is relatively low. To

reach the same activity as the phenylalanine-specific protease of T.

denticola, the purified protease from F. nucleatum requires nearly

ten times longer incubation. This can be explained by the fact, that

F. nucleatum can be found together with microorganisms showing

strong proteolytic activity; therefore, it does not itself require a

highly active protease (145).
F. alocis

F. alocis is a very recently discovered Gram-positive anaerobic

rod, which may play a significant role in development of PD (20).

It has several unique characteristics responsible for mediating its

pathogenic activity. F. alocis is often found in patients with PD, and

in contrast to other periodontal pathogens, the species is absent

from healthy subjects (151). This suggests, that F. alocis plays an

important role in development of inflammation and is associated
Frontiers in Immunology 08
with several oral infections, for example, endodontic infections

and in peri-implantitis (152, 153). F. alocis interacts with

other microbial species present in dental biofilms, and these

interactions enhance its invasive capacity, which may result in

chronic inflammation. It has been shown, that this bacterium

accumulates preferentially at sites rich in F. nucleatum,

but cannot colonize niches occupied by Gram-positive

streptococci, e.g., Streptococcus gordonii. Interactions with A.

actinomycetemcomitans are strain-dependent, but some strains of

A. actinomycetemcomitans facilitate accumulation of F. alocis

(154). Moreover, F. alocis induces release of host

proinflammatory cytokines resulting in apoptosis of gingival

epithelial cells and most importantly, it has an ability to adhere

to and invade epithelial cells, which is enhanced in the presence of

P. gingivalis, although the exact mechanism underlying their

interaction remains unclear (155, 156). Co-culture of P. gingivalis

and F. alocis results in a significant increase in biofilm formation. It

is driven by the fact, that F. alocis shows very high resistance to

oxidative stress. Therefore, its presence increases the survival of P.

gingivalis under oxidative stress conditions (156). F. alocis also

exhibits increased activity of non-gingipain-type proteases (its

gingipain-type activity is low), that primarily recognize arginine

and lysine at a cleavage site. In silico studies of the F. alocis genome

revealed the presence of multiple genes involved in degrading

arginine to ornithine and citrulline (20). Due to the presence of

specific deiminases, F. alocis decomposes a C-terminal arginine to

ornithine and ammonia, which counteracts acidic conditions

generated by carbohydrate metabolism in biofilms (157).
P. intermedia

P. intermedia is a Gram-negative, obligate anaerobic

bacterium associated with PD (158). It is found in both,

healthy and inflamed periodontal tissue in PD patients. This

species shows high degradative enzyme activity, which also

contributes to progression of PD (159). P. intermedia

expresses nucleases that degrade neutrophil extracellular traps,

leading to release of endogenous PADs (160, 161). Although P.

intermedia’s DNA along with antibodies against this pathogen

were detected in synovial fluid from patients with RA, infection

did not exacerbate collagen-induced arthritis (82, 84, 162).

Moreover, a study on Lewis rat model has demonstrated, that

P. intermedia causes only mild gingivitis; moreover, bone

erosion was not observed and rats did not develop systemic

inflammation. However, antibodies against P. intermedia were

detected in rats serum after 1 month of exposure and their

concentration increased after 4, and 8 months, respectively

(110). A recent study identified a new citrullinated peptide of

cytokeratin 13 (CK13-1) in GCF against which RA patients

mounted an antibody response. It should be noted, that anti-

cCK13-1 antibodies, together with anti-cTNC5 (tenascin C)

antibodies are associated with the presence of P. intermedia.
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Brief summary of modulatory effects exerted by periodontal

pathogens on host immune response is presented in Figure 3.
Molecular mechanisms
linking PD and RA

Rheumatoid factors

Rheumatoid factors (RFs) are antibodies specific for the Fc

region of IgG, and comprise immunoglobulins of any type,

however, predominantly belong to the IgM class (163). RFs

were first discovered in RA patients over 70 years ago, and since

then, together with ACPA, they have been used as diagnostic and

predictive markers for RA. Although RFs are associated mainly

with RA, they are also present in those with other autoimmune

and inflammatory diseases, as well as in healthy individuals

(164). Moreover, RFs are detected in the gingiva, subgingival

plaques and serum of patients with PD, and in seropositive

patients cross-react with bacterial epitopes (165–167).

Gingipains, an important virulence factor of P. gingivalis, are

responsible for epitope exposure in the RF-Fc region. The Fc

regions of IgG molecules contain sequences of lysine and

arginine, thus gingipains play a role in IgG3 CH2 and CH3

domains processing and have a key function in RFs production
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(168). It should be also mentioned, that IgG Fc regions in RA

patients harbour significantly fewer galactose residues than those

in age-matched healthy controls, thus lack of terminal galactose

residues may play a role in more severe disease progression

(169). P. melaninogenica is a saccharolytic bacterium, that

metabolises galactose molecules, then it binds to the Fc region

of IgG antibodies and metabolises galactose residues (170). The

resulting alteration in the composition of sugar moieties affects

the activity of antibodies associated with autoimmune diseases.
Antigens and autoantibodies

Recently, autoantigens involved in RA disease pathology

have been well studied and characterized. Interests are focused

mainly on citrullinated proteins as true autoantigens in RA. It is

assumed, that inflammation and proinflammatory mediators

activate PADs in calcium-rich environments via cleavage and

activation of human proteinase-activated receptor-2 (PAR-2),

which contributes greatly to accumulation of citrullinated

proteins (171, 172). At present, there are four well established

citrullinated autoantigens, i.e., collagen type II, fibrinogen,

vimentin and a-enolase. However, Wegner et al. (39) argue,

that identification of all citrullinated proteins is necessary before

we can fully explore pathogenic mechanisms. Serum ACPAs are
FIGURE 3

Modulation of immune response by periodontal pathogens. Host immune response can be affected in several ways. Proteases (yellow icon)
secreted by Fusobacterium nucleatum (FN), Prevotella intermedia (PI), Treponema denticola (TD), Tannerella forsythia (TF) and Porphyromonas
gingivalis (PG) cleave proteins of extracellular matrix, what leads to tissue degradation. Moreover, PG secretes peptidylarginine deiminase
(PPAD), which citrullinates C-terminal arginines of proteins and peptides creating new epitopes recognized by anti-citrullinated proteins
antibodies (ACPA). Activity of PPAD together with deiminases from Filifactor alocis (FA) and Cryptobacterium curtum (CC) contributes to the
increase of pH in oral cavity. Leukotoxin A from Aggregatibacter actinomycetemcomitans (AA) affects white blood cells (mostly macrophages)
inducing their lysis and stimulation of NETs release from neutrophils, which in turn are degradated by nucleases expressed by PI. Degradation of
NETs leads to endogenous PADs release.
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present in 70% of patients with RA (173, 174). They are

associated with RA progression and can be detected 10 years

before onset of clinical symptoms, and also correlate with

progression of PD (175). Based on these findings, there is a

hypothesis, that citrullination associated with PD in genetically

susceptible subjects can lead to localised oral immune responses,

which may result in systemic ACPA responses followed by

synovial inflammation and onset of RA (176). However, Konig

et al. (177) argue, that the central role of ACPA is to break

tolerance during RA development and they propose, that loss of

tolerance is a consequence of the presence of antibodies against

native proteins, which precede generation of ACPA.

Another post-translational modification that can affect protein

structure and function is carbamylation. This involves non-

enzymatic binding of cyanate to the primary amine of lysine,

which forms a carbamyl group to generate homocitrulline.

Carbamylated proteins induce production of autoantibodies (anti-

CarP) (178). Neutrophils and their associated myeloperoxidases

(MPOs) contribute to carbamylation by promoting conversion of

thiocyanate to cyanate (179). Anti-CarP antibodies can predict RA

development independently of anti-CCP2 (citrullinated cyclic

peptide 2) antibodies. Their presence can be detected in both,

ACPA-positive and ACPA-negative pre-RA patients, and in those

with established RA. Detection of anti-CarP in ACPA-negative

patients may indicate a more severe disease course (180).

Carbamylated proteins have been detected in inflamed gingival

tissue, along with elevated levels of MPO, however, there is no

significant correlation between PD and anti-CarP (181, 182).

Moreover, there is no association between anti-CarP and RA risk

factors, either genetic or environmental, e.g., smoking (183).

Patients with established RA show elevated levels of antibodies

against proteins modified with malondialdehyde-acetaldehyde

adducts (MAAs), which are also associated with ACPA and RFs

(184). MAAs result frommodification of lysine residues in proteins,

which is mediated by highly reactive malondialdehyde and

acetaldehyde molecules formed by ROS during lipid peroxidation.

ROS are generated mainly under conditions of oxidative stress,

however, they can also be released by neutrophils (185). There are

indications, that P. gingivalis may contribute to production of anti-

MAA antibodies in mice (186).
Citrullination

PPAD contributes to RA development by generating

citrullinated antigens. Evidence suggests, that human fibrinogen

and a-enolase (targeted by ACPA in RA) are substrates for

PPAD, and that antibodies against citrullinated a-enolase from P.

gingivalis cross-react with human anti-a-enolase antibodies (187). It
is suggested, that PPAD can autocitrullinate its own arginine

residues, however this was observed only in a single case of PPAD

expressed by E. coli (188). Anti-PPAD antibodies detected in RA are

not directed against citrullinated PPAD (189). There is no consensus
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concerning the role of PPAD and anti-PPAD antibodies in RA.

According to the study by Quirke et al. (188), anti-PPAD antibody

levels in patients with RA are higher than those in controls.

However, another study showed no correlation between these

antibodies and ACPA levels or severity of RA, where the ACPA

levels decreased in patients with both, RA and PD (89). The

discrepancy between these studies may be due to methodological

differences. Recently, another study showed a correlation between

anti-PPAD IgG and anti-CCP IgG in RA patients treated with

disease-modifying anti-rheumatic drugs (DMARDs). Subjects with

lower anti-PPAD levels showed better responses to DMARDs

treatment than those with higher levels (190). These results may

promote anti-PPAD antibody levels as a tool for predicting

responses to therapy. Autoantibody profiles may influence

treatment responses. Indeed, patients with a broad baseline of

autoantibodies respond better during early stages of treatment,

however, they are less likely to achieve initial drug-free remission

(191). A broad baseline of autoantibodies may be due to more active

humoral immune responses to several different antigens and to

switching of antibody isotypes. This process can be targeted

efficiently by medications (191). The hypothesis of PPAD as a

possible link between PD and RA is supported by studies using

animal models. Mice infected with a P. gingivalis strain expressing

PPAD developed collagen-induced arthritis more rapidly than

controls, and the course of disease was more severe. Moreover, the

levels of citrullinated proteins at disease sites were higher (162).

Although the link between PD and RA is well established, the

particular role of P. gingivalis and its PPAD is less clear. PD is a

polymicrobial disease, therefore, interaction between P. gingivalis

and other oral bacteria should be taken into account. For example,A.

actinomycetemcomitans produce pore-forming LtxA, which induces

hypercitrullination in neutrophils. Deregulation of neutrophil-

citrullinating enzymes by LtxA may result in neutrophil trap

formation and subsequent release of hypercitrullinated proteins

and peptides. Moreover, the presence of LtxA-producing A.

actinomycetemcomitans was confirmed in RA patients, and

correlated with ACPA and RF (138). In addition, a recent study

postulates, that A. actinomycetemcomitans is able to induce

autoimmune responses associated with RA in genetically

predisposed individuals (139). However, it should be noted, that

there is a negative association between P. gingivalis and A.

actinomycetemcomitans in subgingival samples (192). In addition,

P. gingivalis inhibits growth and attachment of A.

actinomycetemcomitans within co-cultured biofilms (193, 194).

Furthermore, the presence of P. gingivalis, P. intermedia and P.

nigrescens inhibits activity of LtxA (195).
Heat shock proteins (HSPs)

HSPs interact reversibly with non-folded abnormal proteins

and peptides, thereby protecting the cell from proteotoxic stress.

They play a role in innate and acquired immune responses and are
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associated with RA pathogenesis. Bacterial HSPs were found at high

levels in serum samples from patients with RA, and the 70 kDaHSP

of P. melanogenica and P. intermedia was found in serum samples

from patients with PD (196, 197). Interestingly, antibodies specific

for HSP70 and HSP40 of A. actinomycetemcomitans are present in

the synovium of patients with RA (196). Expression of HSP70 is

triggered by stress factors, such as heat, trauma, endotoxins and

anti-inflammatory drugs, but its expression in synovium is mainly

triggered by proinflammatory cytokines, such as TNFa, IL-1 and

IL-6 (198). Therefore, these results may indicate a role of HSPs

produced by A. actinomycetemcomitans, but not other oral bacteria

in patients with RA.
Immune cells

Neutrophils play an important role in both, PD and RA, as they

are responsible for deregulated immune responses that result in

tissue damage. Moreover, they contribute to production of

autoantibodies. Neutrophils in patients with PD, RA and other

inflammatory diseases display an activated phenotype and high

levels of NETs (neutrophil extracellular traps) release. Oral bacteria

promote neutrophil-mediated production of autoantibodies. Several

factors are involved in this process, i.e., LtxA from A.

actinomycetemcomitans, degranulation of neutrophils promoted

by F. alocis, and release of NETs triggered by P. gingivalis, A.

actinomycetemcomitans and F. nucleatum (199–201).

The common feature of inflamed tissue in PD and RA is

infiltration by high numbers of other immune cell types,

including dendrocytes, macrophages and B and T lymphocytes.

Joint and blood samples from patients suffering from RA harbour

unusual populations of CD4+CD28- T cells (202). These cells are

similar toNKT cells and have the ability to produce large amounts

of IFN g (interferon g),which is amarkerof activatedTcells (known

as TH1 helper cells) and contain intracellular perforin and

granzyme B, providing them with the ability to lyse target cells.

Their outgrowth into large clonal populations may be partially

attributed to a defect in down-regulating Bcl-2 when deprived of T

cell growth factors. In the absence of the CD28 molecule, these

unusual CD4 T cells use alternate costimulatory pathways, while

the secretion of pro-inflammatory factors stimulates the

development of RA (202). TH1 cells play a role in promoting

autoimmune diseases (203). Moreover, IFN g increases

expression of MHC class II and stimulates production of

proinflammatory mediators by macrophages (204). Th17 cells are

another T cell subset found at sites of chronic inflammation in PD

and in the synoviumof RApatients (205). These cells secrete IL-17,

which plays an important role in RA pathogenesis. In brief, IL-17

promotes production of proinflammatory cytokines by

macrophages and fibroblasts, facilitates infiltration of joints by

immunecells, induces expressionofmatrixmetalloproteinases, and

also contributes to bone resorption (206). It has been shown that P.

gingivalis antigens induce expression of IL-17 (207).
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Plasma cells and B cells are the most common cell types

found in periodontal lesions comprising about 50% and 18% of

all immune cells, respectively (208). P. gingivalis promotes B cell

hyper-reactivity by stimulating dendritic cells (209). In addition,

B cell survival and maturation into plasma cells is enhanced in

gingival epithelium. The presence of B cells in periodontal tissue

is crucial for maintaining periodontal health. Antibodies

secreted by plasma cells control bacterial growth via

neutralisation, opsonisation and complement activation.

However, hyper-reactivity of B cells may be harmful due to

their ability to present antigens effectively to T cells, which leads

to osteoclastogenesis and increased bone resorption (210).

Conclusions

We summarized herein epidemiological studies that

establish a correlation between PD and RA on multiple levels.

While many studies show higher prevalence and severity of PD

in patients with RA, others demonstrate that patients with PD

are more prone to developing RA. However, since correlation

does not imply causation, the precise mechanisms connecting

these two diseases remain unclear.

Both, PD and RA share the same risk factors, including HLA-

DRB1-04 as a genetic factor, smoking and infection with EBV and

cytomegalovirus. Moreover, both conditions are characterized by

chronic inflammation, a crucial role played by B cells and plasma

cells, and tissue destruction evidenced by alveolar bone resorption

and joint erosion. These common features may suggest a similar

underlying mechanisms of both diseases.

Furthermore, we discussed in this review the associations

among bacteria responsible for the onset, development and

progression of PD and RA. We focused mainly on oral

pathogens, which are designated as “red complex” bacteria, and

are established the aetiological agents of PD.We also attempted to

cover the role of other, less commonly described bacterial species

present in the oral microbiome of patients with PD and/or RA.

We analyzed the main virulence factors of these microorganisms,

their mechanisms of action and their effects on host immune

responses. We strived to provide examples of cross-talk between

bacterial pathogens and to indicate potential overlap of

pathogenic mechanisms that may lead to synergistic effects. In

general, the evidence presented herein supports a dominant

paradigm involving a microbiome shift that results in PD and,

possibly, RA. Hopefully, future in depth investigations of the oral

microbiome and the molecular mechanisms utilized by oral

bacteria will pave the way for novel treatments and diagnostic

tools for PD and RA, so far, two incurable diseases.
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